You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							763 lines
						
					
					
						
							13 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							763 lines
						
					
					
						
							13 KiB
						
					
					
				| #This file was created by <bruno> Sun Feb 16 14:19:06 1997 | |
| #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team | |
| \lyxformat 2.10 | |
| \textclass article | |
| \begin_preamble | |
| \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe | |
| \def\Res{\mathop{\operator@font Res}} | |
| \def\ll{\langle\!\langle} | |
| \def\gg{\rangle\!\rangle} | |
| \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen | |
| 
 | |
| \end_preamble | |
| \language default | |
| \inputencoding latin1 | |
| \fontscheme default | |
| \epsfig dvips | |
| \papersize a4paper  | |
| \paperfontsize 12  | |
| \baselinestretch 1.00  | |
| \secnumdepth 3  | |
| \tocdepth 3  | |
| \paragraph_separation indent  | |
| \quotes_language english  | |
| \quotes_times 2  | |
| \paperorientation portrait  | |
| \papercolumns 0  | |
| \papersides 1  | |
| \paperpagestyle plain  | |
| 
 | |
| \layout LaTeX Title | |
| 
 | |
| The diagonal of a rational function | |
| \layout Description | |
| 
 | |
| Theorem: | |
| \layout Standard | |
| 
 | |
| Let  | |
| \begin_inset Formula  \( M \) | |
| \end_inset  | |
| 
 | |
|  be a torsion-free  | |
| \begin_inset Formula  \( R \) | |
| \end_inset  | |
| 
 | |
| -module, and  | |
| \begin_inset Formula  \( d>0 \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Let  | |
| \begin_inset Formula  | |
| \[ | |
| f=\sum _{n_{1},...,n_{d}}a_{n_{1},...,n_{d}}\, x_{1}^{n_{1}}\cdots x_{d}^{n_{d}}\in M[[x_{1},\ldots x_{d}]]\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| be a rational function, i. | |
| e. | |
|  there are  | |
| \begin_inset Formula  \( P\in M[x_{1},\ldots ,x_{d}] \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( Q\in R[x_{1},\ldots ,x_{d}] \) | |
| \end_inset  | |
| 
 | |
|  with  | |
| \begin_inset Formula  \( Q(0,\ldots ,0)=1 \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( Q\cdot f=P \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Then the full diagonal of  | |
| \begin_inset Formula  \( f \) | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| g=\sum ^{\infty }_{n=0}a_{n,\ldots ,n}\, x_{1}^{n}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| is a D-finite element of  | |
| \begin_inset Formula  \( M[[x_{1}]] \) | |
| \end_inset  | |
| 
 | |
| , w. | |
| r. | |
| t. | |
|   | |
| \begin_inset Formula  \( R[x_{1}] \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( \{\partial _{x_{1}}\} \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Description | |
| 
 | |
| Proof: | |
| \layout Standard | |
| 
 | |
| From the hypotheses,  | |
| \begin_inset Formula  \( M[[x_{1},\ldots ,x_{d}]] \) | |
| \end_inset  | |
| 
 | |
|  is a torsion-free differential module over  | |
| \begin_inset Formula  \( R[x_{1},\ldots ,x_{d}] \) | |
| \end_inset  | |
| 
 | |
|  w. | |
| r. | |
| t. | |
|  the derivatives  | |
| \begin_inset Formula  \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \) | |
| \end_inset  | |
| 
 | |
| , and  | |
| \begin_inset Formula  \( f \) | |
| \end_inset  | |
| 
 | |
|  is a D-finite element of  | |
| \begin_inset Formula  \( M[[x_{1},\ldots ,x_{d}]] \) | |
| \end_inset  | |
| 
 | |
|  over  | |
| \begin_inset Formula  \( R[x_{1},\ldots ,x_{d}] \) | |
| \end_inset  | |
| 
 | |
|  w. | |
| r. | |
| t. | |
|   | |
| \begin_inset Formula  \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Now apply the general diagonal theorem ([1], section 2. | |
