You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							333 lines
						
					
					
						
							5.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							333 lines
						
					
					
						
							5.7 KiB
						
					
					
				| #This file was created by <bruno> Sun Feb 16 00:32:21 1997 | |
| #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team | |
| \lyxformat 2.10 | |
| \textclass article | |
| \language default | |
| \inputencoding latin1 | |
| \fontscheme default | |
| \epsfig dvips | |
| \papersize a4paper  | |
| \paperfontsize 12  | |
| \baselinestretch 1.00  | |
| \secnumdepth 3  | |
| \tocdepth 3  | |
| \paragraph_separation indent  | |
| \quotes_language english  | |
| \quotes_times 2  | |
| \paperorientation portrait  | |
| \papercolumns 1  | |
| \papersides 1  | |
| \paperpagestyle plain  | |
| 
 | |
| \layout Standard | |
| 
 | |
| The Tschebychev polynomials (of the 1st kind)  | |
| \begin_inset Formula  \( T_{n}(x) \) | |
| \end_inset  | |
| 
 | |
|  are defined through the recurrence relation | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| T_{0}(x)=1\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| T_{1}(x)=x\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| T_{n+2}(x)=2x\cdot T_{n+1}(x)-T_{n}(x)\] | |
| 
 | |
| \end_inset  | |
| 
 | |
|  for  | |
| \begin_inset Formula  \( n\geq 0 \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Description | |
| 
 | |
| Theorem: | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  \( T_{n}(x) \) | |
| \end_inset  | |
| 
 | |
|  satisfies the differential equation  | |
| \begin_inset Formula  \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \) | |
| \end_inset  | |
| 
 | |
|  for all  | |
| \begin_inset Formula  \( n\geq 0 \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Description | |
| 
 | |
| Proof: | |
| \layout Standard | |
| 
 | |
| Let  | |
| \begin_inset Formula  \( F:=\sum ^{\infty }_{n=0}T_{n}(x)z^{n} \) | |
| \end_inset  | |
| 
 | |
|  be the generating function of the sequence of polynomials. | |
|  The recurrence is equivalent to the equation  | |
| \begin_inset Formula  | |
| \[ | |
| (1-2x\cdot z+z^{2})\cdot F=1-x\cdot z\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Description | |
| 
 | |
| Proof | |
| \protected_separator  | |
| 1: | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  \( F \) | |
| \end_inset  | |
| 
 | |
|  is a rational function in  | |
| \begin_inset Formula  \( z \) | |
| \end_inset  | |
| 
 | |
| ,  | |
| \begin_inset Formula  \( F=\frac{1-xz}{1-2xz+z^{2}} \) | |
| \end_inset  | |
| 
 | |
| . | |
|  From the theory of recursions with constant coefficients, we know that | |
|  we have to perform a partial fraction decomposition. | |
|  So let  | |
| \begin_inset Formula  \( p(z)=z^{2}-2x\cdot z+1 \) | |
| \end_inset  | |
| 
 | |
|  be the denominator and  | |
| \begin_inset Formula  \( \alpha =x+\sqrt{x^{2}-1} \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( \alpha ^{-1} \) | |
| \end_inset  | |
| 
 | |
|  its zeroes. | |
|  The partial fraction decomposition reads  | |
| \begin_inset Formula  | |
| \[ | |
| F=\frac{1-xz}{1-2xz+z^{2}}=\frac{1}{2}\left( \frac{1}{1-\alpha z}+\frac{1}{1-\alpha ^{-1}z}\right) \] | |
| 
 | |
| \end_inset  | |
| 
 | |
|  hence  | |
| \begin_inset Formula  \( T_{n}(x)=\frac{1}{2}(\alpha ^{n}+\alpha ^{-n}) \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Note that the field  | |
| \begin_inset Formula  \( Q(x)(\alpha ) \) | |
| \end_inset  | |
| 
 | |
| , being a finite dimensional extension field of  | |
| \begin_inset Formula  \( Q(x) \) | |
| \end_inset  | |
| 
 | |
