You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							726 lines
						
					
					
						
							24 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							726 lines
						
					
					
						
							24 KiB
						
					
					
				| // Univariate Polynomials. | |
|  | |
| #ifndef _CL_UNIVPOLY_H | |
| #define _CL_UNIVPOLY_H | |
|  | |
| #include "cln/object.h" | |
| #include "cln/ring.h" | |
| #include "cln/malloc.h" | |
| #include "cln/proplist.h" | |
| #include "cln/symbol.h" | |
| #include "cln/V.h" | |
| #include "cln/io.h" | |
|  | |
| namespace cln { | |
| 
 | |
| // To protect against mixing elements of different polynomial rings, every | |
| // polynomial carries its ring in itself. | |
|  | |
| class cl_heap_univpoly_ring; | |
| 
 | |
| class cl_univpoly_ring : public cl_ring { | |
| public: | |
| 	// Default constructor. | |
| 	cl_univpoly_ring (); | |
| 	// Constructor. Takes a cl_heap_univpoly_ring*, increments its refcount. | |
| 	cl_univpoly_ring (cl_heap_univpoly_ring* r); | |
| 	// Private constructor. Doesn't increment the refcount. | |
| 	cl_univpoly_ring (cl_private_thing); | |
| 	// Copy constructor. | |
| 	cl_univpoly_ring (const cl_univpoly_ring&); | |
| 	// Assignment operator. | |
| 	cl_univpoly_ring& operator= (const cl_univpoly_ring&); | |
| 	// Automatic dereferencing. | |
| 	cl_heap_univpoly_ring* operator-> () const | |
| 	{ return (cl_heap_univpoly_ring*)heappointer; } | |
| }; | |
| // Copy constructor and assignment operator. | |
| CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_ring,cl_ring) | |
| CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_ring,cl_univpoly_ring) | |
| 
 | |
| // Normal constructor for `cl_univpoly_ring'. | |
| inline cl_univpoly_ring::cl_univpoly_ring (cl_heap_univpoly_ring* r) | |
| 	: cl_ring ((cl_private_thing) (cl_inc_pointer_refcount((cl_heap*)r), r)) {} | |
| // Private constructor for `cl_univpoly_ring'. | |
| inline cl_univpoly_ring::cl_univpoly_ring (cl_private_thing p) | |
| 	: cl_ring (p) {} | |
| 
 | |
| // Operations on univariate polynomial rings. | |
|  | |
| inline bool operator== (const cl_univpoly_ring& R1, const cl_univpoly_ring& R2) | |
| { return (R1.pointer == R2.pointer); } | |
| inline bool operator!= (const cl_univpoly_ring& R1, const cl_univpoly_ring& R2) | |
| { return (R1.pointer != R2.pointer); } | |
| inline bool operator== (const cl_univpoly_ring& R1, cl_heap_univpoly_ring* R2) | |
| { return (R1.pointer == R2); } | |
| inline bool operator!= (const cl_univpoly_ring& R1, cl_heap_univpoly_ring* R2) | |
| { return (R1.pointer != R2); } | |
| 
 | |
| // Representation of a univariate polynomial. | |
|  | |
| class _cl_UP /* cf. _cl_ring_element */ { | |
| public: | |
| 	cl_gcpointer rep; // vector of coefficients, a cl_V_any | |
| 	// Default constructor. | |
| 	_cl_UP (); | |
| public: /* ugh */ | |
| 	// Constructor. | |
| 	_cl_UP (const cl_heap_univpoly_ring* R, const cl_V_any& r) : rep (as_cl_private_thing(r)) { (void)R; } | |
| 	_cl_UP (const cl_univpoly_ring& R, const cl_V_any& r) : rep (as_cl_private_thing(r)) { (void)R; } | |
| public: | |
| 	// Conversion. | |