| 18)  | |
| \begin_inset Formula  \( d-1 \) | |
| \end_inset  | |
| 
 | |
|  times. | |
| 
 | |
| \layout Description | |
| 
 | |
| Theorem: | |
| \layout Standard | |
| 
 | |
| Let  | |
| \begin_inset Formula  \( R \) | |
| \end_inset  | |
| 
 | |
|  be an integral domain of characteristic 0 and  | |
| \begin_inset Formula  \( M \) | |
| \end_inset  | |
| 
 | |
|  simultaneously a torsion-free  | |
| \begin_inset Formula  \( R \) | |
| \end_inset  | |
| 
 | |
| -module and a commutative  | |
| \begin_inset Formula  \( R \) | |
| \end_inset  | |
| 
 | |
| -algebra without zero divisors. | |
|  Let  | |
| \begin_inset Formula  | |
| \[ | |
| f=\sum _{m,n\geq 0}a_{m,n}x^{m}y^{n}\in M[[x,y]]\] | |
| 
 | |
| \end_inset  | |
| 
 | |
|  be a rational function. | |
|  Then the diagonal of  | |
| \begin_inset Formula  \( f \) | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| g=\sum ^{\infty }_{n=0}a_{n,n}\, x^{n}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
|  is algebraic over  | |
| \begin_inset Formula  \( R[x] \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Description | |
| 
 | |
| Motivation | |
| \protected_separator  | |
| of | |
| \protected_separator  | |
| proof: | |
| \layout Standard | |
| 
 | |
| The usual proof ([2]) uses complex analysis and works only for  | |
| \begin_inset Formula  \( R=M=C \) | |
| \end_inset  | |
| 
 | |
| . | |
|  The idea is to compute | |
| \begin_inset Formula  | |
| \[ | |
| g(x^{2})=\frac{1}{2\pi i}\oint _{|z|=1}f(xz,\frac{x}{z})\frac{dz}{z}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| This integral, whose integrand is a rational function in  | |
| \begin_inset Formula  \( x \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( z \) | |
| \end_inset  | |
| 
 | |
| , is calculated using the residue theorem. | |
|  Since  | |
| \begin_inset Formula  \( f(x,y) \) | |
| \end_inset  | |
| 
 | |
|  is continuous at  | |
| \begin_inset Formula  \( (0,0) \) | |
| \end_inset  | |
| 
 | |
| , there is a  | |
| \begin_inset Formula  \( \delta >0 \) | |
| \end_inset  | |
| 
 | |
|  such that  | |
| \begin_inset Formula  \( f(x,y)\neq \infty  \) | |
| \end_inset  | |
| 
 | |
|  for  | |
| \begin_inset Formula  \( |x|<\delta  \) | |
| \end_inset  | |
| 
 | |
| ,  | |
| \begin_inset Formula  \( |y|<\delta  \) | |
| \end_inset  | |
| 
 | |
| . | |
|  It follows that for all  | |
| \begin_inset Formula  \( \varepsilon >0 \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( |x|<\delta \varepsilon  \) | |
| \end_inset  | |
| 
 | |
|  all the poles of  | |
| \begin_inset Formula  \( f(xz,\frac{x}{z}) \) | |
| \end_inset  | |
| 
 | |
|  are contained in  | |
| \begin_inset Formula  \( \{z:|z|<\varepsilon \}\cup \{z:|z|>\frac{1}{\varepsilon }\} \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Thus the poles of  | |
| \begin_inset Formula  \( f(xz,\frac{x}{z}) \) | |
| \end_inset  | |
| 
 | |
| , all algebraic functions of  | |
| \begin_inset Formula  \( x \) | |
| \end_inset  | |
| 
 | |
|  -- let's call them  | |
| \begin_inset Formula  \( \zeta _{1}(x),\ldots \zeta _{s}(x) \) | |
| \end_inset  | |
| 
 | |
|  --, can be divided up into those for which  | |
| \begin_inset Formula  \( |\zeta _{i}(x)|=O(|x|) \) | |
| \end_inset  | |
| 
 | |
|  as  | |
| \begin_inset Formula  \( x\rightarrow 0 \) | |
| \end_inset  | |
| 
 | |
|  and those for which  | |
| \begin_inset Formula  \( \frac{1}{|\zeta _{i}(x)|}=O(|x|) \) | |
| \end_inset  | |
| 
 | |
|  as  | |
| \begin_inset Formula  \( x\rightarrow 0 \) | |
| \end_inset  | |
| 
 | |
| . | |
|  It follows from the residue theorem that for  | |