|  in characteristic 0, has a unique derivation extending  | |
| \begin_inset Formula  \( \frac{d}{dx} \) | |
| \end_inset  | |
| 
 | |
|  on  | |
| \begin_inset Formula  \( Q(x) \) | |
| \end_inset  | |
| 
 | |
| . | |
|  We can therefore try to construct an annihilating differential operator | |
|  for  | |
| \begin_inset Formula  \( T_{n}(x) \) | |
| \end_inset  | |
| 
 | |
|  by combination of annihilating differential operators for  | |
| \begin_inset Formula  \( \alpha ^{n} \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( \alpha ^{-n} \) | |
| \end_inset  | |
| 
 | |
| . | |
|  In fact,  | |
| \begin_inset Formula  \( L_{1}:=(\alpha -x)\frac{d}{dx}-n \) | |
| \end_inset  | |
| 
 | |
|  satisfies  | |
| \begin_inset Formula  \( L_{1}[\alpha ^{n}]=0 \) | |
| \end_inset  | |
| 
 | |
| , and  | |
| \begin_inset Formula  \( L_{2}:=(\alpha -x)\frac{d}{dx}+n \) | |
| \end_inset  | |
| 
 | |
|  satisfies  | |
| \begin_inset Formula  \( L_{2}[\alpha ^{-n}]=0 \) | |
| \end_inset  | |
| 
 | |
| . | |
|  A common multiple of  | |
| \begin_inset Formula  \( L_{1} \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( L_{2} \) | |
| \end_inset  | |
| 
 | |
|  is easily found by solving an appropriate system of linear equations: | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  \( L=(x^{2}-1)\left( \frac{d}{dx}\right) ^{2}+x\frac{d}{dx}-n^{2}=\left( (\alpha -x)\frac{d}{dx}+n\right) \cdot L_{1}=\left( (\alpha -x)\frac{d}{dx}-n\right) \cdot L_{2} \) | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| It follows that both  | |
| \begin_inset Formula  \( L[\alpha ^{n}]=0 \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( L[\alpha ^{-n}]=0 \) | |
| \end_inset  | |
| 
 | |
| , hence  | |
| \begin_inset Formula  \( L[T_{n}(x)]=0 \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Description | |
| 
 | |
| Proof | |
| \protected_separator  | |
| 2: | |
| \layout Standard | |
| 
 | |
| Starting from the above equation, we compute a linear relation for the partial | |
|  derivatives of  | |
| \begin_inset Formula  \( F \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Write  | |
| \begin_inset Formula  \( \partial _{x}=\frac{d}{dx} \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( \Delta _{z}=z\frac{d}{dz} \) | |
| \end_inset  | |
| 
 | |
| . | |
|  One computes | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) \cdot F=1-xz\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}F=z-z^{3}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}^{2}F=4z^{2}-4z^{4}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}F=xz-2z^{2}+xz^{3}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}\Delta _{z}F=z+2xz^{2}-6z^{3}+2xz^{4}+z^{5}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{3}\cdot \Delta _{z}^{2}F=xz+(2x^{2}-4)z^{2}-(2x^{2}-4)z^{4}-xz^{5}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| Solve a  | |
| \begin_inset Formula  \( 6\times 6 \) | |
| \end_inset  | |
| 
 | |
|  system of linear equations over  | |
| \begin_inset Formula  \( Q(x) \) | |
| \end_inset  | |
| 
 | |
|  to get  | |
| \begin_inset Formula  | |
| \[ | |
| x\cdot \partial _{x}F+(x^{2}-1)\cdot \partial _{x}^{2}F-\Delta _{z}^{2}F=0\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| This is equivalent to the claimed equation  | |
| \begin_inset Formula  \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Bibliography | |
| \cursor 137  | |
| [1] Bruno Haible: D-finite power series in several variables. | |
|   | |
| \shape italic  | |
| Diploma thesis, University of Karlsruhe, June 1989. | |
| 
 | |
| \shape default  | |
|  Sections 2. | |
| 12 and 2. | |
| 15. | |
| 
 |