| 	CL_DEFINE_CONVERTER(_cl_ring_element) | |
| public:	// Ability to place an object at a given address. | |
| 	void* operator new (size_t size) { return malloc_hook(size); } | |
| 	void* operator new (size_t size, void* ptr) { (void)size; return ptr; } | |
| 	void operator delete (void* ptr) { free_hook(ptr); } | |
| }; | |
| 
 | |
| class cl_UP /* cf. cl_ring_element */ : public _cl_UP { | |
| protected: | |
| 	cl_univpoly_ring _ring;	// polynomial ring (references the base ring) | |
| public: | |
| 	const cl_univpoly_ring& ring () const { return _ring; } | |
| private: | |
| 	// Default constructor. | |
| 	cl_UP (); | |
| public: /* ugh */ | |
| 	// Constructor. | |
| 	cl_UP (const cl_univpoly_ring& R, const cl_V_any& r) | |
| 		: _cl_UP (R,r), _ring (R) {} | |
| 	cl_UP (const cl_univpoly_ring& R, const _cl_UP& r) | |
| 		: _cl_UP (r), _ring (R) {} | |
| public: | |
| 	// Conversion. | |
| 	CL_DEFINE_CONVERTER(cl_ring_element) | |
| 	// Destructive modification. | |
| 	void set_coeff (uintL index, const cl_ring_element& y); | |
| 	void finalize(); | |
| 	// Evaluation. | |
| 	const cl_ring_element operator() (const cl_ring_element& y) const; | |
| 	// Debugging output. | |
| 	void debug_print () const; | |
| public:	// Ability to place an object at a given address. | |
| 	void* operator new (size_t size) { return malloc_hook(size); } | |
| 	void* operator new (size_t size, void* ptr) { (void)size; return ptr; } | |
| 	void operator delete (void* ptr) { free_hook(ptr); } | |
| }; | |
| 
 | |
| 
 | |
| // Ring operations. | |
|  | |
| struct _cl_univpoly_setops /* cf. _cl_ring_setops */ { | |
| 	// print | |
| 	void (* fprint) (cl_heap_univpoly_ring* R, std::ostream& stream, const _cl_UP& x); | |
| 	// equality | |
| 	// (Be careful: This is not well-defined for polynomials with | |
| 	// floating-point coefficients.) | |
| 	cl_boolean (* equal) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y); | |
| }; | |
| struct _cl_univpoly_addops /* cf. _cl_ring_addops */ { | |
| 	// 0 | |
| 	const _cl_UP (* zero) (cl_heap_univpoly_ring* R); | |
| 	cl_boolean (* zerop) (cl_heap_univpoly_ring* R, const _cl_UP& x); | |
| 	// x+y | |
| 	const _cl_UP (* plus) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y); | |
| 	// x-y | |
| 	const _cl_UP (* minus) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y); | |
| 	// -x | |
| 	const _cl_UP (* uminus) (cl_heap_univpoly_ring* R, const _cl_UP& x); | |
| }; | |
| struct _cl_univpoly_mulops /* cf. _cl_ring_mulops */ { | |
| 	// 1 | |
| 	const _cl_UP (* one) (cl_heap_univpoly_ring* R); | |
| 	// canonical homomorphism | |
| 	const _cl_UP (* canonhom) (cl_heap_univpoly_ring* R, const cl_I& x); | |
| 	// x*y | |
| 	const _cl_UP (* mul) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y); | |
| 	// x^2 | |
| 	const _cl_UP (* square) (cl_heap_univpoly_ring* R, const _cl_UP& x); | |
| 	// x^y, y Integer >0 | |
| 	const _cl_UP (* expt_pos) (cl_heap_univpoly_ring* R, const _cl_UP& x, const cl_I& y); | |
| }; | |
| struct _cl_univpoly_modulops { | |
| 	// scalar multiplication x*y | |