| \begin_inset Formula  \( |x|<\delta  \) | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| g(x^{2})=\sum _{\zeta =0\vee \zeta =O(|x|)}\Res _{z=\zeta }\, f(xz,\frac{x}{z})\] | |
| 
 | |
| \end_inset  | |
| 
 | |
|  This is algebraic over  | |
| \begin_inset Formula  \( C(x) \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Hence  | |
| \begin_inset Formula  \( g(x) \) | |
| \end_inset  | |
| 
 | |
|  is algebraic over  | |
| \begin_inset Formula  \( C(x^{1/2}) \) | |
| \end_inset  | |
| 
 | |
| , hence also algebraic over  | |
| \begin_inset Formula  \( C(x) \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Description | |
| 
 | |
| Proof: | |
| \layout Standard | |
| 
 | |
| Let  | |
| \begin_inset Formula  | |
| \[ | |
| h(x,z):=f(xz,\frac{x}{z})=\sum ^{\infty }_{m,n=0}a_{m,n}x^{m+n}z^{m-n}\in M[[xz,xz^{-1}]]\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| Then  | |
| \begin_inset Formula  \( g(x^{2}) \) | |
| \end_inset  | |
| 
 | |
|  is the coefficient of  | |
| \begin_inset Formula  \( z^{0} \) | |
| \end_inset  | |
| 
 | |
|  in  | |
| \begin_inset Formula  \( h(x,z) \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Let  | |
| \begin_inset Formula  \( N(x,z):=z^{d}Q(xz,\frac{x}{z}) \) | |
| \end_inset  | |
| 
 | |
|  (with  | |
| \begin_inset Formula  \( d:=\max (\deg _{y}P,\deg _{y}Q) \) | |
| \end_inset  | |
| 
 | |
| ) be  | |
| \begin_inset Quotes eld | |
| \end_inset  | |
| 
 | |
| the denominator | |
| \begin_inset Quotes erd | |
| \end_inset  | |
| 
 | |
|  of  | |
| \begin_inset Formula  \( h(x,z) \) | |
| \end_inset  | |
| 
 | |
| . | |
|  We have  | |
| \begin_inset Formula  \( N(x,z)\in R[x,z] \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( N\neq 0 \) | |
| \end_inset  | |
| 
 | |
|  (because  | |
| \begin_inset Formula  \( N(0,z)=z^{d} \) | |
| \end_inset  | |
| 
 | |
| ). | |
|  Let  | |
| \begin_inset Formula  \( K \) | |
| \end_inset  | |
| 
 | |
|  be the quotient field of  | |
| \begin_inset Formula  \( R \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Thus  | |
| \begin_inset Formula  \( N(x,z)\in K[x][z]\setminus \{0\} \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Standard | |
| 
 | |
| It is well-known (see [3], p. | |
| 64, or [4], chap. | |
|  IV, §2, prop. | |
|  8, or [5], chap. | |
|  III, §1) that the splitting field of  | |
| \begin_inset Formula  \( N(x,z) \) | |
| \end_inset  | |
| 
 | |
|  over  | |
| \begin_inset Formula  \( K(x) \) | |
| \end_inset  | |
| 
 | |
|  can be embedded into a field  | |
| \begin_inset Formula  \( L((x^{1/r})) \) | |
| \end_inset  | |
| 
 | |
| , where  | |
| \begin_inset Formula  \( r \) | |
| \end_inset  | |
| 
 | |
|  is a positive integer and  | |
| \begin_inset Formula  \( L \) | |
| \end_inset  | |
| 
 | |
|  is a finite-algebraic extension field of  | |
| \begin_inset Formula  \( K \) | |
| \end_inset  | |
| 
 | |
| , i. | |
| e. | |
|  a simple algebraic extension  | |
| \begin_inset Formula  \( L=K(\alpha )=K\alpha ^{0}+\cdots +K\alpha ^{u-1} \) | |
| \end_inset  | |
| 
 | |
| . | |
|   | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  \( \widetilde{M}:=(R\setminus \{0\})^{-1}\cdot M \) | |
| \end_inset  | |
| 
 | |
|  is a  | |
| \begin_inset Formula  \( K \) | |
| \end_inset  | |
| 
 | |
| -vector space and a commutative  | |
| \begin_inset Formula  \( K \) | |
| \end_inset  | |
| 
 | |
| -algebra without zero divisors. | |
|   | |
| \begin_inset Formula  \( \widehat{M}:=\widetilde{M}\alpha ^{0}+\cdots +\widetilde{M}\alpha ^{u-1} \) | |
| \end_inset  | |
| 
 | |
|  is an  | |
| \begin_inset Formula  \( L \) | |
| \end_inset  | |
