You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							316 lines
						
					
					
						
							6.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							316 lines
						
					
					
						
							6.0 KiB
						
					
					
				| #This file was created by <bruno> Sun Feb 16 14:05:04 1997 | |
| #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team | |
| \lyxformat 2.10 | |
| \textclass article | |
| \begin_preamble | |
| \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe | |
| \def\ll{\langle\!\langle} | |
| \def\gg{\rangle\!\rangle} | |
| \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen | |
| 
 | |
| \end_preamble | |
| \language default | |
| \inputencoding latin1 | |
| \fontscheme default | |
| \epsfig dvips | |
| \papersize a4paper  | |
| \paperfontsize 12  | |
| \baselinestretch 1.00  | |
| \secnumdepth 3  | |
| \tocdepth 3  | |
| \paragraph_separation indent  | |
| \quotes_language english  | |
| \quotes_times 2  | |
| \paperorientation portrait  | |
| \papercolumns 0  | |
| \papersides 1  | |
| \paperpagestyle plain  | |
| 
 | |
| \layout Standard | |
| 
 | |
| The Laguerre polynomials  | |
| \begin_inset Formula  \( L_{n}(x) \) | |
| \end_inset  | |
| 
 | |
|  are defined through  | |
| \begin_inset Formula  | |
| \[ | |
| L_{n}(x)=e^{x}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{n}e^{-x})\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Description | |
| 
 | |
| Theorem: | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  \( L_{n}(x) \) | |
| \end_inset  | |
| 
 | |
|  satisfies the recurrence relation | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| L_{0}(x)=1\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| L_{n+1}(x)=(2n+1-x)\cdot L_{n}(x)-n^{2}\cdot L_{n-1}(x)\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| for  | |
| \begin_inset Formula  \( n\geq 0 \) | |
| \end_inset  | |
| 
 | |
|  and the differential equation  | |
| \begin_inset Formula  \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \) | |
| \end_inset  | |
| 
 | |
|  for all  | |
| \begin_inset Formula  \( n\geq 0 \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Description | |
| 
 | |
| Proof: | |
| \layout Standard | |
| 
 | |
| Let  | |
| \begin_inset Formula  \( F:=\sum ^{\infty }_{n=0}\frac{L_{n}(x)}{n!}\cdot z^{n} \) | |
| \end_inset  | |
| 
 | |
|  be the exponential generating function of the sequence of polynomials. | |
|  It is the diagonal series of the power series | |
| \begin_inset Formula  | |
| \[ | |
| G:=\sum _{m,n=0}^{\infty }\frac{1}{m!}\cdot e^{x}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\cdot z^{n}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| Because the Taylor series development theorem holds in formal power series | |
|  rings (see [1], section 2. | |
| 16), we can simplify | |
| \begin_inset Formula  | |
| \begin{eqnarray*} | |
| G & = & e^{x}\cdot \sum _{n=0}^{\infty }\left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\right) \cdot z^{n}\\ | |
|  & = & e^{x}\cdot \sum _{n=0}^{\infty }(x+y)^{n}e^{-(x+y)}\cdot z^{n}\\ | |
|  & = & \frac{e^{-y}}{1-(x+y)z} | |
| \end{eqnarray*} | |
| 
 | |
| \end_inset  | |
| 
 | |
| We take over the terminology from the  | |
| \begin_inset Quotes eld | |
| \end_inset  | |
| 
 | |
| diag_rational | |
| \begin_inset Quotes erd | |
| \end_inset  | |
| 
 | |
|  paper; here  | |
| \begin_inset Formula  \( R=Q[x] \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( M=Q[[x]] \) | |
| \end_inset  | |
| 
 | |
|  (or, if you like it better,  | |
| \begin_inset Formula  \( M=H(C) \) | |
| \end_inset  | |
| 
 | |
| , the algebra of functions holomorphic in the entire complex plane). | |
|   | |
| \begin_inset Formula  \( G\in M[[y,z]] \) | |
| \end_inset  | |
| 
 | |
|  is not rational; nevertheless we can proceed similarly to the  | |
| \begin_inset Quotes eld | |
| \end_inset  | |
| 
 | |
| diag_series | |
| \begin_inset Quotes erd | |
| \end_inset  | |
| 
 | |
