You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

763 lines
22 KiB

  1. *> \brief \b SLARFB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLARFB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  22. * T, LDT, C, LDC, WORK, LDWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIRECT, SIDE, STOREV, TRANS
  26. * INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL C( LDC, * ), T( LDT, * ), V( LDV, * ),
  30. * $ WORK( LDWORK, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SLARFB applies a real block reflector H or its transpose H**T to a
  40. *> real m by n matrix C, from either the left or the right.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] SIDE
  47. *> \verbatim
  48. *> SIDE is CHARACTER*1
  49. *> = 'L': apply H or H**T from the Left
  50. *> = 'R': apply H or H**T from the Right
  51. *> \endverbatim
  52. *>
  53. *> \param[in] TRANS
  54. *> \verbatim
  55. *> TRANS is CHARACTER*1
  56. *> = 'N': apply H (No transpose)
  57. *> = 'T': apply H**T (Transpose)
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIRECT
  61. *> \verbatim
  62. *> DIRECT is CHARACTER*1
  63. *> Indicates how H is formed from a product of elementary
  64. *> reflectors
  65. *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
  66. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  67. *> \endverbatim
  68. *>
  69. *> \param[in] STOREV
  70. *> \verbatim
  71. *> STOREV is CHARACTER*1
  72. *> Indicates how the vectors which define the elementary
  73. *> reflectors are stored:
  74. *> = 'C': Columnwise
  75. *> = 'R': Rowwise
  76. *> \endverbatim
  77. *>
  78. *> \param[in] M
  79. *> \verbatim
  80. *> M is INTEGER
  81. *> The number of rows of the matrix C.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of columns of the matrix C.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] K
  91. *> \verbatim
  92. *> K is INTEGER
  93. *> The order of the matrix T (= the number of elementary
  94. *> reflectors whose product defines the block reflector).
  95. *> \endverbatim
  96. *>
  97. *> \param[in] V
  98. *> \verbatim
  99. *> V is REAL array, dimension
  100. *> (LDV,K) if STOREV = 'C'
  101. *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
  102. *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
  103. *> The matrix V. See Further Details.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDV
  107. *> \verbatim
  108. *> LDV is INTEGER
  109. *> The leading dimension of the array V.
  110. *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
  111. *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
  112. *> if STOREV = 'R', LDV >= K.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] T
  116. *> \verbatim
  117. *> T is REAL array, dimension (LDT,K)
  118. *> The triangular k by k matrix T in the representation of the
  119. *> block reflector.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDT
  123. *> \verbatim
  124. *> LDT is INTEGER
  125. *> The leading dimension of the array T. LDT >= K.
  126. *> \endverbatim
  127. *>
  128. *> \param[in,out] C
  129. *> \verbatim
  130. *> C is REAL array, dimension (LDC,N)
  131. *> On entry, the m by n matrix C.
  132. *> On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] LDC
  136. *> \verbatim
  137. *> LDC is INTEGER
  138. *> The leading dimension of the array C. LDC >= max(1,M).
  139. *> \endverbatim
  140. *>
  141. *> \param[out] WORK
  142. *> \verbatim
  143. *> WORK is REAL array, dimension (LDWORK,K)
  144. *> \endverbatim
  145. *>
  146. *> \param[in] LDWORK
  147. *> \verbatim
  148. *> LDWORK is INTEGER
  149. *> The leading dimension of the array WORK.
  150. *> If SIDE = 'L', LDWORK >= max(1,N);
  151. *> if SIDE = 'R', LDWORK >= max(1,M).
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \date November 2011
  163. *
  164. *> \ingroup realOTHERauxiliary
  165. *
  166. *> \par Further Details:
  167. * =====================
  168. *>
  169. *> \verbatim
  170. *>
  171. *> The shape of the matrix V and the storage of the vectors which define
  172. *> the H(i) is best illustrated by the following example with n = 5 and
  173. *> k = 3. The elements equal to 1 are not stored; the corresponding
  174. *> array elements are modified but restored on exit. The rest of the
  175. *> array is not used.
  176. *>
  177. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  178. *>
  179. *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
  180. *> ( v1 1 ) ( 1 v2 v2 v2 )
  181. *> ( v1 v2 1 ) ( 1 v3 v3 )
  182. *> ( v1 v2 v3 )
  183. *> ( v1 v2 v3 )
  184. *>
  185. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  186. *>
  187. *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
  188. *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
  189. *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
  190. *> ( 1 v3 )
  191. *> ( 1 )
  192. *> \endverbatim
  193. *>
  194. * =====================================================================
  195. SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  196. $ T, LDT, C, LDC, WORK, LDWORK )
  197. *
  198. * -- LAPACK auxiliary routine (version 3.4.0) --
  199. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  200. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201. * November 2011
  202. *
  203. * .. Scalar Arguments ..
