You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							176 lines
						
					
					
						
							4.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							176 lines
						
					
					
						
							4.1 KiB
						
					
					
				
								%% This LaTeX-file was created by <bruno> Sun Feb 16 14:05:55 1997
							 | 
						|
								%% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
							 | 
						|
								
							 | 
						|
								%% Don't edit this file unless you are sure what you are doing.
							 | 
						|
								\documentclass[12pt,a4paper,oneside,onecolumn]{article}
							 | 
						|
								\usepackage[]{fontenc}
							 | 
						|
								\usepackage[latin1]{inputenc}
							 | 
						|
								\usepackage[dvips]{epsfig}
							 | 
						|
								
							 | 
						|
								%%
							 | 
						|
								%% BEGIN The lyx specific LaTeX commands.
							 | 
						|
								%%
							 | 
						|
								
							 | 
						|
								\makeatletter
							 | 
						|
								\def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
							 | 
						|
								\newcommand{\lyxtitle}[1] {\thispagestyle{empty}
							 | 
						|
								\global\@topnum\z@
							 | 
						|
								\section*{\LARGE \centering \sffamily \bfseries \protect#1 }
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxline}[1]{
							 | 
						|
								{#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
							 | 
						|
								}
							 | 
						|
								\newenvironment{lyxsectionbibliography}
							 | 
						|
								{
							 | 
						|
								\section*{\refname}
							 | 
						|
								\@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
							 | 
						|
								\begin{list}{}{
							 | 
						|
								\itemindent-\leftmargin
							 | 
						|
								\labelsep 0pt
							 | 
						|
								\renewcommand{\makelabel}{}
							 | 
						|
								}
							 | 
						|
								}
							 | 
						|
								{\end{list}}
							 | 
						|
								\newenvironment{lyxchapterbibliography}
							 | 
						|
								{
							 | 
						|
								\chapter*{\bibname}
							 | 
						|
								\@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
							 | 
						|
								\begin{list}{}{
							 | 
						|
								\itemindent-\leftmargin
							 | 
						|
								\labelsep 0pt
							 | 
						|
								\renewcommand{\makelabel}{}
							 | 
						|
								}
							 | 
						|
								}
							 | 
						|
								{\end{list}}
							 | 
						|
								\def\lxq{"}
							 | 
						|
								\newenvironment{lyxcode}
							 | 
						|
								{\list{}{
							 | 
						|
								\rightmargin\leftmargin
							 | 
						|
								\raggedright
							 | 
						|
								\itemsep 0pt
							 | 
						|
								\parsep 0pt
							 | 
						|
								\ttfamily
							 | 
						|
								}%
							 | 
						|
								\item[]
							 | 
						|
								}
							 | 
						|
								{\endlist}
							 | 
						|
								\newcommand{\lyxlabel}[1]{#1 \hfill}
							 | 
						|
								\newenvironment{lyxlist}[1]
							 | 
						|
								{\begin{list}{}
							 | 
						|
								{\settowidth{\labelwidth}{#1}
							 | 
						|
								\setlength{\leftmargin}{\labelwidth}
							 | 
						|
								\addtolength{\leftmargin}{\labelsep}
							 | 
						|
								\renewcommand{\makelabel}{\lyxlabel}}}
							 | 
						|
								{\end{list}}
							 | 
						|
								\newcommand{\lyxletterstyle}{
							 | 
						|
								\setlength\parskip{0.7em}
							 | 
						|
								\setlength\parindent{0pt}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxaddress}[1]{
							 | 
						|
								\par {\raggedright #1 
							 | 
						|
								\vspace{1.4em}
							 | 
						|
								\noindent\par}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxrightaddress}[1]{
							 | 
						|
								\par {\raggedleft \begin{tabular}{l}\ignorespaces
							 | 
						|
								#1
							 | 
						|
								\end{tabular}
							 | 
						|
								\vspace{1.4em}
							 | 
						|
								\par}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxformula}[1]{
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								#1
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxnumberedformula}[1]{
							 | 
						|
								\begin{eqnarray}
							 | 
						|
								#1
							 | 
						|
								\end{eqnarray}
							 | 
						|
								}
							 | 
						|
								\makeatother
							 | 
						|
								
