You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							763 lines
						
					
					
						
							13 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							763 lines
						
					
					
						
							13 KiB
						
					
					
				
								#This file was created by <bruno> Sun Feb 16 14:19:06 1997
							 | 
						|
								#LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
							 | 
						|
								\lyxformat 2.10
							 | 
						|
								\textclass article
							 | 
						|
								\begin_preamble
							 | 
						|
								\catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
							 | 
						|
								\def\Res{\mathop{\operator@font Res}}
							 | 
						|
								\def\ll{\langle\!\langle}
							 | 
						|
								\def\gg{\rangle\!\rangle}
							 | 
						|
								\catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
							 | 
						|
								
							 | 
						|
								\end_preamble
							 | 
						|
								\language default
							 | 
						|
								\inputencoding latin1
							 | 
						|
								\fontscheme default
							 | 
						|
								\epsfig dvips
							 | 
						|
								\papersize a4paper 
							 | 
						|
								\paperfontsize 12 
							 | 
						|
								\baselinestretch 1.00 
							 | 
						|
								\secnumdepth 3 
							 | 
						|
								\tocdepth 3 
							 | 
						|
								\paragraph_separation indent 
							 | 
						|
								\quotes_language english 
							 | 
						|
								\quotes_times 2 
							 | 
						|
								\paperorientation portrait 
							 | 
						|
								\papercolumns 0 
							 | 
						|
								\papersides 1 
							 | 
						|
								\paperpagestyle plain 
							 | 
						|
								
							 | 
						|
								\layout LaTeX Title
							 | 
						|
								
							 | 
						|
								The diagonal of a rational function
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Theorem:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Let 
							 | 
						|
								\begin_inset Formula  \( M \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 be a torsion-free 
							 | 
						|
								\begin_inset Formula  \( R \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								-module, and 
							 | 
						|
								\begin_inset Formula  \( d>0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Let 
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								f=\sum _{n_{1},...,n_{d}}a_{n_{1},...,n_{d}}\, x_{1}^{n_{1}}\cdots x_{d}^{n_{d}}\in M[[x_{1},\ldots x_{d}]]\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								be a rational function, i.
							 | 
						|
								e.
							 | 
						|
								 there are 
							 | 
						|
								\begin_inset Formula  \( P\in M[x_{1},\ldots ,x_{d}] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( Q\in R[x_{1},\ldots ,x_{d}] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 with 
							 | 
						|
								\begin_inset Formula  \( Q(0,\ldots ,0)=1 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( Q\cdot f=P \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Then the full diagonal of 
							 | 
						|
								\begin_inset Formula  \( f \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								g=\sum ^{\infty }_{n=0}a_{n,\ldots ,n}\, x_{1}^{n}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								is a D-finite element of 
							 | 
						|
								\begin_inset Formula  \( M[[x_{1}]] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, w.
							 | 
						|
								r.
							 | 
						|
								t.
							 | 
						|
								 
							 | 
						|
								\begin_inset Formula  \( R[x_{1}] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( \{\partial _{x_{1}}\} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Proof:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								From the hypotheses, 
							 | 
						|
								\begin_inset Formula  \( M[[x_{1},\ldots ,x_{d}]] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is a torsion-free differential module over 
							 | 
						|
								\begin_inset Formula  \( R[x_{1},\ldots ,x_{d}] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 w.
							 | 
						|
								r.
							 | 
						|
								t.
							 | 
						|
								 the derivatives 
							 | 
						|
								\begin_inset Formula  \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, and 
							 | 
						|
								\begin_inset Formula  \( f \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is a D-finite element of 
							 | 
						|
								\begin_inset Formula  \( M[[x_{1},\ldots ,x_{d}]] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 over 
							 | 
						|
								\begin_inset Formula  \( R[x_{1},\ldots ,x_{d}] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 w.
							 | 
						|
								r.
							 | 
						|
								t.
							 | 
						|
								 
