You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							38 lines
						
					
					
						
							965 B
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							38 lines
						
					
					
						
							965 B
						
					
					
				
								\magnification=\magstep3
							 | 
						|
								\hsize=19truecm
							 | 
						|
								\vsize=19truecm
							 | 
						|
								\nopagenumbers
							 | 
						|
								\parindent=0mm
							 | 
						|
								\font\eins=cmb10 scaled \magstep 3
							 | 
						|
								\font\zwei=cmr12
							 | 
						|
								\font\mini=cmr7
							 | 
						|
								\def\frac#1#2{{{#1} \over {#2}}}
							 | 
						|
								\hbox{}
							 | 
						|
								\vfill
							 | 
						|
								
							 | 
						|
								\centerline{\eins Binary Splitting}
							 | 
						|
								\bigskip\bigskip
							 | 
						|
								Recursive algorithm:
							 | 
						|
								\medskip
							 | 
						|
								\centerline{$\displaystyle S_{[n_1,n_2)} = {\sum\limits_{n=n_1}^{n_2-1} \frac{a(n)}{b(n)} \, \frac{p(n_1) \cdots p(n)}{q(n_1) \cdots q(n)}}$}
							 | 
						|
								\medskip
							 | 
						|
								Compute $P = {p(n_1) \cdots p(n_2-1)}$, $Q = {q(n_1) \cdots q(n_2-1)}$,
							 | 
						|
								\vskip 0cm
							 | 
						|
								$B = {b(n_1) \cdots b(n_2-1)}$ and $T$ with
							 | 
						|
								\medskip
							 | 
						|
								\centerline{$\displaystyle S_{[n_1,n_2)} = \frac{T}{B \cdot Q}$}
							 | 
						|
								\bigskip
							 | 
						|
								\quad $n_2 - n_1 < 4$ \quad $\rightarrow$ directly
							 | 
						|
								\medskip
							 | 
						|
								\quad $n_2 - n_1 \geq 4$ \quad $\rightarrow$ split
							 | 
						|
								\medskip
							 | 
						|
								\centerline{$P = P_L \cdot P_R$}
							 | 
						|
								\centerline{$Q = Q_L \cdot Q_R$}
							 | 
						|
								\centerline{$B = B_L \cdot B_R$}
							 | 
						|
								\centerline{$T = B_R \cdot Q_R \cdot T_L + B_L \cdot P_L \cdot T_R$}
							 | 
						|
								
							 | 
						|
								\vfill
							 | 
						|
								\hbox{}
							 | 
						|
								\eject
							 | 
						|
								
							 | 
						|
								\end
							 |