You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							28 lines
						
					
					
						
							799 B
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							28 lines
						
					
					
						
							799 B
						
					
					
				| \magnification=\magstep3 | |
| \hsize=19truecm | |
| \vsize=19truecm | |
| \nopagenumbers | |
| \parindent=0mm | |
| \font\eins=cmb10 scaled \magstep 3 | |
| \font\zwei=cmr12 | |
| \font\mini=cmr7 | |
| \def\frac#1#2{{{#1} \over {#2}}} | |
| \hbox{} | |
| \vfill | |
| 
 | |
| \centerline{\eins Application to Euler's Constant} | |
| \bigskip\bigskip | |
| Put | |
| \quad\quad{$\displaystyle f(x) := {\sum\limits_{n=0}^{\infty} \frac{x^n}{{n!}^2}}$}\hfill\break | |
| \hphantom{Put}\quad\quad{$\displaystyle g(x) := {\sum\limits_{n=0}^{\infty} \left( \frac{1}{1} + \cdots + \frac{1}{n} \right) \frac{x^n}{{n!}^2}}$}\hfill\break | |
| \bigskip\bigskip | |
| Then | |
| \hfill{$\displaystyle \frac{g(x)}{f(x)} = \frac{1}{2} \log x + \gamma + O \left( e^{-4 \sqrt{x}} \right) $.}\hfill\break | |
| \bigskip\bigskip | |
| Choose $\displaystyle {x = {\left\lceil \frac{N \log 2}{4} \right\rceil}^2}$. | |
| 
 | |
| \vfill | |
| \hbox{} | |
| \eject | |
| 
 | |
| \end
 |