| 
 | |
| -vector space and a commutative  | |
| \begin_inset Formula  \( L \) | |
| \end_inset  | |
| 
 | |
| -algebra without zero divisors. | |
|   | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \begin{eqnarray*} | |
| \widehat{M}\ll x,z\gg  & := & \widehat{M}[[x^{1/r}\cdot z,x^{1/r}\cdot z^{-1},x^{1/r}]][x^{-1/r}]\\ | |
|  & = & \left\{ \sum _{m,n}c_{m,n}x^{m/r}z^{n}:c_{m,n}\neq 0\Rightarrow |n|\leq m+O(1)\right\}  | |
| \end{eqnarray*} | |
| 
 | |
| \end_inset  | |
| 
 | |
| is an  | |
| \begin_inset Formula  \( L \) | |
| \end_inset  | |
| 
 | |
| -algebra which contains  | |
| \begin_inset Formula  \( \widehat{M}((x^{1/r})) \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Standard | |
| 
 | |
| Since  | |
| \begin_inset Formula  \( N(x,z) \) | |
| \end_inset  | |
| 
 | |
|  splits into linear factors in  | |
| \begin_inset Formula  \( L((x^{1/r}))[z] \) | |
| \end_inset  | |
| 
 | |
| ,  | |
| \begin_inset Formula  \( N(x,z)=l\prod ^{s}_{i=1}(z-\zeta _{i}(x))^{k_{i}} \) | |
| \end_inset  | |
| 
 | |
| , there exists a partial fraction decomposition of  | |
| \begin_inset Formula  \( h(x,z)=\frac{P(xz,\frac{x}{z})}{Q(xz,\frac{x}{z})}=\frac{z^{d}P(xz,\frac{x}{z})}{N(x,z)} \) | |
| \end_inset  | |
| 
 | |
|  in  | |
| \begin_inset Formula  \( \widehat{M}\ll x,z\gg  \) | |
| \end_inset  | |
| 
 | |
| : | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| h(x,z)=\sum ^{l}_{j=0}P_{j}(x)z^{j}+\sum ^{s}_{i=1}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| with  | |
| \begin_inset Formula  \( P_{j}(x),P_{i,k}(x)\in \widehat{M}((x^{1/r})) \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Standard | |
| 
 | |
| Recall that we are looking for the coefficient of  | |
| \begin_inset Formula  \( z^{0} \) | |
| \end_inset  | |
| 
 | |
|  in  | |
| \begin_inset Formula  \( h(x,z) \) | |
| \end_inset  | |
| 
 | |
| . | |
|  We compute it separately for each summand. | |
| 
 | |
| \layout Standard | |
| 
 | |
| If  | |
| \begin_inset Formula  \( \zeta _{i}(x)=ax^{m/r}+... \) | |
| \end_inset  | |
| 
 | |
|  with  | |
| \begin_inset Formula  \( a\in L\setminus \{0\} \) | |
| \end_inset  | |
| 
 | |
| ,  | |
| \begin_inset Formula  \( m>0 \) | |
| \end_inset  | |
| 
 | |
| , or  | |
| \begin_inset Formula  \( \zeta _{i}(x)=0 \) | |
| \end_inset  | |
| 
 | |
| , we have | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \begin{eqnarray*} | |
| \frac{1}{(z-\zeta _{i}(x))^{k}} & = & \frac{1}{z^{k}}\cdot \frac{1}{\left( 1-\frac{\zeta _{i}(x)}{z}\right) ^{k}}\\ | |
|  & = & \frac{1}{z^{k}}\cdot \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\left( \frac{\zeta _{i}(x)}{z}\right) ^{j}\\ | |
|  & = & \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\frac{\zeta _{i}(x)^{j}}{z^{k+j}} | |
| \end{eqnarray*} | |
| 
 | |
| \end_inset  | |
| 
 | |
| hence the coefficient of  | |
| \begin_inset Formula  \( z^{0} \) | |
| \end_inset  | |
| 
 | |
|  in  | |
| \begin_inset Formula  \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \) | |
| \end_inset  | |
| 
 | |
|  is  | |
| \begin_inset Formula  \( 0 \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Standard | |
| \cursor 59  | |
| If  | |
| \begin_inset Formula  \( \zeta _{i}(x)=ax^{m/r}+... \) | |
| \end_inset  | |
| 
 | |
|  with  | |
| \begin_inset Formula  \( a\in L\setminus \{0\} \) | |
| \end_inset  | |
| 
 | |
| ,  | |
| \begin_inset Formula  \( m<0 \) | |
| \end_inset  | |
| 
 | |
| , we have | |
| \begin_inset Formula  | |
| \[ | |