							 | 
						|
								%%
							 | 
						|
								%% END The lyx specific LaTeX commands.
							 | 
						|
								%%
							 | 
						|
								
							 | 
						|
								\pagestyle{plain}
							 | 
						|
								\setcounter{secnumdepth}{3}
							 | 
						|
								\setcounter{tocdepth}{3}
							 | 
						|
								\begin{document}
							 | 
						|
								
							 | 
						|
								The Hermite polynomials  \( H_{n}(x) \) are defined through 
							 | 
						|
								\[
							 | 
						|
								H_{n}(x)=(-1)^{n}e^{x^{2}}\cdot \left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \]
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin{description}
							 | 
						|
								
							 | 
						|
								\item [Theorem:]~
							 | 
						|
								
							 | 
						|
								\end{description}
							 | 
						|
								
							 | 
						|
								 \( H_{n}(x) \) satisfies the recurrence relation
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								H_{0}(x)=1\]
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								H_{n+1}(x)=2x\cdot H_{n}(x)-2n\cdot H_{n-1}(x)\]
							 | 
						|
								 for  \( n\geq 0 \) and the differential equation  \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \) for all  \( n\geq 0 \).
							 | 
						|
								
							 | 
						|
								\begin{description}
							 | 
						|
								
							 | 
						|
								\item [Proof:]~
							 | 
						|
								
							 | 
						|
								\end{description}
							 | 
						|
								
							 | 
						|
								Let  \( F:=\sum ^{\infty }_{n=0}\frac{H_{n}(x)}{n!}z^{n} \) be the exponential generating function of the sequence of polynomials.
							 | 
						|
								Then, because the Taylor series development theorem holds in formal
							 | 
						|
								power series rings (see [1], section 2.16), we can simplify
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								F & = & e^{x^{2}}\cdot \sum ^{\infty }_{n=0}\frac{1}{n!}\left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \cdot (-z)^{n}\\
							 | 
						|
								 & = & e^{x^{2}}\cdot e^{-(x-z)^{2}}\\
							 | 
						|
								 & = & e^{2xz-z^{2}}
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								It follows
							 | 
						|
								that  \( \frac{d}{dz}F=(2x-2z)\cdot F \). This is equivalent to the claimed recurrence.
							 | 
						|
								
							 | 
						|
								Starting from this equation, we compute a linear relation for the
							 | 
						|
								partial derivatives of  \( F \). Write  \( \partial _{x}=\frac{d}{dx} \) and  \( \Delta _{z}=z\frac{d}{dz} \). One computes
							 | 
						|
								\[
							 | 
						|
								F=1\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\partial _{x}F=2z\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\partial _{x}^{2}F=4z^{2}\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\Delta _{z}F=(2xz-2z^{2})\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\partial _{x}\Delta _{z}F=(2z+4xz^{2}-4z^{3})\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\Delta _{z}^{2}F=\left( 2x\cdot z+(4x^{2}-4)\cdot z^{2}-8x\cdot z^{3}+4\cdot z^{4}\right) \cdot F\]
							 | 
						|
								 Solve
							 | 
						|
								a homogeneous  \( 5\times 6 \) system of linear equations over  \( Q(x) \) to get 
							 | 
						|
								\[
							 | 
						|
								(-2x)\cdot \partial _{x}F+\partial _{x}^{2}F+2\cdot \Delta _{z}F=0\]
							 | 
						|
								 This is
							 | 
						|
								equivalent to the claimed equation  \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \).
							 | 
						|
								
							 | 
						|
								\begin{lyxsectionbibliography}
							 | 
						|
								
							 | 
						|
								\item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
							 | 
						|
								thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and
							 | 
						|
								2.22.
							 | 
						|
								
							 | 
						|
								\end{lyxsectionbibliography}
							 | 
						|
								
							 | 
						|
								\end{document}
							 |