You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							217 lines
						
					
					
						
							6.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							217 lines
						
					
					
						
							6.7 KiB
						
					
					
				
								// Univariate Polynomials over modular integers.
							 | 
						|
								
							 | 
						|
								#ifndef _CL_UNIVPOLY_MODINT_H
							 | 
						|
								#define _CL_UNIVPOLY_MODINT_H
							 | 
						|
								
							 | 
						|
								#include "cln/ring.h"
							 | 
						|
								#include "cln/univpoly.h"
							 | 
						|
								#include "cln/modinteger.h"
							 | 
						|
								#include "cln/integer_class.h"
							 | 
						|
								
							 | 
						|
								namespace cln {
							 | 
						|
								
							 | 
						|
								// Normal univariate polynomials with stricter static typing:
							 | 
						|
								// `cl_MI' instead of `cl_ring_element'.
							 | 
						|
								
							 | 
						|
								class cl_heap_univpoly_modint_ring;
							 | 
						|
								
							 | 
						|
								class cl_univpoly_modint_ring : public cl_univpoly_ring {
							 | 
						|
								public:
							 | 
						|
									// Default constructor.
							 | 
						|
									cl_univpoly_modint_ring () : cl_univpoly_ring () {}
							 | 
						|
									// Copy constructor.
							 | 
						|
									cl_univpoly_modint_ring (const cl_univpoly_modint_ring&);
							 | 
						|
									// Assignment operator.
							 | 
						|
									cl_univpoly_modint_ring& operator= (const cl_univpoly_modint_ring&);
							 | 
						|
									// Automatic dereferencing.
							 | 
						|
									cl_heap_univpoly_modint_ring* operator-> () const
							 | 
						|
									{ return (cl_heap_univpoly_modint_ring*)heappointer; }
							 | 
						|
								};
							 | 
						|
								// Copy constructor and assignment operator.
							 | 
						|
								CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_modint_ring,cl_univpoly_ring)
							 | 
						|
								CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_modint_ring,cl_univpoly_modint_ring)
							 | 
						|
								
							 | 
						|
								class cl_UP_MI : public cl_UP {
							 | 
						|
								public:
							 | 
						|
									const cl_univpoly_modint_ring& ring () const { return The(cl_univpoly_modint_ring)(_ring); }
							 | 
						|
									// Conversion.
							 | 
						|
									CL_DEFINE_CONVERTER(cl_ring_element)
							 | 
						|
									// Destructive modification.
							 | 
						|
									void set_coeff (uintL index, const cl_MI& y);
							 | 
						|
									void finalize();
							 | 
						|
									// Evaluation.
							 | 
						|
									const cl_MI operator() (const cl_MI& y) const;
							 | 
						|
								public:	// Ability to place an object at a given address.
							 | 
						|
									void* operator new (size_t size) { return malloc_hook(size); }
							 | 
						|
									void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
							 | 
						|
									void operator delete (void* ptr) { free_hook(ptr); }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								class cl_heap_univpoly_modint_ring : public cl_heap_univpoly_ring {
							 | 
						|
									SUBCLASS_cl_heap_univpoly_ring()
							 | 
						|
									const cl_modint_ring& basering () const { return The(cl_modint_ring)(_basering); }
							 | 
						|
									// High-level operations.
							 | 
						|
									void fprint (std::ostream& stream, const cl_UP_MI& x)
							 | 
						|
									{
							 | 
						|
										cl_heap_univpoly_ring::fprint(stream,x);
							 | 
						|
									}
							 | 
						|
									bool equal (const cl_UP_MI& x, const cl_UP_MI& y)
							 | 
						|
									{
							 | 
						|
										return cl_heap_univpoly_ring::equal(x,y);
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI zero ()
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::zero());
							 | 
						|
									}
							 | 
						|
									bool zerop (const cl_UP_MI& x)
							 | 
						|
									{
							 | 
						|
										return cl_heap_univpoly_ring::zerop(x);
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI plus (const cl_UP_MI& x, const cl_UP_MI& y)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::plus(x,y));
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI minus (const cl_UP_MI& x, const cl_UP_MI& y)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::minus(x,y));
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI uminus (const cl_UP_MI& x)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::uminus(x));
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI one ()
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::one());
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI canonhom (const cl_I& x)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::canonhom(x));
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI mul (const cl_UP_MI& x, const cl_UP_MI& y)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::mul(x,y));
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI square (const cl_UP_MI& x)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::square(x));
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI expt_pos (const cl_UP_MI& x, const cl_I& y)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::expt_pos(x,y));
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI scalmul (const cl_MI& x, const cl_UP_MI& y)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::scalmul(x,y));
							 | 
						|
									}
							 | 
						|
									sintL degree (const cl_UP_MI& x)
							 | 
						|
									{
							 | 
						|
										return cl_heap_univpoly_ring::degree(x);
							 | 
						|
									}
							 | 
						|
									sintL ldegree (const cl_UP_MI& x)
							 | 
						|
									{
							 | 
						|
										return cl_heap_univpoly_ring::ldegree(x);
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI monomial (const cl_MI& x, uintL e)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::monomial(x,e));
							 | 
						|
									}
							 | 
						|
									const cl_MI coeff (const cl_UP_MI& x, uintL index)
							 | 
						|
									{
							 | 
						|
										return The2(cl_MI)(cl_heap_univpoly_ring::coeff(x,index));
							 | 
						|
									}
							 | 
						|
									const cl_UP_MI create (sintL deg)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_MI)(cl_heap_univpoly_ring::create(deg));
							 | 
						|
									}
							 | 
						|
									void set_coeff (cl_UP_MI& x, uintL index, const cl_MI& y)
							 | 
						|
									{
							 | 
						|
										cl_heap_univpoly_ring::set_coeff(x,index,y);
							 | 
						|
									}
							 | 
						|
									void finalize (cl_UP_MI& x)
							 | 
						|
									{
							 | 
						|
										cl_heap_univpoly_ring::finalize(x);
							 | 
						|
									}
							 | 
						|
									const cl_MI eval (const cl_UP_MI& x, const cl_MI& y)
							 | 
						|
									{
							 | 
						|
										return The2(cl_MI)(cl_heap_univpoly_ring::eval(x,y));
							 | 
						|
									}
							 | 
						|
								private:
							 | 
						|
									// No need for any constructors.
							 | 
						|
									cl_heap_univpoly_modint_ring ();
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// Lookup of polynomial rings.
							 | 
						|
								inline const cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring& r)
							 | 
						|
								{ return The(cl_univpoly_modint_ring) (find_univpoly_ring((const cl_ring&)r)); }
							 | 
						|
								inline const cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring& r, const cl_symbol& varname)
							 | 
						|
								{ return The(cl_univpoly_modint_ring) (find_univpoly_ring((const cl_ring&)r,varname)); }
							 | 
						|
								