  204. CHARACTER DIRECT, SIDE, STOREV, TRANS
  205. INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  206. * ..
  207. * .. Array Arguments ..
  208. REAL C( LDC, * ), T( LDT, * ), V( LDV, * ),
  209. $ WORK( LDWORK, * )
  210. * ..
  211. *
  212. * =====================================================================
  213. *
  214. * .. Parameters ..
  215. REAL ONE
  216. PARAMETER ( ONE = 1.0E+0 )
  217. * ..
  218. * .. Local Scalars ..
  219. CHARACTER TRANST
  220. INTEGER I, J, LASTV, LASTC
  221. * ..
  222. * .. External Functions ..
  223. LOGICAL LSAME
  224. INTEGER ILASLR, ILASLC
  225. EXTERNAL LSAME, ILASLR, ILASLC
  226. * ..
  227. * .. External Subroutines ..
  228. EXTERNAL SCOPY, SGEMM, STRMM
  229. * ..
  230. * .. Executable Statements ..
  231. *
  232. * Quick return if possible
  233. *
  234. IF( M.LE.0 .OR. N.LE.0 )
  235. $ RETURN
  236. *
  237. IF( LSAME( TRANS, 'N' ) ) THEN
  238. TRANST = 'T'
  239. ELSE
  240. TRANST = 'N'
  241. END IF
  242. *
  243. IF( LSAME( STOREV, 'C' ) ) THEN
  244. *
  245. IF( LSAME( DIRECT, 'F' ) ) THEN
  246. *
  247. * Let V = ( V1 ) (first K rows)
  248. * ( V2 )
  249. * where V1 is unit lower triangular.
  250. *
  251. IF( LSAME( SIDE, 'L' ) ) THEN
  252. *
  253. * Form H * C or H**T * C where C = ( C1 )
  254. * ( C2 )
  255. *
  256. LASTV = MAX( K, ILASLR( M, K, V, LDV ) )
  257. LASTC = ILASLC( LASTV, N, C, LDC )
  258. *
  259. * W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK)
  260. *
  261. * W := C1**T
  262. *
  263. DO 10 J = 1, K
  264. CALL SCOPY( LASTC, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  265. 10 CONTINUE
  266. *
  267. * W := W * V1
  268. *
  269. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  270. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  271. IF( LASTV.GT.K ) THEN
  272. *
  273. * W := W + C2**T *V2
  274. *
  275. CALL SGEMM( 'Transpose', 'No transpose',
  276. $ LASTC, K, LASTV-K,
  277. $ ONE, C( K+1, 1 ), LDC, V( K+1, 1 ), LDV,
  278. $ ONE, WORK, LDWORK )
  279. END IF
  280. *
  281. * W := W * T**T or W * T
  282. *
  283. CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit',
  284. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  285. *
  286. * C := C - V * W**T
  287. *
  288. IF( LASTV.GT.K ) THEN
  289. *
  290. * C2 := C2 - V2 * W**T
  291. *
  292. CALL SGEMM( 'No transpose', 'Transpose',
  293. $ LASTV-K, LASTC, K,
  294. $ -ONE, V( K+1, 1 ), LDV, WORK, LDWORK, ONE,
  295. $ C( K+1, 1 ), LDC )
  296. END IF
  297. *
  298. * W := W * V1**T
  299. *
  300. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit',
  301. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  302. *
  303. * C1 := C1 - W**T
  304. *
  305. DO 30 J = 1, K
  306. DO 20 I = 1, LASTC
  307. C( J, I ) = C( J, I ) - WORK( I, J )
  308. 20 CONTINUE
  309. 30 CONTINUE
  310. *
  311. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  312. *
  313. * Form C * H or C * H**T where C = ( C1 C2 )
  314. *
  315. LASTV = MAX( K, ILASLR( N, K, V, LDV ) )
  316. LASTC = ILASLR( M, LASTV, C, LDC )
  317. *
  318. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  319. *
  320. * W := C1
  321. *
  322. DO 40 J = 1, K
  323. CALL SCOPY( LASTC, C( 1, J ), 1, WORK( 1, J ), 1 )
  324. 40 CONTINUE
  325. *
  326. * W := W * V1
  327. *
  328. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  329. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  330. IF( LASTV.GT.K ) THEN
  331. *
  332. * W := W + C2 * V2
  333. *
  334. CALL SGEMM( 'No transpose', 'No transpose',
  335. $ LASTC, K, LASTV-K,
  336. $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
  337. $ ONE, WORK, LDWORK )
  338. END IF
  339. *
  340. * W := W * T or W * T**T
  341. *
  342. CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit',
  343. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  344. *
  345. * C := C - W * V**T
  346. *
  347. IF( LASTV.GT.K ) THEN
  348. *
  349. * C2 := C2 - W * V2**T
  350. *
  351. CALL SGEMM( 'No transpose', 'Transpose',
  352. $ LASTC, LASTV-K, K,
  353. $ -ONE, WORK, LDWORK, V( K+1, 1 ), LDV, ONE,
  354. $ C( 1, K+1 ), LDC )
  355. END IF
  356. *
  357. * W := W * V1**T
  358. *
  359. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit',
  360. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  361. *
  362. * C1 := C1 - W
  363. *
  364. DO 60 J = 1, K
  365. DO 50 I = 1, LASTC
  366. C( I, J ) = C( I, J ) - WORK( I, J )
  367. 50 CONTINUE
  368. 60 CONTINUE
  369. END IF
  370. *
  371. ELSE
  372. *
  373. * Let V = ( V1 )
  374. * ( V2 ) (last K rows)
  375. * where V2 is unit upper triangular.
