|
|
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <time.h>
#include <sys/types.h>
#include <sys/time.h>
#include <inttypes.h>
#include <assert.h>
#include "llmsset.h"
#include "sylvan.h"
#define BLACK "\33[22;30m"
#define GRAY "\33[01;30m"
#define RED "\33[22;31m"
#define LRED "\33[01;31m"
#define GREEN "\33[22;32m"
#define LGREEN "\33[01;32m"
#define BLUE "\33[22;34m"
#define LBLUE "\33[01;34m"
#define BROWN "\33[22;33m"
#define YELLOW "\33[01;33m"
#define CYAN "\33[22;36m"
#define LCYAN "\33[22;36m"
#define MAGENTA "\33[22;35m"
#define LMAGENTA "\33[01;35m"
#define NC "\33[0m"
#define BOLD "\33[1m"
#define ULINE "\33[4m" //underline
#define BLINK "\33[5m"
#define INVERT "\33[7m"
__thread uint64_t seed = 1;
uint64_t xorshift_rand(void) { uint64_t x = seed; if (seed == 0) seed = rand(); x ^= x >> 12; x ^= x << 25; x ^= x >> 27; seed = x; return x * 2685821657736338717LL; }
double uniform_deviate(uint64_t seed) { return seed * (1.0 / (0xffffffffffffffffL + 1.0)); }
int rng(int low, int high) { return low + uniform_deviate(xorshift_rand()) * (high-low); }
static inline BDD make_random(int i, int j) { if (i == j) return rng(0, 2) ? sylvan_true : sylvan_false;
BDD yes = make_random(i+1, j); BDD no = make_random(i+1, j); BDD result = sylvan_invalid;
switch(rng(0, 4)) { case 0: result = no; sylvan_deref(yes); break; case 1: result = yes; sylvan_deref(no); break; case 2: result = sylvan_ref(sylvan_makenode(i, yes, no)); sylvan_deref(no); sylvan_deref(yes); break; case 3: default: result = sylvan_ref(sylvan_makenode(i, no, yes)); sylvan_deref(no); sylvan_deref(yes); break; }
return result; }
void testFun(BDD p1, BDD p2, BDD r1, BDD r2) { if (r1 == r2) return;
printf("Parameter 1:\n"); fflush(stdout); sylvan_printdot(p1); sylvan_print(p1);printf("\n");
printf("Parameter 2:\n"); fflush(stdout); sylvan_printdot(p2); sylvan_print(p2);printf("\n");
printf("Result 1:\n"); fflush(stdout); sylvan_printdot(r1);
printf("Result 2:\n"); fflush(stdout); sylvan_printdot(r2);
assert(0); }
int testEqual(BDD a, BDD b) { if (a == b) return 1;
if (a == sylvan_invalid) { printf("a is invalid!\n"); return 0; }
if (b == sylvan_invalid) { printf("b is invalid!\n"); return 0; }
printf("Not Equal!\n"); fflush(stdout);
sylvan_print(a);printf("\n"); sylvan_print(b);printf("\n");
return 0; }
void test_bdd() { sylvan_gc_disable();
assert(sylvan_makenode(sylvan_ithvar(1), sylvan_true, sylvan_true) == sylvan_not(sylvan_makenode(sylvan_ithvar(1), sylvan_false, sylvan_false))); assert(sylvan_makenode(sylvan_ithvar(1), sylvan_false, sylvan_true) == sylvan_not(sylvan_makenode(sylvan_ithvar(1), sylvan_true, sylvan_false))); assert(sylvan_makenode(sylvan_ithvar(1), sylvan_true, sylvan_false) == sylvan_not(sylvan_makenode(sylvan_ithvar(1), sylvan_false, sylvan_true))); assert(sylvan_makenode(sylvan_ithvar(1), sylvan_false, sylvan_false) == sylvan_not(sylvan_makenode(sylvan_ithvar(1), sylvan_true, sylvan_true)));
sylvan_gc_enable(); }