							 | 
						|
								// Operations on polynomials.
							 | 
						|
								
							 | 
						|
								// Add.
							 | 
						|
								inline const cl_UP_MI operator+ (const cl_UP_MI& x, const cl_UP_MI& y)
							 | 
						|
									{ return x.ring()->plus(x,y); }
							 | 
						|
								
							 | 
						|
								// Negate.
							 | 
						|
								inline const cl_UP_MI operator- (const cl_UP_MI& x)
							 | 
						|
									{ return x.ring()->uminus(x); }
							 | 
						|
								
							 | 
						|
								// Subtract.
							 | 
						|
								inline const cl_UP_MI operator- (const cl_UP_MI& x, const cl_UP_MI& y)
							 | 
						|
									{ return x.ring()->minus(x,y); }
							 | 
						|
								
							 | 
						|
								// Multiply.
							 | 
						|
								inline const cl_UP_MI operator* (const cl_UP_MI& x, const cl_UP_MI& y)
							 | 
						|
									{ return x.ring()->mul(x,y); }
							 | 
						|
								
							 | 
						|
								// Squaring.
							 | 
						|
								inline const cl_UP_MI square (const cl_UP_MI& x)
							 | 
						|
									{ return x.ring()->square(x); }
							 | 
						|
								
							 | 
						|
								// Exponentiation x^y, where y > 0.
							 | 
						|
								inline const cl_UP_MI expt_pos (const cl_UP_MI& x, const cl_I& y)
							 | 
						|
									{ return x.ring()->expt_pos(x,y); }
							 | 
						|
								
							 | 
						|
								// Scalar multiplication.
							 | 
						|
								#if 0 // less efficient
							 | 
						|
								inline const cl_UP_MI operator* (const cl_I& x, const cl_UP_MI& y)
							 | 
						|
									{ return y.ring()->mul(y.ring()->canonhom(x),y); }
							 | 
						|
								inline const cl_UP_MI operator* (const cl_UP_MI& x, const cl_I& y)
							 | 
						|
									{ return x.ring()->mul(x.ring()->canonhom(y),x); }
							 | 
						|
								#endif
							 | 
						|
								inline const cl_UP_MI operator* (const cl_I& x, const cl_UP_MI& y)
							 | 
						|
									{ return y.ring()->scalmul(y.ring()->basering()->canonhom(x),y); }
							 | 
						|
								inline const cl_UP_MI operator* (const cl_UP_MI& x, const cl_I& y)
							 | 
						|
									{ return x.ring()->scalmul(x.ring()->basering()->canonhom(y),x); }
							 | 
						|
								inline const cl_UP_MI operator* (const cl_MI& x, const cl_UP_MI& y)
							 | 
						|
									{ return y.ring()->scalmul(x,y); }
							 | 
						|
								inline const cl_UP_MI operator* (const cl_UP_MI& x, const cl_MI& y)
							 | 
						|
									{ return x.ring()->scalmul(y,x); }
							 | 
						|
								
							 | 
						|
								// Coefficient.
							 | 
						|
								inline const cl_MI coeff (const cl_UP_MI& x, uintL index)
							 | 
						|
									{ return x.ring()->coeff(x,index); }
							 | 
						|
								
							 | 
						|
								// Destructive modification.
							 | 
						|
								inline void set_coeff (cl_UP_MI& x, uintL index, const cl_MI& y)
							 | 
						|
									{ x.ring()->set_coeff(x,index,y); }
							 | 
						|
								inline void finalize (cl_UP_MI& x)
							 | 
						|
									{ x.ring()->finalize(x); }
							 | 
						|
								inline void cl_UP_MI::set_coeff (uintL index, const cl_MI& y)
							 | 
						|
									{ ring()->set_coeff(*this,index,y); }
							 | 
						|
								inline void cl_UP_MI::finalize ()
							 | 
						|
									{ ring()->finalize(*this); }
							 | 
						|
								
							 | 
						|
								// Evaluation. (No extension of the base ring allowed here for now.)
							 | 
						|
								inline const cl_MI cl_UP_MI::operator() (const cl_MI& y) const
							 | 
						|
								{
							 | 
						|
									return ring()->eval(*this,y);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// Derivative.
							 | 
						|
								inline const cl_UP_MI deriv (const cl_UP_MI& x)
							 | 
						|
									{ return The2(cl_UP_MI)(deriv((const cl_UP&)x)); }
							 | 
						|
								
							 | 
						|
								}  // namespace cln
							 | 
						|
								
							 | 
						|
								#endif /* _CL_UNIVPOLY_MODINT_H */
							 |