You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							214 lines
						
					
					
						
							6.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							214 lines
						
					
					
						
							6.0 KiB
						
					
					
				
								%% This LaTeX-file was created by <bruno> Sun Feb 16 14:06:08 1997
							 | 
						|
								%% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
							 | 
						|
								
							 | 
						|
								%% Don't edit this file unless you are sure what you are doing.
							 | 
						|
								\documentclass[12pt,a4paper,oneside,onecolumn]{article}
							 | 
						|
								\usepackage[]{fontenc}
							 | 
						|
								\usepackage[latin1]{inputenc}
							 | 
						|
								\usepackage[dvips]{epsfig}
							 | 
						|
								
							 | 
						|
								%%
							 | 
						|
								%% BEGIN The lyx specific LaTeX commands.
							 | 
						|
								%%
							 | 
						|
								
							 | 
						|
								\makeatletter
							 | 
						|
								\def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
							 | 
						|
								\newcommand{\lyxtitle}[1] {\thispagestyle{empty}
							 | 
						|
								\global\@topnum\z@
							 | 
						|
								\section*{\LARGE \centering \sffamily \bfseries \protect#1 }
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxline}[1]{
							 | 
						|
								{#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
							 | 
						|
								}
							 | 
						|
								\newenvironment{lyxsectionbibliography}
							 | 
						|
								{
							 | 
						|
								\section*{\refname}
							 | 
						|
								\@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
							 | 
						|
								\begin{list}{}{
							 | 
						|
								\itemindent-\leftmargin
							 | 
						|
								\labelsep 0pt
							 | 
						|
								\renewcommand{\makelabel}{}
							 | 
						|
								}
							 | 
						|
								}
							 | 
						|
								{\end{list}}
							 | 
						|
								\newenvironment{lyxchapterbibliography}
							 | 
						|
								{
							 | 
						|
								\chapter*{\bibname}
							 | 
						|
								\@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
							 | 
						|
								\begin{list}{}{
							 | 
						|
								\itemindent-\leftmargin
							 | 
						|
								\labelsep 0pt
							 | 
						|
								\renewcommand{\makelabel}{}
							 | 
						|
								}
							 | 
						|
								}
							 | 
						|
								{\end{list}}
							 | 
						|
								\def\lxq{"}
							 | 
						|
								\newenvironment{lyxcode}
							 | 
						|
								{\list{}{
							 | 
						|
								\rightmargin\leftmargin
							 | 
						|
								\raggedright
							 | 
						|
								\itemsep 0pt
							 | 
						|
								\parsep 0pt
							 | 
						|
								\ttfamily
							 | 
						|
								}%
							 | 
						|
								\item[]
							 | 
						|
								}
							 | 
						|
								{\endlist}
							 | 
						|
								\newcommand{\lyxlabel}[1]{#1 \hfill}
							 | 
						|
								\newenvironment{lyxlist}[1]
							 | 
						|
								{\begin{list}{}
							 | 
						|
								{\settowidth{\labelwidth}{#1}
							 | 
						|
								\setlength{\leftmargin}{\labelwidth}
							 | 
						|
								\addtolength{\leftmargin}{\labelsep}
							 | 
						|
								\renewcommand{\makelabel}{\lyxlabel}}}
							 | 
						|
								{\end{list}}
							 | 
						|
								\newcommand{\lyxletterstyle}{
							 | 
						|
								\setlength\parskip{0.7em}
							 | 
						|
								\setlength\parindent{0pt}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxaddress}[1]{
							 | 
						|
								\par {\raggedright #1 
							 | 
						|
								\vspace{1.4em}
							 | 
						|
								\noindent\par}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxrightaddress}[1]{
							 | 
						|
								\par {\raggedleft \begin{tabular}{l}\ignorespaces
							 | 
						|
								#1
							 | 
						|
								\end{tabular}
							 | 
						|
								\vspace{1.4em}
							 | 
						|
								\par}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxformula}[1]{
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								#1
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxnumberedformula}[1]{
							 | 
						|
								\begin{eqnarray}
							 | 
						|
								#1
							 | 
						|
								\end{eqnarray}
							 | 
						|
								}
							 | 
						|
								\makeatother
							 | 
						|
								
							 | 
						|
								%%
							 | 
						|
								%% END The lyx specific LaTeX commands.
							 | 
						|
								%%
							 | 
						|
								
							 | 
						|
								\pagestyle{plain}
							 | 
						|
								\setcounter{secnumdepth}{3}
							 | 
						|
								\setcounter{tocdepth}{3}
							 | 
						|
								
							 | 
						|
								%% Begin LyX user specified preamble:
							 | 
						|
								\catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
							 | 
						|
								\def\ll{\langle\!\langle}
							 | 
						|
								\def\gg{\rangle\!\rangle}
							 | 
						|
								\catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								%% End LyX user specified preamble.
							 | 
						|
								\begin{document}
							 | 
						|
								
							 | 
						|
								The Laguerre polynomials  \( L_{n}(x) \) are defined through 
							 | 
						|
								\[
							 | 
						|
								L_{n}(x)=e^{x}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{n}e^{-x})\]
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin{description}
							 | 
						|
								
							 | 
						|
								\item [Theorem:]~
							 | 
						|
								
							 | 
						|
								\end{description}
							 | 
						|
								
							 | 
						|
								 \( L_{n}(x) \) satisfies the recurrence relation
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								L_{0}(x)=1\]
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								L_{n+1}(x)=(2n+1-x)\cdot L_{n}(x)-n^{2}\cdot L_{n-1}(x)\]
							 | 
						|
								for  \( n\geq 0 \) and the differential equation  \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \) for all  \( n\geq 0 \).
							 | 
						|
								
