You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							38 lines
						
					
					
						
							937 B
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							38 lines
						
					
					
						
							937 B
						
					
					
				
								\input amssym.def
							 | 
						|
								\input amssym
							 | 
						|
								\magnification=\magstep3
							 | 
						|
								\hsize=17truecm
							 | 
						|
								\vsize=19truecm
							 | 
						|
								\nopagenumbers
							 | 
						|
								\parindent=0mm
							 | 
						|
								\font\eins=cmb10 scaled \magstep 3
							 | 
						|
								\font\zwei=cmr12
							 | 
						|
								\font\mini=cmr7
							 | 
						|
								\def\frac#1#2{{{#1} \over {#2}}}
							 | 
						|
								\hbox{}
							 | 
						|
								\vfill
							 | 
						|
								
							 | 
						|
								\centerline{\eins Other Applications}
							 | 
						|
								\bigskip\bigskip
							 | 
						|
								\item{$\bullet$} exp, sin, cos, log, arctan, etc.
							 | 
						|
								\medskip
							 | 
						|
								\item{$\bullet$} $\pi$ (Chudnovsky's formula, a Ramanujan type series)
							 | 
						|
								\medskip
							 | 
						|
								\item{$\bullet$} hypergeometric functions at $x \in {\Bbb Q}$
							 | 
						|
								\medskip
							 | 
						|
								\item{$\bullet$} hypergeometric and holonomic functions at $x \in {\Bbb C}$
							 | 
						|
								     [J.\ van der Hoeven]
							 | 
						|
								\medskip
							 | 
						|
								\item{$\bullet$} $\Gamma(x)$ at $x \in {\Bbb Q}$
							 | 
						|
								\medskip
							 | 
						|
								\item{$\bullet$} Large terms of P-recursive sequences, i.e.\ $f_n$ ($n$ large)
							 | 
						|
								     where ${f(x) = \sum f_n x^n}$ is holonomic,
							 | 
						|
								\medskip
							 | 
						|
								\item{$\bullet$} $\zeta(k)$, $k > 1$ odd (using Cohen-Villegas-Zagier
							 | 
						|
								     convergence acceleration)
							 | 
						|
								
							 | 
						|
								\vfill
							 | 
						|
								\hbox{}
							 | 
						|
								\eject
							 | 
						|
								
							 | 
						|
								\end
							 |