void test_cube() { LACE_ME; BDDSET vars = sylvan_set_fromarray(((BDDVAR[]){1,2,3,4,6,8}), 6);
uint8_t cube[6], check[6]; int i, j; for (i=0;i<6;i++) cube[i] = rng(0,3); BDD bdd = sylvan_cube(vars, cube);
sylvan_sat_one(bdd, vars, check); for (i=0; i<6;i++) assert(cube[i] == check[i] || cube[i] == 2 && check[i] == 0);
BDD picked = sylvan_pick_cube(bdd); assert(testEqual(sylvan_and(picked, bdd), picked));
BDD t1 = sylvan_cube(vars, ((uint8_t[]){1,1,2,2,0,0})); BDD t2 = sylvan_cube(vars, ((uint8_t[]){1,1,1,0,0,2})); assert(testEqual(sylvan_union_cube(t1, vars, ((uint8_t[]){1,1,1,0,0,2})), sylvan_or(t1, t2))); t2 = sylvan_cube(vars, ((uint8_t[]){2,2,2,1,1,0})); assert(testEqual(sylvan_union_cube(t1, vars, ((uint8_t[]){2,2,2,1,1,0})), sylvan_or(t1, t2))); t2 = sylvan_cube(vars, ((uint8_t[]){1,1,1,0,0,0})); assert(testEqual(sylvan_union_cube(t1, vars, ((uint8_t[]){1,1,1,0,0,0})), sylvan_or(t1, t2)));
sylvan_gc_disable(); bdd = make_random(1, 16); for (j=0;j<10;j++) { for (i=0;i<6;i++) cube[i] = rng(0,3); BDD c = sylvan_cube(vars, cube); assert(sylvan_union_cube(bdd, vars, cube) == sylvan_or(bdd, c)); }
for (i=0;i<10;i++) { picked = sylvan_pick_cube(bdd); assert(testEqual(sylvan_and(picked, bdd), picked)); } sylvan_gc_enable(); }
static void test_operators() { // We need to test: xor, and, or, nand, nor, imp, biimp, invimp, diff, less
sylvan_gc_disable();
LACE_ME;
//int i;
BDD a = sylvan_ithvar(1); BDD b = sylvan_ithvar(2); BDD one = make_random(1, 12); BDD two = make_random(6, 24);
// Test or
assert(testEqual(sylvan_or(a, b), sylvan_makenode(1, b, sylvan_true))); assert(testEqual(sylvan_or(a, b), sylvan_or(b, a))); assert(testEqual(sylvan_or(one, two), sylvan_or(two, one)));
// Test and
assert(testEqual(sylvan_and(a, b), sylvan_makenode(1, sylvan_false, b))); assert(testEqual(sylvan_and(a, b), sylvan_and(b, a))); assert(testEqual(sylvan_and(one, two), sylvan_and(two, one)));
// Test xor
assert(testEqual(sylvan_xor(a, b), sylvan_makenode(1, b, sylvan_not(b)))); assert(testEqual(sylvan_xor(a, b), sylvan_xor(a, b))); assert(testEqual(sylvan_xor(a, b), sylvan_xor(b, a))); assert(testEqual(sylvan_xor(one, two), sylvan_xor(two, one))); assert(testEqual(sylvan_xor(a, b), sylvan_ite(a, sylvan_not(b), b)));
// Test diff
assert(testEqual(sylvan_diff(a, b), sylvan_diff(a, b))); assert(testEqual(sylvan_diff(a, b), sylvan_diff(a, sylvan_and(a, b)))); assert(testEqual(sylvan_diff(a, b), sylvan_and(a, sylvan_not(b)))); assert(testEqual(sylvan_diff(a, b), sylvan_ite(b, sylvan_false, a))); assert(testEqual(sylvan_diff(one, two), sylvan_diff(one, two))); assert(testEqual(sylvan_diff(one, two), sylvan_diff(one, sylvan_and(one, two)))); assert(testEqual(sylvan_diff(one, two), sylvan_and(one, sylvan_not(two)))); assert(testEqual(sylvan_diff(one, two), sylvan_ite(two, sylvan_false, one)));
// Test biimp
assert(testEqual(sylvan_biimp(a, b), sylvan_makenode(1, sylvan_not(b), b))); assert(testEqual(sylvan_biimp(a, b), sylvan_biimp(b, a))); assert(testEqual(sylvan_biimp(one, two), sylvan_biimp(two, one)));