							 | 
						|
								\begin_inset Formula  \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Now apply the general diagonal theorem ([1], section 2.
							 | 
						|
								18) 
							 | 
						|
								\begin_inset Formula  \( d-1 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 times.
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Theorem:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Let 
							 | 
						|
								\begin_inset Formula  \( R \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 be an integral domain of characteristic 0 and 
							 | 
						|
								\begin_inset Formula  \( M \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 simultaneously a torsion-free 
							 | 
						|
								\begin_inset Formula  \( R \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								-module and a commutative 
							 | 
						|
								\begin_inset Formula  \( R \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								-algebra without zero divisors.
							 | 
						|
								 Let 
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								f=\sum _{m,n\geq 0}a_{m,n}x^{m}y^{n}\in M[[x,y]]\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 be a rational function.
							 | 
						|
								 Then the diagonal of 
							 | 
						|
								\begin_inset Formula  \( f \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								g=\sum ^{\infty }_{n=0}a_{n,n}\, x^{n}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is algebraic over 
							 | 
						|
								\begin_inset Formula  \( R[x] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Motivation
							 | 
						|
								\protected_separator 
							 | 
						|
								of
							 | 
						|
								\protected_separator 
							 | 
						|
								proof:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								The usual proof ([2]) uses complex analysis and works only for 
							 | 
						|
								\begin_inset Formula  \( R=M=C \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 The idea is to compute
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								g(x^{2})=\frac{1}{2\pi i}\oint _{|z|=1}f(xz,\frac{x}{z})\frac{dz}{z}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								This integral, whose integrand is a rational function in 
							 | 
						|
								\begin_inset Formula  \( x \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( z \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, is calculated using the residue theorem.
							 | 
						|
								 Since 
							 | 
						|
								\begin_inset Formula  \( f(x,y) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is continuous at 
							 | 
						|
								\begin_inset Formula  \( (0,0) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, there is a 
							 | 
						|
								\begin_inset Formula  \( \delta >0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 such that 
							 | 
						|
								\begin_inset Formula  \( f(x,y)\neq \infty  \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 for 
							 | 
						|
								\begin_inset Formula  \( |x|<\delta  \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, 
							 | 
						|
								\begin_inset Formula  \( |y|<\delta  \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 It follows that for all 
							 | 
						|
								\begin_inset Formula  \( \varepsilon >0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( |x|<\delta \varepsilon  \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 all the poles of 
							 | 
						|
								\begin_inset Formula  \( f(xz,\frac{x}{z}) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 are contained in 
							 | 
						|
								\begin_inset Formula  \( \{z:|z|<\varepsilon \}\cup \{z:|z|>\frac{1}{\varepsilon }\} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Thus the poles of 
							 | 
						|
								\begin_inset Formula  \( f(xz,\frac{x}{z}) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, all algebraic functions of 
							 | 
						|
								\begin_inset Formula  \( x \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 -- let's call them 
							 | 
						|
								\begin_inset Formula  \( \zeta _{1}(x),\ldots \zeta _{s}(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 --, can be divided up into those for which 
							 | 
						|
								\begin_inset Formula  \( |\zeta _{i}(x)|=O(|x|) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 as 
							 | 
						|
								\begin_inset Formula  \( x\rightarrow 0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and those for which 
							 | 
						|
								\begin_inset Formula  \( \frac{1}{|\zeta _{i}(x)|}=O(|x|) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 as 
							 | 
						|
								\begin_inset Formula  \( x\rightarrow 0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 It follows from the residue theorem that for 
							 | 
						|
								\begin_inset Formula  \( |x|<\delta  \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								g(x^{2})=\sum _{\zeta =0\vee \zeta =O(|x|)}\Res _{z=\zeta }\, f(xz,\frac{x}{z})\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 This is algebraic over 
							 | 
						|
								\begin_inset Formula  \( C(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Hence 
							 | 
						|
								\begin_inset Formula  \( g(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is algebraic over 
							 | 
						|
								\begin_inset Formula  \( C(x^{1/2}) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, hence also algebraic over 
							 | 
						|
								\begin_inset Formula  \( C(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Proof:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Let 
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								h(x,z):=f(xz,\frac{x}{z})=\sum ^{\infty }_{m,n=0}a_{m,n}x^{m+n}z^{m-n}\in M[[xz,xz^{-1}]]\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								Then 
							 | 
						|
								\begin_inset Formula  \( g(x^{2}) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is the coefficient of 
							 | 
						|
								\begin_inset Formula  \( z^{0} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 in 
							 | 
						|
								\begin_inset Formula  \( h(x,z) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Let 
							 | 
						|
								\begin_inset Formula  \( N(x,z):=z^{d}Q(xz,\frac{x}{z}) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 (with 
							 | 
						|
								\begin_inset Formula  \( d:=\max (\deg _{y}P,\deg _{y}Q) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								) be 
							 | 
						|
								\begin_inset Quotes eld
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								the denominator
							 | 
						|
								\begin_inset Quotes erd
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 of 
							 | 
						|
								\begin_inset Formula  \( h(x,z) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 We have 
							 | 
						|
								\begin_inset Formula  \( N(x,z)\in R[x,z] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( N\neq 0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 (because 
							 | 
						|
								\begin_inset Formula  \( N(0,z)=z^{d} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								).
							 | 
						|
								 Let 
							 | 
						|
								\begin_inset Formula  \( K \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 be the quotient field of 
							 | 
						|
								\begin_inset Formula  \( R \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Thus 
							 | 
						|
								\begin_inset Formula  \( N(x,z)\in K[x][z]\setminus \{0\} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								It is well-known (see [3], p.
							 | 
						|
								64, or [4], chap.
							 | 
						|
								 IV, §2, prop.
							 | 
						|
								 8, or [5], chap.
							 | 
						|
								 III, §1) that the splitting field of 
							 | 
						|
								\begin_inset Formula  \( N(x,z) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 over 
							 | 
						|
								\begin_inset Formula  \( K(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 can be embedded into a field 
							 | 
						|
								\begin_inset Formula  \( L((x^{1/r})) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, where 
							 | 
						|
								\begin_inset Formula  \( r \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is a positive integer and 
							 | 
						|
								\begin_inset Formula  \( L \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is a finite-algebraic extension field of 
							 | 
						|
								\begin_inset Formula  \( K \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, i.
							 | 
						|
								e.
							 | 
						|
								 a simple algebraic extension 
							 | 
						|
								\begin_inset Formula  \( L=K(\alpha )=K\alpha ^{0}+\cdots +K\alpha ^{u-1} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula  \( \widetilde{M}:=(R\setminus \{0\})^{-1}\cdot M \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is a 
							 | 
						|
								\begin_inset Formula  \( K \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								-vector space and a commutative 
							 | 
						|
								\begin_inset Formula  \( K \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								-algebra without zero divisors.
							 | 
						|
								 