  376. *
  377. IF( LSAME( SIDE, 'L' ) ) THEN
  378. *
  379. * Form H * C or H**T * C where C = ( C1 )
  380. * ( C2 )
  381. *
  382. LASTV = MAX( K, ILASLR( M, K, V, LDV ) )
  383. LASTC = ILASLC( LASTV, N, C, LDC )
  384. *
  385. * W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK)
  386. *
  387. * W := C2**T
  388. *
  389. DO 70 J = 1, K
  390. CALL SCOPY( LASTC, C( LASTV-K+J, 1 ), LDC,
  391. $ WORK( 1, J ), 1 )
  392. 70 CONTINUE
  393. *
  394. * W := W * V2
  395. *
  396. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  397. $ LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV,
  398. $ WORK, LDWORK )
  399. IF( LASTV.GT.K ) THEN
  400. *
  401. * W := W + C1**T*V1
  402. *
  403. CALL SGEMM( 'Transpose', 'No transpose',
  404. $ LASTC, K, LASTV-K, ONE, C, LDC, V, LDV,
  405. $ ONE, WORK, LDWORK )
  406. END IF
  407. *
  408. * W := W * T**T or W * T
  409. *
  410. CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit',
  411. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  412. *
  413. * C := C - V * W**T
  414. *
  415. IF( LASTV.GT.K ) THEN
  416. *
  417. * C1 := C1 - V1 * W**T
  418. *
  419. CALL SGEMM( 'No transpose', 'Transpose',
  420. $ LASTV-K, LASTC, K, -ONE, V, LDV, WORK, LDWORK,
  421. $ ONE, C, LDC )
  422. END IF
  423. *
  424. * W := W * V2**T
  425. *
  426. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit',
  427. $ LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV,
  428. $ WORK, LDWORK )
  429. *
  430. * C2 := C2 - W**T
  431. *
  432. DO 90 J = 1, K
  433. DO 80 I = 1, LASTC
  434. C( LASTV-K+J, I ) = C( LASTV-K+J, I ) - WORK(I, J)
  435. 80 CONTINUE
  436. 90 CONTINUE
  437. *
  438. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  439. *
  440. * Form C * H or C * H**T where C = ( C1 C2 )
  441. *
  442. LASTV = MAX( K, ILASLR( N, K, V, LDV ) )
  443. LASTC = ILASLR( M, LASTV, C, LDC )
  444. *
  445. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  446. *
  447. * W := C2
  448. *
  449. DO 100 J = 1, K
  450. CALL SCOPY( LASTC, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  451. 100 CONTINUE
  452. *
  453. * W := W * V2
  454. *
  455. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  456. $ LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV,
  457. $ WORK, LDWORK )
  458. IF( LASTV.GT.K ) THEN
  459. *
  460. * W := W + C1 * V1
  461. *
  462. CALL SGEMM( 'No transpose', 'No transpose',
  463. $ LASTC, K, LASTV-K, ONE, C, LDC, V, LDV,
  464. $ ONE, WORK, LDWORK )
  465. END IF
  466. *
  467. * W := W * T or W * T**T
  468. *
  469. CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit',
  470. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  471. *
  472. * C := C - W * V**T
  473. *
  474. IF( LASTV.GT.K ) THEN
  475. *
  476. * C1 := C1 - W * V1**T
  477. *
  478. CALL SGEMM( 'No transpose', 'Transpose',
  479. $ LASTC, LASTV-K, K, -ONE, WORK, LDWORK, V, LDV,
  480. $ ONE, C, LDC )
  481. END IF
  482. *
  483. * W := W * V2**T
  484. *
  485. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit',
  486. $ LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV,
  487. $ WORK, LDWORK )
  488. *
  489. * C2 := C2 - W
  490. *
  491. DO 120 J = 1, K
  492. DO 110 I = 1, LASTC
  493. C( I, LASTV-K+J ) = C( I, LASTV-K+J ) - WORK(I, J)
  494. 110 CONTINUE
  495. 120 CONTINUE
  496. END IF
  497. END IF
  498. *
  499. ELSE IF( LSAME( STOREV, 'R' ) ) THEN
  500. *
  501. IF( LSAME( DIRECT, 'F' ) ) THEN
  502. *
  503. * Let V = ( V1 V2 ) (V1: first K columns)
  504. * where V1 is unit upper triangular.