							 | 
						|
								\begin{description}
							 | 
						|
								
							 | 
						|
								\item [Proof:]~
							 | 
						|
								
							 | 
						|
								\end{description}
							 | 
						|
								
							 | 
						|
								Let  \( F:=\sum ^{\infty }_{n=0}\frac{L_{n}(x)}{n!}\cdot z^{n} \) be the exponential generating function of the sequence of polynomials.
							 | 
						|
								It is the diagonal series of the power series
							 | 
						|
								\[
							 | 
						|
								G:=\sum _{m,n=0}^{\infty }\frac{1}{m!}\cdot e^{x}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\cdot z^{n}\]
							 | 
						|
								Because the Taylor series
							 | 
						|
								development theorem holds in formal power series rings (see [1], section
							 | 
						|
								2.16), we can simplify
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								G & = & e^{x}\cdot \sum _{n=0}^{\infty }\left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\right) \cdot z^{n}\\
							 | 
						|
								 & = & e^{x}\cdot \sum _{n=0}^{\infty }(x+y)^{n}e^{-(x+y)}\cdot z^{n}\\
							 | 
						|
								 & = & \frac{e^{-y}}{1-(x+y)z}
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								We take over the terminology from the ``diag\_rational''
							 | 
						|
								paper; here  \( R=Q[x] \) and  \( M=Q[[x]] \) (or, if you like it better,  \( M=H(C) \), the algebra of
							 | 
						|
								functions holomorphic in the entire complex plane).  \( G\in M[[y,z]] \) is not rational;
							 | 
						|
								nevertheless we can proceed similarly to the ``diag\_series'' paper.
							 | 
						|
								 \( F(z^{2}) \) is the coefficient of  \( t^{0} \) in
							 | 
						|
								\[
							 | 
						|
								G(zt,\frac{z}{t})=\frac{e^{-zt}}{1-z^{2}-\frac{xz}{t}}\in M[[zt,\frac{z}{t},z]]=M\ll z,t\gg \]
							 | 
						|
								The denominator's only zero is  \( t=\frac{xz}{1-z^{2}} \). We
							 | 
						|
								can write
							 | 
						|
								\[
							 | 
						|
								e^{-zt}=e^{-\frac{xz^{2}}{1-z^{2}}}+\left( zt-\frac{xz^{2}}{1-z^{2}}\right) \cdot P(z,t)\]
							 | 
						|
								with  \( P(z,t)\in Q[[zt,\frac{xz^{2}}{1-z^{2}}]]\subset Q[[zt,x,z]]=M[[zt,z]]\subset M\ll z,t\gg  \). This yields -- all computations being done in  \( M\ll z,t\gg  \)
							 | 
						|
								--
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								G(zt,\frac{z}{t}) & = & \frac{e^{-\frac{xz^{2}}{1-z^{2}}}}{1-z^{2}-\frac{xz}{t}}+\frac{zt}{1-z^{2}}\cdot P(z,t)\\
							 | 
						|
								 & = & \frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\cdot \sum _{j=0}^{\infty }\left( \frac{x}{1-z^{2}}\frac{z}{t}\right) ^{j}+\frac{zt}{1-z^{2}}\cdot P(z,t)
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								Here, the coefficient of  \( t^{0} \) is
							 | 
						|
								\[
							 | 
						|
								F(z^{2})=\frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\]
							 | 
						|
								hence
							 | 
						|
								\[
							 | 
						|
								F(z)=\frac{1}{1-z}\cdot e^{-\frac{xz}{1-z}}\]
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								It follows that  \( (1-z)^{2}\cdot \frac{d}{dz}F-(1-x-z)\cdot F=0 \). This is equivalent to the claimed recurrence.
							 | 
						|
								
							 | 
						|
								Starting from the closed form for  \( F \), we compute a linear relation
							 | 
						|
								for the partial derivatives of  \( F \). Write  \( \partial _{x}=\frac{d}{dx} \) and  \( \Delta _{z}=z\frac{d}{dz} \). One computes
							 | 
						|
								\[
							 | 
						|
								F=1\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\left( 1-z\right) \cdot \partial _{x}F=-z\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\left( 1-z\right) ^{2}\cdot \partial _{x}^{2}F=z^{2}\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\left( 1-z\right) ^{2}\cdot \Delta _{z}F=((1-x)z-z^{2})\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\left( 1-z\right) ^{3}\cdot \partial _{x}\Delta _{z}F=(-z+xz^{2}+z^{3})\cdot F\]
							 | 
						|
								Solve
							 | 
						|
								a homogeneous  \( 4\times 5 \) system of linear equations over  \( Q(x) \) to get 
							 | 
						|
								\[
							 | 
						|
								\left( 1-z\right) ^{3}\cdot \left( (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F\right) =0\]
							 | 
						|
								Divide by
							 | 
						|
								the first factor to get
							 | 
						|
								\[
							 | 
						|
								(1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F=0\]
							 | 
						|
								This is equivalent to the claimed equation
							 | 
						|
								 \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \).
							 | 
						|
								
							 | 
						|
								\begin{lyxsectionbibliography}
							 | 
						|
								
							 | 
						|
								\item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
							 | 
						|
								thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and
							 | 
						|
								2.22.
							 | 
						|
								
							 | 
						|
								\end{lyxsectionbibliography}
							 | 
						|
								
							 | 
						|
								\end{document}
							 |