							 | 
						|
								\begin_inset Formula  \( \widehat{M}:=\widetilde{M}\alpha ^{0}+\cdots +\widetilde{M}\alpha ^{u-1} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is an 
							 | 
						|
								\begin_inset Formula  \( L \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								-vector space and a commutative 
							 | 
						|
								\begin_inset Formula  \( L \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								-algebra without zero divisors.
							 | 
						|
								 
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								\widehat{M}\ll x,z\gg  & := & \widehat{M}[[x^{1/r}\cdot z,x^{1/r}\cdot z^{-1},x^{1/r}]][x^{-1/r}]\\
							 | 
						|
								 & = & \left\{ \sum _{m,n}c_{m,n}x^{m/r}z^{n}:c_{m,n}\neq 0\Rightarrow |n|\leq m+O(1)\right\} 
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								is an 
							 | 
						|
								\begin_inset Formula  \( L \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								-algebra which contains 
							 | 
						|
								\begin_inset Formula  \( \widehat{M}((x^{1/r})) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Since 
							 | 
						|
								\begin_inset Formula  \( N(x,z) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 splits into linear factors in 
							 | 
						|
								\begin_inset Formula  \( L((x^{1/r}))[z] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, 
							 | 
						|
								\begin_inset Formula  \( N(x,z)=l\prod ^{s}_{i=1}(z-\zeta _{i}(x))^{k_{i}} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, there exists a partial fraction decomposition of 
							 | 
						|
								\begin_inset Formula  \( h(x,z)=\frac{P(xz,\frac{x}{z})}{Q(xz,\frac{x}{z})}=\frac{z^{d}P(xz,\frac{x}{z})}{N(x,z)} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 in 
							 | 
						|
								\begin_inset Formula  \( \widehat{M}\ll x,z\gg  \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								h(x,z)=\sum ^{l}_{j=0}P_{j}(x)z^{j}+\sum ^{s}_{i=1}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								with 
							 | 
						|
								\begin_inset Formula  \( P_{j}(x),P_{i,k}(x)\in \widehat{M}((x^{1/r})) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Recall that we are looking for the coefficient of 
							 | 
						|
								\begin_inset Formula  \( z^{0} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 in 
							 | 
						|
								\begin_inset Formula  \( h(x,z) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 We compute it separately for each summand.
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								If 
							 | 
						|
								\begin_inset Formula  \( \zeta _{i}(x)=ax^{m/r}+... \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 with 
							 | 
						|
								\begin_inset Formula  \( a\in L\setminus \{0\} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, 
							 | 
						|
								\begin_inset Formula  \( m>0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, or 
							 | 
						|
								\begin_inset Formula  \( \zeta _{i}(x)=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, we have
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								\frac{1}{(z-\zeta _{i}(x))^{k}} & = & \frac{1}{z^{k}}\cdot \frac{1}{\left( 1-\frac{\zeta _{i}(x)}{z}\right) ^{k}}\\
							 | 
						|
								 & = & \frac{1}{z^{k}}\cdot \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\left( \frac{\zeta _{i}(x)}{z}\right) ^{j}\\
							 | 
						|
								 & = & \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\frac{\zeta _{i}(x)^{j}}{z^{k+j}}
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								hence the coefficient of 
							 | 
						|
								\begin_inset Formula  \( z^{0} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 in 
							 | 
						|
								\begin_inset Formula  \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is 
							 | 
						|
								\begin_inset Formula  \( 0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								\cursor 59 
							 | 
						|
								If 
							 | 
						|
								\begin_inset Formula  \( \zeta _{i}(x)=ax^{m/r}+... \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 with 
							 | 
						|
								\begin_inset Formula  \( a\in L\setminus \{0\} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, 
							 | 
						|
								\begin_inset Formula  \( m<0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, we have
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\frac{1}{(z-\zeta _{i}(x))^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \frac{1}{\left( 1-\frac{z}{\zeta _{i}(x)}\right) ^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \sum _{j=0}^{\infty }{k-1+j\choose k-1}\left( \frac{z}{\zeta _{i}(x)}\right) ^{j}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								hence the coefficient of 
							 | 
						|
								\begin_inset Formula  \( z^{0} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 in 
							 | 
						|
								\begin_inset Formula  \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is 
							 | 
						|
								\begin_inset Formula  \( \frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								The case 
							 | 
						|
								\begin_inset Formula  \( \zeta _{i}(x)=ax^{m/r}+... \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 with 
							 | 
						|
								\begin_inset Formula  \( a\in L\setminus \{0\} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, 
							 | 
						|
								\begin_inset Formula  \( m=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, cannot occur, because it would imply 
							 | 
						|
								\begin_inset Formula  \( 0=N(0,\zeta _{i}(0))=N(0,a)=a^{d}. \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Altogether we have
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								g(x^{2})=[z^{0}]h(x,z)=P_{0}(x)+\sum _{\frac{1}{\zeta _{i}(x)}=o(x)}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}}\in \widehat{M}((x^{1/r}))\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Since all 
							 | 
						|
								\begin_inset Formula  \( \zeta _{i}(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								(in 
							 | 
						|
								\begin_inset Formula  \( L((x^{1/r})) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								) and all 
							 | 
						|
								\begin_inset Formula  \( P_{j}(x),P_{i,k}(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 (in 
							 | 
						|
								\begin_inset Formula  \( \widehat{M}((x^{1/r})) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								) are algebraic over 
							 | 
						|
								\begin_inset Formula  \( K(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, the same holds also for 
							 | 
						|
								\begin_inset Formula  \( g(x^{2}) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Hence 
							 | 
						|
								\begin_inset Formula  \( g(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is algebraic over 
							 | 
						|
								\begin_inset Formula  \( K(x^{1/2}) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, hence also over 
							 | 
						|
								\begin_inset Formula  \( K(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 After clearing denominators, we finally conclude that 
							 | 
						|
								\begin_inset Formula  \( g(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is algebraic over 
							 | 
						|
								\begin_inset Formula  \( R[x] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Bibliography
							 | 
						|
								