// Test nand / and
assert(testEqual(sylvan_not(sylvan_and(a, b)), sylvan_nand(b, a))); assert(testEqual(sylvan_not(sylvan_and(one, two)), sylvan_nand(two, one)));
// Test nor / or
assert(testEqual(sylvan_not(sylvan_or(a, b)), sylvan_nor(b, a))); assert(testEqual(sylvan_not(sylvan_or(one, two)), sylvan_nor(two, one)));
// Test xor / biimp
assert(testEqual(sylvan_xor(a, b), sylvan_not(sylvan_biimp(b, a)))); assert(testEqual(sylvan_xor(one, two), sylvan_not(sylvan_biimp(two, one))));
// Test imp
assert(testEqual(sylvan_imp(a, b), sylvan_ite(a, b, sylvan_true))); assert(testEqual(sylvan_imp(one, two), sylvan_ite(one, two, sylvan_true))); assert(testEqual(sylvan_imp(one, two), sylvan_not(sylvan_diff(one, two)))); assert(testEqual(sylvan_invimp(one, two), sylvan_not(sylvan_less(one, two)))); assert(testEqual(sylvan_imp(a, b), sylvan_invimp(b, a))); assert(testEqual(sylvan_imp(one, two), sylvan_invimp(two, one)));
// Test constrain, exists and forall
sylvan_gc_enable(); }
static void test_relprod() { LACE_ME;
sylvan_gc_disable();
BDDVAR vars[] = {0,2,4}; BDDVAR all_vars[] = {0,1,2,3,4,5};
BDDSET vars_set = sylvan_set_fromarray(vars, 3); BDDSET all_vars_set = sylvan_set_fromarray(all_vars, 6);
BDD s, t, next, prev; BDD zeroes, ones;
// transition relation: 000 --> 111 and !000 --> 000
t = sylvan_false; t = sylvan_union_cube(t, all_vars_set, ((uint8_t[]){0,1,0,1,0,1})); t = sylvan_union_cube(t, all_vars_set, ((uint8_t[]){1,0,2,0,2,0})); t = sylvan_union_cube(t, all_vars_set, ((uint8_t[]){2,0,1,0,2,0})); t = sylvan_union_cube(t, all_vars_set, ((uint8_t[]){2,0,2,0,1,0}));
s = sylvan_cube(vars_set, (uint8_t[]){0,0,1}); zeroes = sylvan_cube(vars_set, (uint8_t[]){0,0,0}); ones = sylvan_cube(vars_set, (uint8_t[]){1,1,1});
next = sylvan_relnext(s, t, all_vars_set); prev = sylvan_relprev(t, next, all_vars_set); assert(next == zeroes); assert(prev == sylvan_not(zeroes));
next = sylvan_relnext(next, t, all_vars_set); prev = sylvan_relprev(t, next, all_vars_set); assert(next == ones); assert(prev == zeroes);
t = sylvan_cube(all_vars_set, (uint8_t[]){0,0,0,0,0,1}); assert(sylvan_relprev(t, s, all_vars_set) == zeroes); assert(sylvan_relprev(t, sylvan_not(s), all_vars_set) == sylvan_false); assert(sylvan_relnext(s, t, all_vars_set) == sylvan_false); assert(sylvan_relnext(zeroes, t, all_vars_set) == s);
t = sylvan_cube(all_vars_set, (uint8_t[]){0,0,0,0,0,2}); assert(sylvan_relprev(t, s, all_vars_set) == zeroes); assert(sylvan_relprev(t, zeroes, all_vars_set) == zeroes); assert(sylvan_relnext(sylvan_not(zeroes), t, all_vars_set) == sylvan_false);
sylvan_gc_enable(); }
static void test_compose() { sylvan_gc_disable();
LACE_ME;
BDD a = sylvan_ithvar(1); BDD b = sylvan_ithvar(2);
BDD a_or_b = sylvan_or(a, b);
BDD one = make_random(3, 16); BDD two = make_random(8, 24);
BDDMAP map = sylvan_map_empty();
map = sylvan_map_add(map, 1, one); map = sylvan_map_add(map, 2, two);
