You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							199 lines
						
					
					
						
							3.4 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							199 lines
						
					
					
						
							3.4 KiB
						
					
					
				| #This file was created by <bruno> Sun Feb 16 00:38:14 1997 | |
| #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team | |
| \lyxformat 2.10 | |
| \textclass article | |
| \language default | |
| \inputencoding latin1 | |
| \fontscheme default | |
| \epsfig dvips | |
| \papersize a4paper  | |
| \paperfontsize 12  | |
| \baselinestretch 1.00  | |
| \secnumdepth 3  | |
| \tocdepth 3  | |
| \paragraph_separation indent  | |
| \quotes_language english  | |
| \quotes_times 2  | |
| \paperorientation portrait  | |
| \papercolumns 0  | |
| \papersides 1  | |
| \paperpagestyle plain  | |
| 
 | |
| \layout Standard | |
| 
 | |
| The Hermite polynomials  | |
| \begin_inset Formula  \( H_{n}(x) \) | |
| \end_inset  | |
| 
 | |
|  are defined through  | |
| \begin_inset Formula  | |
| \[ | |
| H_{n}(x)=(-1)^{n}e^{x^{2}}\cdot \left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Description | |
| 
 | |
| Theorem: | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  \( H_{n}(x) \) | |
| \end_inset  | |
| 
 | |
|  satisfies the recurrence relation | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| H_{0}(x)=1\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| H_{n+1}(x)=2x\cdot H_{n}(x)-2n\cdot H_{n-1}(x)\] | |
| 
 | |
| \end_inset  | |
| 
 | |
|  for  | |
| \begin_inset Formula  \( n\geq 0 \) | |
| \end_inset  | |
| 
 | |
|  and the differential equation  | |
| \begin_inset Formula  \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \) | |
| \end_inset  | |
| 
 | |
|  for all  | |
| \begin_inset Formula  \( n\geq 0 \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Description | |
| 
 | |
| Proof: | |
| \layout Standard | |
| 
 | |
| Let  | |
| \begin_inset Formula  \( F:=\sum ^{\infty }_{n=0}\frac{H_{n}(x)}{n!}z^{n} \) | |
| \end_inset  | |
| 
 | |
|  be the exponential generating function of the sequence of polynomials. | |
|  Then, because the Taylor series development theorem holds in formal power | |
|  series rings (see [1], section 2. | |
| 16), we can simplify | |
| \begin_inset Formula  | |
| \begin{eqnarray*} | |
| F & = & e^{x^{2}}\cdot \sum ^{\infty }_{n=0}\frac{1}{n!}\left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \cdot (-z)^{n}\\ | |
|  & = & e^{x^{2}}\cdot e^{-(x-z)^{2}}\\ | |
|  & = & e^{2xz-z^{2}} | |
| \end{eqnarray*} | |
| 
 | |
| \end_inset  | |
| 
 | |
| It follows that  | |
| \begin_inset Formula  \( \frac{d}{dz}F=(2x-2z)\cdot F \) | |
| \end_inset  | |
| 
 | |
| . | |
|  This is equivalent to the claimed recurrence. | |
| 
 | |
| \layout Standard | |
| \cursor 190  | |
| Starting from this equation, we compute a linear relation for the partial | |
|  derivatives of  | |
| \begin_inset Formula  \( F \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Write  | |
| \begin_inset Formula  \( \partial _{x}=\frac{d}{dx} \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( \Delta _{z}=z\frac{d}{dz} \) | |
| \end_inset  | |
| 
 | |
| . | |
|  One computes | |
| \begin_inset Formula  | |
| \[ | |
| F=1\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \partial _{x}F=2z\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \partial _{x}^{2}F=4z^{2}\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \Delta _{z}F=(2xz-2z^{2})\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \partial _{x}\Delta _{z}F=(2z+4xz^{2}-4z^{3})\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \Delta _{z}^{2}F=\left( 2x\cdot z+(4x^{2}-4)\cdot z^{2}-8x\cdot z^{3}+4\cdot z^{4}\right) \cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
|  Solve a homogeneous  | |
| \begin_inset Formula  \( 5\times 6 \) | |
| \end_inset  | |
| 
 | |
|  system of linear equations over  | |
| \begin_inset Formula  \( Q(x) \) | |
| \end_inset  | |
| 
 | |
|  to get  | |
| \begin_inset Formula  | |
| \[ | |
| (-2x)\cdot \partial _{x}F+\partial _{x}^{2}F+2\cdot \Delta _{z}F=0\] | |
| 
 | |
| \end_inset  | |
| 
 | |
|  This is equivalent to the claimed equation  | |
| \begin_inset Formula  \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Bibliography | |
| 
 | |
| [1] Bruno Haible: D-finite power series in several variables. | |
|   | |
| \shape italic  | |
| Diploma thesis, University of Karlsruhe, June 1989 | |
| \shape default  | |
| . | |
|  Sections 2. | |
| 15 and 2. | |
| 22. | |
| 
 |