  505. *
  506. IF( LSAME( SIDE, 'L' ) ) THEN
  507. *
  508. * Form H * C or H**T * C where C = ( C1 )
  509. * ( C2 )
  510. *
  511. LASTV = MAX( K, ILASLC( K, M, V, LDV ) )
  512. LASTC = ILASLC( LASTV, N, C, LDC )
  513. *
  514. * W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK)
  515. *
  516. * W := C1**T
  517. *
  518. DO 130 J = 1, K
  519. CALL SCOPY( LASTC, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  520. 130 CONTINUE
  521. *
  522. * W := W * V1**T
  523. *
  524. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit',
  525. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  526. IF( LASTV.GT.K ) THEN
  527. *
  528. * W := W + C2**T*V2**T
  529. *
  530. CALL SGEMM( 'Transpose', 'Transpose',
  531. $ LASTC, K, LASTV-K,
  532. $ ONE, C( K+1, 1 ), LDC, V( 1, K+1 ), LDV,
  533. $ ONE, WORK, LDWORK )
  534. END IF
  535. *
  536. * W := W * T**T or W * T
  537. *
  538. CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit',
  539. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  540. *
  541. * C := C - V**T * W**T
  542. *
  543. IF( LASTV.GT.K ) THEN
  544. *
  545. * C2 := C2 - V2**T * W**T
  546. *
  547. CALL SGEMM( 'Transpose', 'Transpose',
  548. $ LASTV-K, LASTC, K,
  549. $ -ONE, V( 1, K+1 ), LDV, WORK, LDWORK,
  550. $ ONE, C( K+1, 1 ), LDC )
  551. END IF
  552. *
  553. * W := W * V1
  554. *
  555. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  556. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  557. *
  558. * C1 := C1 - W**T
  559. *
  560. DO 150 J = 1, K
  561. DO 140 I = 1, LASTC
  562. C( J, I ) = C( J, I ) - WORK( I, J )
  563. 140 CONTINUE
  564. 150 CONTINUE
  565. *
  566. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  567. *
  568. * Form C * H or C * H**T where C = ( C1 C2 )
  569. *
  570. LASTV = MAX( K, ILASLC( K, N, V, LDV ) )
  571. LASTC = ILASLR( M, LASTV, C, LDC )
  572. *
  573. * W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK)
  574. *
  575. * W := C1
  576. *
  577. DO 160 J = 1, K
  578. CALL SCOPY( LASTC, C( 1, J ), 1, WORK( 1, J ), 1 )
  579. 160 CONTINUE
  580. *
  581. * W := W * V1**T
  582. *
  583. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit',
  584. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  585. IF( LASTV.GT.K ) THEN
  586. *
  587. * W := W + C2 * V2**T
  588. *
  589. CALL SGEMM( 'No transpose', 'Transpose',
  590. $ LASTC, K, LASTV-K,
  591. $ ONE, C( 1, K+1 ), LDC, V( 1, K+1 ), LDV,
  592. $ ONE, WORK, LDWORK )
  593. END IF
  594. *
  595. * W := W * T or W * T**T
  596. *
  597. CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit',
  598. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  599. *
  600. * C := C - W * V
  601. *
  602. IF( LASTV.GT.K ) THEN
  603. *
  604. * C2 := C2 - W * V2
  605. *
  606. CALL SGEMM( 'No transpose', 'No transpose',
  607. $ LASTC, LASTV-K, K,
  608. $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV,
  609. $ ONE, C( 1, K+1 ), LDC )
  610. END IF
  611. *
  612. * W := W * V1
  613. *
  614. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  615. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  616. *
  617. * C1 := C1 - W
  618. *
  619. DO 180 J = 1, K
  620. DO 170 I = 1, LASTC
  621. C( I, J ) = C( I, J ) - WORK( I, J )
  622. 170 CONTINUE
  623. 180 CONTINUE
  624. *
  625. END IF
  626. *
  627. ELSE
  628. *
  629. * Let V = ( V1 V2 ) (V2: last K columns)
  630. * where V2 is unit lower triangular.