assert(sylvan_map_key(map) == 1); assert(sylvan_map_value(map) == one); assert(sylvan_map_key(sylvan_map_next(map)) == 2); assert(sylvan_map_value(sylvan_map_next(map)) == two);
assert(testEqual(one, sylvan_compose(a, map))); assert(testEqual(two, sylvan_compose(b, map)));
assert(testEqual(sylvan_or(one, two), sylvan_compose(a_or_b, map)));
map = sylvan_map_add(map, 2, one); assert(testEqual(sylvan_compose(a_or_b, map), one));
map = sylvan_map_add(map, 1, two); assert(testEqual(sylvan_or(one, two), sylvan_compose(a_or_b, map)));
assert(testEqual(sylvan_and(one, two), sylvan_compose(sylvan_and(a, b), map)));
sylvan_gc_enable(); }
/** GC testing */ VOID_TASK_2(gctest_fill, int, levels, int, width) { if (levels > 1) { int i; for (i=0; i<width; i++) { SPAWN(gctest_fill, levels-1, width); } for (i=0; i<width; i++) { SYNC(gctest_fill); } } else { sylvan_deref(make_random(0, 10)); } }
void report_table() { llmsset_t __sylvan_get_internal_data(); llmsset_t tbl = __sylvan_get_internal_data(); LACE_ME; size_t filled = llmsset_count_marked(tbl); size_t total = llmsset_get_size(tbl); printf("done, table: %0.1f%% full (%zu nodes).\n", 100.0*(double)filled/total, filled); }
void test_gc(int threads) { LACE_ME; int N_canaries = 16; BDD canaries[N_canaries]; char* hashes[N_canaries]; char* hashes2[N_canaries]; int i,j; for (i=0;i<N_canaries;i++) { canaries[i] = make_random(0, 10); hashes[i] = (char*)malloc(80); hashes2[i] = (char*)malloc(80); sylvan_getsha(canaries[i], hashes[i]); sylvan_test_isbdd(canaries[i]); } assert(sylvan_count_refs() == (size_t)N_canaries); for (j=0;j<10*threads;j++) { CALL(gctest_fill, 6, 5); for (i=0;i<N_canaries;i++) { sylvan_test_isbdd(canaries[i]); sylvan_getsha(canaries[i], hashes2[i]); assert(strcmp(hashes[i], hashes2[i]) == 0); } } assert(sylvan_count_refs() == (size_t)N_canaries); }
TASK_2(MDD, random_ldd, int, depth, int, count) { uint32_t n[depth];
MDD result = lddmc_false;
int i, j; for (i=0; i<count; i++) { for (j=0; j<depth; j++) { n[j] = rng(0, 10); } MDD old = result; result = lddmc_union_cube(result, n, depth); assert(lddmc_cube(n, depth) != lddmc_true); assert(result == lddmc_union(old, lddmc_cube(n, depth))); assert(result != lddmc_true); }
return result; }
VOID_TASK_3(enumer, uint32_t*, values, size_t, count, void*, context) { return; (void)values; (void)count; (void)context; }
void test_lddmc() { LACE_ME;
sylvan_init_package(1LL<<24, 1LL<<24, 1LL<<24, 1LL<<24); sylvan_init_ldd(); sylvan_gc_disable();
MDD a, b, c;
// Test union, union_cube, member_cube, satcount
a = lddmc_cube((uint32_t[]){1,2,3,5,4,3}, 6); a = lddmc_union(a,lddmc_cube((uint32_t[]){2,2,3,5,4,3}, 6)); c = b = a = lddmc_union_cube(a, (uint32_t[]){2,2,3,5,4,2}, 6); a = lddmc_union_cube(a, (uint32_t[]){2,3,3,5,4,3}, 6); a = lddmc_union(a, lddmc_cube((uint32_t[]){2,3,4,4,4,3}, 6));
assert(lddmc_member_cube(a, (uint32_t[]){2,3,3,5,4,3}, 6)); assert(lddmc_member_cube(a, (uint32_t[]){1,2,3,5,4,3}, 6)); assert(lddmc_member_cube(a, (uint32_t[]){2,2,3,5,4,3}, 6)); assert(lddmc_member_cube(a, (uint32_t[]){2,2,3,5,4,2}, 6));