|  paper. | |
|   | |
| \begin_inset Formula  \( F(z^{2}) \) | |
| \end_inset  | |
| 
 | |
|  is the coefficient of  | |
| \begin_inset Formula  \( t^{0} \) | |
| \end_inset  | |
| 
 | |
|  in | |
| \begin_inset Formula  | |
| \[ | |
| G(zt,\frac{z}{t})=\frac{e^{-zt}}{1-z^{2}-\frac{xz}{t}}\in M[[zt,\frac{z}{t},z]]=M\ll z,t\gg \] | |
| 
 | |
| \end_inset  | |
| 
 | |
| The denominator's only zero is  | |
| \begin_inset Formula  \( t=\frac{xz}{1-z^{2}} \) | |
| \end_inset  | |
| 
 | |
| . | |
|  We can write | |
| \begin_inset Formula  | |
| \[ | |
| e^{-zt}=e^{-\frac{xz^{2}}{1-z^{2}}}+\left( zt-\frac{xz^{2}}{1-z^{2}}\right) \cdot P(z,t)\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| with  | |
| \begin_inset Formula  \( P(z,t)\in Q[[zt,\frac{xz^{2}}{1-z^{2}}]]\subset Q[[zt,x,z]]=M[[zt,z]]\subset M\ll z,t\gg  \) | |
| \end_inset  | |
| 
 | |
| . | |
|  This yields -- all computations being done in  | |
| \begin_inset Formula  \( M\ll z,t\gg  \) | |
| \end_inset  | |
| 
 | |
|  -- | |
| \begin_inset Formula  | |
| \begin{eqnarray*} | |
| G(zt,\frac{z}{t}) & = & \frac{e^{-\frac{xz^{2}}{1-z^{2}}}}{1-z^{2}-\frac{xz}{t}}+\frac{zt}{1-z^{2}}\cdot P(z,t)\\ | |
|  & = & \frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\cdot \sum _{j=0}^{\infty }\left( \frac{x}{1-z^{2}}\frac{z}{t}\right) ^{j}+\frac{zt}{1-z^{2}}\cdot P(z,t) | |
| \end{eqnarray*} | |
| 
 | |
| \end_inset  | |
| 
 | |
| Here, the coefficient of  | |
| \begin_inset Formula  \( t^{0} \) | |
| \end_inset  | |
| 
 | |
|  is | |
| \begin_inset Formula  | |
| \[ | |
| F(z^{2})=\frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| hence | |
| \begin_inset Formula  | |
| \[ | |
| F(z)=\frac{1}{1-z}\cdot e^{-\frac{xz}{1-z}}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| It follows that  | |
| \begin_inset Formula  \( (1-z)^{2}\cdot \frac{d}{dz}F-(1-x-z)\cdot F=0 \) | |
| \end_inset  | |
| 
 | |
| . | |
|  This is equivalent to the claimed recurrence. | |
| 
 | |
| \layout Standard | |
| 
 | |
| Starting from the closed form for  | |
| \begin_inset Formula  \( F \) | |
| \end_inset  | |
| 
 | |
| , we compute a linear relation for the partial derivatives of  | |
| \begin_inset Formula  \( F \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Write  | |
| \begin_inset Formula  \( \partial _{x}=\frac{d}{dx} \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( \Delta _{z}=z\frac{d}{dz} \) | |
| \end_inset  | |
| 
 | |
| . | |
|  One computes | |
| \begin_inset Formula  | |
| \[ | |
| F=1\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-z\right) \cdot \partial _{x}F=-z\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-z\right) ^{2}\cdot \partial _{x}^{2}F=z^{2}\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-z\right) ^{2}\cdot \Delta _{z}F=((1-x)z-z^{2})\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-z\right) ^{3}\cdot \partial _{x}\Delta _{z}F=(-z+xz^{2}+z^{3})\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| Solve a homogeneous  | |
| \begin_inset Formula  \( 4\times 5 \) | |
| \end_inset  | |
| 
 | |
|  system of linear equations over  | |
| \begin_inset Formula  \( Q(x) \) | |
| \end_inset  | |
| 
 | |
|  to get  | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-z\right) ^{3}\cdot \left( (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F\right) =0\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| Divide by the first factor to get | |
| \begin_inset Formula  | |
| \[ | |
| (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F=0\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| This is equivalent to the claimed equation  | |
| \begin_inset Formula  \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Bibliography | |
| \cursor 123  | |
| [1] Bruno Haible: D-finite power series in several variables. | |
|   | |
| \shape italic  | |
| Diploma thesis, University of Karlsruhe, June 1989 | |
| \shape default  | |
| . | |
|  Sections 2. | |
| 15 and 2. | |
| 22. | |
| 
 |