You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							176 lines
						
					
					
						
							4.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							176 lines
						
					
					
						
							4.1 KiB
						
					
					
				| %% This LaTeX-file was created by <bruno> Sun Feb 16 14:05:55 1997 | |
| %% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team | |
|  | |
| %% Don't edit this file unless you are sure what you are doing. | |
| \documentclass[12pt,a4paper,oneside,onecolumn]{article} | |
| \usepackage[]{fontenc} | |
| \usepackage[latin1]{inputenc} | |
| \usepackage[dvips]{epsfig} | |
| 
 | |
| %% | |
| %% BEGIN The lyx specific LaTeX commands. | |
| %% | |
|  | |
| \makeatletter | |
| \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}% | |
| \newcommand{\lyxtitle}[1] {\thispagestyle{empty} | |
| \global\@topnum\z@ | |
| \section*{\LARGE \centering \sffamily \bfseries \protect#1 } | |
| } | |
| \newcommand{\lyxline}[1]{ | |
| {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}} | |
| } | |
| \newenvironment{lyxsectionbibliography} | |
| { | |
| \section*{\refname} | |
| \@mkboth{\uppercase{\refname}}{\uppercase{\refname}} | |
| \begin{list}{}{ | |
| \itemindent-\leftmargin | |
| \labelsep 0pt | |
| \renewcommand{\makelabel}{} | |
| } | |
| } | |
| {\end{list}} | |
| \newenvironment{lyxchapterbibliography} | |
| { | |
| \chapter*{\bibname} | |
| \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}} | |
| \begin{list}{}{ | |
| \itemindent-\leftmargin | |
| \labelsep 0pt | |
| \renewcommand{\makelabel}{} | |
| } | |
| } | |
| {\end{list}} | |
| \def\lxq{"} | |
| \newenvironment{lyxcode} | |
| {\list{}{ | |
| \rightmargin\leftmargin | |
| \raggedright | |
| \itemsep 0pt | |
| \parsep 0pt | |
| \ttfamily | |
| }% | |
| \item[] | |
| } | |
| {\endlist} | |
| \newcommand{\lyxlabel}[1]{#1 \hfill} | |
| \newenvironment{lyxlist}[1] | |
| {\begin{list}{} | |
| {\settowidth{\labelwidth}{#1} | |
| \setlength{\leftmargin}{\labelwidth} | |
| \addtolength{\leftmargin}{\labelsep} | |
| \renewcommand{\makelabel}{\lyxlabel}}} | |
| {\end{list}} | |
| \newcommand{\lyxletterstyle}{ | |
| \setlength\parskip{0.7em} | |
| \setlength\parindent{0pt} | |
| } | |
| \newcommand{\lyxaddress}[1]{ | |
| \par {\raggedright #1  | |
| \vspace{1.4em} | |
| \noindent\par} | |
| } | |
| \newcommand{\lyxrightaddress}[1]{ | |
| \par {\raggedleft \begin{tabular}{l}\ignorespaces | |
| #1 | |
| \end{tabular} | |
| \vspace{1.4em} | |
| \par} | |
| } | |
| \newcommand{\lyxformula}[1]{ | |
| \begin{eqnarray*} | |
| #1 | |
| \end{eqnarray*} | |
| } | |
| \newcommand{\lyxnumberedformula}[1]{ | |
| \begin{eqnarray} | |
| #1 | |
| \end{eqnarray} | |
| } | |
| \makeatother | |
| 
 | |
| %% | |
| %% END The lyx specific LaTeX commands. | |
| %% | |
|  | |
| \pagestyle{plain} | |
| \setcounter{secnumdepth}{3} | |
| \setcounter{tocdepth}{3} | |
| \begin{document} | |
| 
 | |
| The Hermite polynomials  \( H_{n}(x) \) are defined through  | |
| \[ | |
| H_{n}(x)=(-1)^{n}e^{x^{2}}\cdot \left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \] | |
| 
 | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Theorem:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
|  \( H_{n}(x) \) satisfies the recurrence relation | |
| 
 | |
| 
 | |
| \[ | |
| H_{0}(x)=1\] | |
| 
 | |
| 
 | |
| 
 | |
| \[ | |
| H_{n+1}(x)=2x\cdot H_{n}(x)-2n\cdot H_{n-1}(x)\] | |
|  for  \( n\geq 0 \) and the differential equation  \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \) for all  \( n\geq 0 \). | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Proof:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
| Let  \( F:=\sum ^{\infty }_{n=0}\frac{H_{n}(x)}{n!}z^{n} \) be the exponential generating function of the sequence of polynomials. | |
| Then, because the Taylor series development theorem holds in formal | |
| power series rings (see [1], section 2.16), we can simplify | |
| \begin{eqnarray*} | |
| F & = & e^{x^{2}}\cdot \sum ^{\infty }_{n=0}\frac{1}{n!}\left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \cdot (-z)^{n}\\ | |
|  & = & e^{x^{2}}\cdot e^{-(x-z)^{2}}\\ | |
|  & = & e^{2xz-z^{2}} | |
| \end{eqnarray*} | |
| It follows | |
| that  \( \frac{d}{dz}F=(2x-2z)\cdot F \). This is equivalent to the claimed recurrence. | |
| 
 | |
| Starting from this equation, we compute a linear relation for the | |
| partial derivatives of  \( F \). Write  \( \partial _{x}=\frac{d}{dx} \) and  \( \Delta _{z}=z\frac{d}{dz} \). One computes | |
| \[ | |
| F=1\cdot F\] | |
| 
 | |
| \[ | |
| \partial _{x}F=2z\cdot F\] | |
| 
 | |
| \[ | |
| \partial _{x}^{2}F=4z^{2}\cdot F\] | |
| 
 | |
| \[ | |
| \Delta _{z}F=(2xz-2z^{2})\cdot F\] | |
| 
 | |
| \[ | |
| \partial _{x}\Delta _{z}F=(2z+4xz^{2}-4z^{3})\cdot F\] | |
| 
 | |
| \[ | |
| \Delta _{z}^{2}F=\left( 2x\cdot z+(4x^{2}-4)\cdot z^{2}-8x\cdot z^{3}+4\cdot z^{4}\right) \cdot F\] | |
|  Solve | |
| a homogeneous  \( 5\times 6 \) system of linear equations over  \( Q(x) \) to get  | |
| \[ | |
| (-2x)\cdot \partial _{x}F+\partial _{x}^{2}F+2\cdot \Delta _{z}F=0\] | |
|  This is | |
| equivalent to the claimed equation  \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \). | |
| 
 | |
| \begin{lyxsectionbibliography} | |
| 
 | |
| \item [1] Bruno Haible: D-finite power series in several variables. \em Diploma | |
| thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and | |
| 2.22. | |
| 
 | |
| \end{lyxsectionbibliography} | |
| 
 | |
| \end{document}
 |