assert(lddmc_satcount(a) == 5);
lddmc_sat_all_par(a, TASK(enumer), NULL);
// Test minus, member_cube, satcount
a = lddmc_minus(a, b); assert(lddmc_member_cube(a, (uint32_t[]){2,3,3,5,4,3}, 6)); assert(!lddmc_member_cube(a, (uint32_t[]){1,2,3,5,4,3}, 6)); assert(!lddmc_member_cube(a, (uint32_t[]){2,2,3,5,4,3}, 6)); assert(!lddmc_member_cube(a, (uint32_t[]){2,2,3,5,4,2}, 6)); assert(lddmc_member_cube(a, (uint32_t[]){2,3,4,4,4,3}, 6));
assert(lddmc_satcount(a) == 2);
// Test intersect
assert(lddmc_satcount(lddmc_intersect(a,b)) == 0); assert(lddmc_intersect(b,c)==lddmc_intersect(c,b)); assert(lddmc_intersect(b,c)==c);
// Test project, project_minus
a = lddmc_cube((uint32_t[]){1,2,3,5,4,3}, 6); a = lddmc_union_cube(a, (uint32_t[]){2,2,3,5,4,3}, 6); a = lddmc_union_cube(a, (uint32_t[]){2,2,3,5,4,2}, 6); a = lddmc_union_cube(a, (uint32_t[]){2,3,3,5,4,3}, 6); a = lddmc_union_cube(a, (uint32_t[]){2,3,4,4,4,3}, 6); // a = {<1,2,3,5,4,3>,<2,2,3,5,4,3>,<2,2,3,5,4,2>,<2,3,3,5,4,3>,<2,3,4,4,4,3>}
MDD proj = lddmc_cube((uint32_t[]){1,1,-2},3); b = lddmc_cube((uint32_t[]){1,2}, 2); b = lddmc_union_cube(b, (uint32_t[]){2,2}, 2); b = lddmc_union_cube(b, (uint32_t[]){2,3}, 2); assert(lddmc_project(a, proj)==b); assert(lddmc_project_minus(a, proj, lddmc_false)==b); assert(lddmc_project_minus(a, proj, b)==lddmc_false);
// Test relprod
a = lddmc_cube((uint32_t[]){1},1); b = lddmc_cube((uint32_t[]){1,2},2); proj = lddmc_cube((uint32_t[]){1,2,-1}, 3); assert(lddmc_cube((uint32_t[]){2},1) == lddmc_relprod(a, b, proj)); assert(lddmc_cube((uint32_t[]){3},1) == lddmc_relprod(a, lddmc_cube((uint32_t[]){1,3},2), proj)); a = lddmc_union_cube(a, (uint32_t[]){2},1); assert(lddmc_satcount(a) == 2); assert(lddmc_cube((uint32_t[]){2},1) == lddmc_relprod(a, b, proj)); b = lddmc_union_cube(b, (uint32_t[]){2,2},2); assert(lddmc_cube((uint32_t[]){2},1) == lddmc_relprod(a, b, proj)); b = lddmc_union_cube(b, (uint32_t[]){2,3},2); assert(lddmc_satcount(lddmc_relprod(a, b, proj)) == 2); assert(lddmc_union(lddmc_cube((uint32_t[]){2},1),lddmc_cube((uint32_t[]){3},1)) == lddmc_relprod(a, b, proj));
// Test relprev
MDD universe = lddmc_union(lddmc_cube((uint32_t[]){1},1), lddmc_cube((uint32_t[]){2},1)); a = lddmc_cube((uint32_t[]){2},1); b = lddmc_cube((uint32_t[]){1,2},2); assert(lddmc_cube((uint32_t[]){1},1) == lddmc_relprev(a, b, proj, universe)); assert(lddmc_cube((uint32_t[]){1},1) == lddmc_relprev(a, b, proj, lddmc_cube((uint32_t[]){1},1))); a = lddmc_cube((uint32_t[]){1},1); MDD next = lddmc_relprod(a, b, proj); assert(lddmc_relprev(next, b, proj, a) == a);
// Random tests
MDD rnd1, rnd2;