  631. *
  632. IF( LSAME( SIDE, 'L' ) ) THEN
  633. *
  634. * Form H * C or H**T * C where C = ( C1 )
  635. * ( C2 )
  636. *
  637. LASTV = MAX( K, ILASLC( K, M, V, LDV ) )
  638. LASTC = ILASLC( LASTV, N, C, LDC )
  639. *
  640. * W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK)
  641. *
  642. * W := C2**T
  643. *
  644. DO 190 J = 1, K
  645. CALL SCOPY( LASTC, C( LASTV-K+J, 1 ), LDC,
  646. $ WORK( 1, J ), 1 )
  647. 190 CONTINUE
  648. *
  649. * W := W * V2**T
  650. *
  651. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit',
  652. $ LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV,
  653. $ WORK, LDWORK )
  654. IF( LASTV.GT.K ) THEN
  655. *
  656. * W := W + C1**T * V1**T
  657. *
  658. CALL SGEMM( 'Transpose', 'Transpose',
  659. $ LASTC, K, LASTV-K, ONE, C, LDC, V, LDV,
  660. $ ONE, WORK, LDWORK )
  661. END IF
  662. *
  663. * W := W * T**T or W * T
  664. *
  665. CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit',
  666. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  667. *
  668. * C := C - V**T * W**T
  669. *
  670. IF( LASTV.GT.K ) THEN
  671. *
  672. * C1 := C1 - V1**T * W**T
  673. *
  674. CALL SGEMM( 'Transpose', 'Transpose',
  675. $ LASTV-K, LASTC, K, -ONE, V, LDV, WORK, LDWORK,
  676. $ ONE, C, LDC )
  677. END IF
  678. *
  679. * W := W * V2
  680. *
  681. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  682. $ LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV,
  683. $ WORK, LDWORK )
  684. *
  685. * C2 := C2 - W**T
  686. *
  687. DO 210 J = 1, K
  688. DO 200 I = 1, LASTC
  689. C( LASTV-K+J, I ) = C( LASTV-K+J, I ) - WORK(I, J)
  690. 200 CONTINUE
  691. 210 CONTINUE
  692. *
  693. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  694. *
  695. * Form C * H or C * H**T where C = ( C1 C2 )
  696. *
  697. LASTV = MAX( K, ILASLC( K, N, V, LDV ) )
  698. LASTC = ILASLR( M, LASTV, C, LDC )
  699. *
  700. * W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK)
  701. *
  702. * W := C2
  703. *
  704. DO 220 J = 1, K
  705. CALL SCOPY( LASTC, C( 1, LASTV-K+J ), 1,
  706. $ WORK( 1, J ), 1 )
  707. 220 CONTINUE
  708. *
  709. * W := W * V2**T
  710. *
  711. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit',
  712. $ LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV,
  713. $ WORK, LDWORK )
  714. IF( LASTV.GT.K ) THEN
  715. *
  716. * W := W + C1 * V1**T
  717. *
  718. CALL SGEMM( 'No transpose', 'Transpose',
  719. $ LASTC, K, LASTV-K, ONE, C, LDC, V, LDV,
  720. $ ONE, WORK, LDWORK )
  721. END IF
  722. *
  723. * W := W * T or W * T**T
  724. *
  725. CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit',
  726. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  727. *
  728. * C := C - W * V
  729. *
  730. IF( LASTV.GT.K ) THEN
  731. *
  732. * C1 := C1 - W * V1
  733. *
  734. CALL SGEMM( 'No transpose', 'No transpose',
  735. $ LASTC, LASTV-K, K, -ONE, WORK, LDWORK, V, LDV,
  736. $ ONE, C, LDC )
  737. END IF
  738. *
  739. * W := W * V2
  740. *
  741. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  742. $ LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV,
  743. $ WORK, LDWORK )
  744. *
  745. * C1 := C1 - W
  746. *
  747. DO 240 J = 1, K
  748. DO 230 I = 1, LASTC
  749. C( I, LASTV-K+J ) = C( I, LASTV-K+J )
  750. $ - WORK( I, J )
  751. 230 CONTINUE
  752. 240 CONTINUE
  753. *
  754. END IF
  755. *
  756. END IF
  757. END IF
  758. *
  759. RETURN
  760. *
  761. * End of SLARFB
  762. *
  763. END