							 | 
						|
								[1] Bruno Haible: D-finite power series in several variables.
							 | 
						|
								 
							 | 
						|
								\shape italic 
							 | 
						|
								Diploma thesis, University of Karlsruhe, June 1989.
							 | 
						|
								
							 | 
						|
								\shape default 
							 | 
						|
								 Sections 2.
							 | 
						|
								18 and 2.
							 | 
						|
								20.
							 | 
						|
								
							 | 
						|
								\layout Bibliography
							 | 
						|
								
							 | 
						|
								[2] M.
							 | 
						|
								 L.
							 | 
						|
								 J.
							 | 
						|
								 Hautus, D.
							 | 
						|
								 A.
							 | 
						|
								 Klarner: The diagonal of a double power series.
							 | 
						|
								 
							 | 
						|
								\shape italic 
							 | 
						|
								Duke Math.
							 | 
						|
								 J.
							 | 
						|
								
							 | 
						|
								\shape default 
							 | 
						|
								 
							 | 
						|
								\series bold 
							 | 
						|
								38
							 | 
						|
								\series default 
							 | 
						|
								 (1971), 229-235.
							 | 
						|
								
							 | 
						|
								\layout Bibliography
							 | 
						|
								
							 | 
						|
								[3] C.
							 | 
						|
								 Chevalley: Introduction to the theory of algebraic functions of one variable.
							 | 
						|
								 
							 | 
						|
								\shape italic 
							 | 
						|
								Mathematical Surveys VI.
							 | 
						|
								 American Mathematical Society.
							 | 
						|
								
							 | 
						|
								\layout Bibliography
							 | 
						|
								
							 | 
						|
								[4] Jean-Pierre Serre: Corps locaux.
							 | 
						|
								 
							 | 
						|
								\shape italic 
							 | 
						|
								Hermann.
							 | 
						|
								 Paris 
							 | 
						|
								\shape default 
							 | 
						|
								1968.
							 | 
						|
								
							 | 
						|
								\layout Bibliography
							 | 
						|
								
							 | 
						|
								[5] Martin Eichler: Introduction to the theory of algebraic numbers and
							 | 
						|
								 functions.
							 | 
						|
								
							 | 
						|
								\shape italic 
							 | 
						|
								 Academic Press.
							 | 
						|
								 New York, London 
							 | 
						|
								\shape default 
							 | 
						|
								1966.
							 | 
						|
								
							 |