int i; for (i=0; i<200; i++) { int depth = rng(1, 20); rnd1 = CALL(random_ldd, depth, rng(0, 30)); rnd2 = CALL(random_ldd, depth, rng(0, 30)); assert(rnd1 != lddmc_true); assert(rnd2 != lddmc_true); assert(lddmc_intersect(rnd1,rnd2) == lddmc_intersect(rnd2,rnd1)); assert(lddmc_union(rnd1,rnd2) == lddmc_union(rnd2,rnd1)); MDD tmp = lddmc_union(lddmc_minus(rnd1, rnd2), lddmc_minus(rnd2, rnd1)); assert(lddmc_intersect(tmp, lddmc_intersect(rnd1, rnd2)) == lddmc_false); assert(lddmc_union(tmp, lddmc_intersect(rnd1, rnd2)) == lddmc_union(rnd1, rnd2)); assert(lddmc_minus(rnd1,rnd2) == lddmc_minus(rnd1, lddmc_intersect(rnd1,rnd2))); }
// Test file stuff
for (i=0; i<10; i++) { FILE *f = fopen("__lddmc_test_bdd", "w+"); int N = 20; MDD rnd[N]; size_t a[N]; char sha[N][65]; int j; for (j=0;j<N;j++) rnd[j] = CALL(random_ldd, 5, 500); for (j=0;j<N;j++) lddmc_getsha(rnd[j], sha[j]); for (j=0;j<N;j++) { a[j] = lddmc_serialize_add(rnd[j]); lddmc_serialize_tofile(f); } for (j=0;j<N;j++) assert(a[j] == lddmc_serialize_get(rnd[j])); for (j=0;j<N;j++) assert(rnd[j] == lddmc_serialize_get_reversed(a[j])); fseek(f, 0, SEEK_SET); lddmc_serialize_reset();
sylvan_quit(); sylvan_init_package(1LL<<24, 1LL<<24, 1LL<<24, 1LL<<24); sylvan_init_ldd(); sylvan_gc_disable();
for (j=0;j<N;j++) lddmc_serialize_fromfile(f); fclose(f); unlink("__lddmc_test_bdd");
for (j=0;j<N;j++) rnd[j] = lddmc_serialize_get_reversed(a[j]); char sha2[N][65]; for (j=0;j<N;j++) lddmc_getsha(rnd[j], sha2[j]); for (j=0;j<N;j++) assert(memcmp(sha[j], sha2[j], 64)==0); lddmc_serialize_reset(); }
sylvan_quit(); }
void runtests(int threads) { lace_init(threads, 100000); lace_startup(0, NULL, NULL);
printf(BOLD "Testing LDDMC... "); fflush(stdout); test_lddmc(); printf(LGREEN "success" NC "!\n");
printf(BOLD "Testing Sylvan\n");
printf(NC "Testing basic bdd functionality... "); fflush(stdout); sylvan_init_package(1LL<<16, 1LL<<16, 1LL<<16, 1LL<<16); sylvan_init_bdd(1); test_bdd(); sylvan_quit(); printf(LGREEN "success" NC "!\n");
// what happens if we make a cube
printf(NC "Testing cube function... "); fflush(stdout); int j; sylvan_init_package(1LL<<24, 1LL<<24, 1LL<<24, 1LL<<24); sylvan_init_bdd(1); for (j=0;j<20;j++) test_cube(); sylvan_quit(); printf(LGREEN "success" NC "!\n");
printf(NC "Testing relational products... "); fflush(stdout); sylvan_init_package(1LL<<24, 1LL<<24, 1LL<<24, 1LL<<24); sylvan_init_bdd(1); for (j=0;j<20;j++) test_relprod(); sylvan_quit(); printf(LGREEN "success" NC "!\n");
printf(NC "Testing function composition... "); fflush(stdout); sylvan_init_package(1LL<<24, 1LL<<24, 1LL<<24, 1LL<<24); sylvan_init_bdd(1); for (j=0;j<20;j++) test_compose(); sylvan_quit(); printf(LGREEN "success" NC "!\n");
printf(NC "Testing garbage collection... "); fflush(stdout); sylvan_init_package(1LL<<14, 1LL<<14, 1LL<<20, 1LL<<20); sylvan_init_bdd(1); test_gc(threads); sylvan_quit(); printf(LGREEN "success" NC "!\n");
printf(NC "Testing operators... "); fflush(stdout); sylvan_init_package(1LL<<24, 1LL<<24, 1LL<<24, 1LL<<24); sylvan_init_bdd(1); for (j=0;j<20;j++) test_operators(); sylvan_quit(); printf(LGREEN "success" NC "!\n");
lace_exit(); }
int main(int argc, char **argv) { int threads = 2; if (argc > 1) sscanf(argv[1], "%d", &threads);
runtests(threads); printf(NC); exit(0); }
|