| \frac{1}{(z-\zeta _{i}(x))^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \frac{1}{\left( 1-\frac{z}{\zeta _{i}(x)}\right) ^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \sum _{j=0}^{\infty }{k-1+j\choose k-1}\left( \frac{z}{\zeta _{i}(x)}\right) ^{j}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| hence the coefficient of  | |
| \begin_inset Formula  \( z^{0} \) | |
| \end_inset  | |
| 
 | |
|  in  | |
| \begin_inset Formula  \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \) | |
| \end_inset  | |
| 
 | |
|  is  | |
| \begin_inset Formula  \( \frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}} \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Standard | |
| 
 | |
| The case  | |
| \begin_inset Formula  \( \zeta _{i}(x)=ax^{m/r}+... \) | |
| \end_inset  | |
| 
 | |
|  with  | |
| \begin_inset Formula  \( a\in L\setminus \{0\} \) | |
| \end_inset  | |
| 
 | |
| ,  | |
| \begin_inset Formula  \( m=0 \) | |
| \end_inset  | |
| 
 | |
| , cannot occur, because it would imply  | |
| \begin_inset Formula  \( 0=N(0,\zeta _{i}(0))=N(0,a)=a^{d}. \) | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| Altogether we have | |
| \begin_inset Formula  | |
| \[ | |
| g(x^{2})=[z^{0}]h(x,z)=P_{0}(x)+\sum _{\frac{1}{\zeta _{i}(x)}=o(x)}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}}\in \widehat{M}((x^{1/r}))\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| Since all  | |
| \begin_inset Formula  \( \zeta _{i}(x) \) | |
| \end_inset  | |
| 
 | |
| (in  | |
| \begin_inset Formula  \( L((x^{1/r})) \) | |
| \end_inset  | |
| 
 | |
| ) and all  | |
| \begin_inset Formula  \( P_{j}(x),P_{i,k}(x) \) | |
| \end_inset  | |
| 
 | |
|  (in  | |
| \begin_inset Formula  \( \widehat{M}((x^{1/r})) \) | |
| \end_inset  | |
| 
 | |
| ) are algebraic over  | |
| \begin_inset Formula  \( K(x) \) | |
| \end_inset  | |
| 
 | |
| , the same holds also for  | |
| \begin_inset Formula  \( g(x^{2}) \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Hence  | |
| \begin_inset Formula  \( g(x) \) | |
| \end_inset  | |
| 
 | |
|  is algebraic over  | |
| \begin_inset Formula  \( K(x^{1/2}) \) | |
| \end_inset  | |
| 
 | |
| , hence also over  | |
| \begin_inset Formula  \( K(x) \) | |
| \end_inset  | |
| 
 | |
| . | |
|  After clearing denominators, we finally conclude that  | |
| \begin_inset Formula  \( g(x) \) | |
| \end_inset  | |
| 
 | |
|  is algebraic over  | |
| \begin_inset Formula  \( R[x] \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Bibliography | |
| 
 | |
| [1] Bruno Haible: D-finite power series in several variables. | |
|   | |
| \shape italic  | |
| Diploma thesis, University of Karlsruhe, June 1989. | |
| 
 | |
| \shape default  | |
|  Sections 2. | |
| 18 and 2. | |
| 20. | |
| 
 | |
| \layout Bibliography | |
| 
 | |
| [2] M. | |
|  L. | |
|  J. | |
|  Hautus, D. | |
|  A. | |
|  Klarner: The diagonal of a double power series. | |
|   | |
| \shape italic  | |
| Duke Math. | |
|  J. | |
| 
 | |
| \shape default  | |
|   | |
| \series bold  | |
| 38 | |
| \series default  | |
|  (1971), 229-235. | |
| 
 | |
| \layout Bibliography | |
| 
 | |
| [3] C. | |
|  Chevalley: Introduction to the theory of algebraic functions of one variable. | |
|   | |
| \shape italic  | |
| Mathematical Surveys VI. | |
|  American Mathematical Society. | |
| 
 | |
| \layout Bibliography | |
| 
 | |
| [4] Jean-Pierre Serre: Corps locaux. | |
|   | |
| \shape italic  | |
| Hermann. | |
|  Paris  | |
| \shape default  | |
| 1968. | |
| 
 | |
| \layout Bibliography | |
| 
 | |
| [5] Martin Eichler: Introduction to the theory of algebraic numbers and | |
|  functions. | |
| 
 | |
| \shape italic  | |
|  Academic Press. | |
|  New York, London  | |
| \shape default  | |
| 1966. | |
| 
 |