| 	const _cl_UP (* scalmul) (cl_heap_univpoly_ring* R, const cl_ring_element& x, const _cl_UP& y); | |
| }; | |
| struct _cl_univpoly_polyops { | |
| 	// degree | |
| 	sintL (* degree) (cl_heap_univpoly_ring* R, const _cl_UP& x); | |
| 	// low degree | |
| 	sintL (* ldegree) (cl_heap_univpoly_ring* R, const _cl_UP& x); | |
| 	// monomial | |
| 	const _cl_UP (* monomial) (cl_heap_univpoly_ring* R, const cl_ring_element& x, uintL e); | |
| 	// coefficient (0 if index>degree) | |
| 	const cl_ring_element (* coeff) (cl_heap_univpoly_ring* R, const _cl_UP& x, uintL index); | |
| 	// create new polynomial, bounded degree | |
| 	const _cl_UP (* create) (cl_heap_univpoly_ring* R, sintL deg); | |
| 	// set coefficient in new polynomial | |
| 	void (* set_coeff) (cl_heap_univpoly_ring* R, _cl_UP& x, uintL index, const cl_ring_element& y); | |
| 	// finalize polynomial | |
| 	void (* finalize) (cl_heap_univpoly_ring* R, _cl_UP& x); | |
| 	// evaluate, substitute an element of R | |
| 	const cl_ring_element (* eval) (cl_heap_univpoly_ring* R, const _cl_UP& x, const cl_ring_element& y); | |
| }; | |
|   typedef const _cl_univpoly_setops  cl_univpoly_setops; | |
|   typedef const _cl_univpoly_addops  cl_univpoly_addops; | |
|   typedef const _cl_univpoly_mulops  cl_univpoly_mulops; | |
|   typedef const _cl_univpoly_modulops  cl_univpoly_modulops; | |
|   typedef const _cl_univpoly_polyops  cl_univpoly_polyops; | |
| 
 | |
| // Representation of a univariate polynomial ring. | |
|  | |
| class cl_heap_univpoly_ring /* cf. cl_heap_ring */ : public cl_heap { | |
| 	SUBCLASS_cl_heap_ring() | |
| private: | |
| 	cl_property_list properties; | |
| protected: | |
| 	cl_univpoly_setops* setops; | |
| 	cl_univpoly_addops* addops; | |
| 	cl_univpoly_mulops* mulops; | |
| 	cl_univpoly_modulops* modulops; | |
| 	cl_univpoly_polyops* polyops; | |
| protected: | |
| 	cl_ring _basering;	// the coefficients are elements of this ring | |
| public: | |
| 	const cl_ring& basering () const { return _basering; } | |
| public: | |
| 	// Low-level operations. | |
| 	void _fprint (std::ostream& stream, const _cl_UP& x) | |
| 		{ setops->fprint(this,stream,x); } | |
| 	cl_boolean _equal (const _cl_UP& x, const _cl_UP& y) | |
| 		{ return setops->equal(this,x,y); } | |
| 	const _cl_UP _zero () | |
| 		{ return addops->zero(this); } | |
| 	cl_boolean _zerop (const _cl_UP& x) | |
| 		{ return addops->zerop(this,x); } | |
| 	const _cl_UP _plus (const _cl_UP& x, const _cl_UP& y) | |
| 		{ return addops->plus(this,x,y); } | |
| 	const _cl_UP _minus (const _cl_UP& x, const _cl_UP& y) | |
| 		{ return addops->minus(this,x,y); } | |
| 	const _cl_UP _uminus (const _cl_UP& x) | |
| 		{ return addops->uminus(this,x); } | |
| 	const _cl_UP _one () | |
| 		{ return mulops->one(this); } | |
| 	const _cl_UP _canonhom (const cl_I& x) | |
| 		{ return mulops->canonhom(this,x); } | |
| 	const _cl_UP _mul (const _cl_UP& x, const _cl_UP& y) | |
| 		{ return mulops->mul(this,x,y); } | |
| 	const _cl_UP _square (const _cl_UP& x) | |
| 		{ return mulops->square(this,x); } | |
| 	const _cl_UP _expt_pos (const _cl_UP& x, const cl_I& y) | |
| 		{ return mulops->expt_pos(this,x,y); } | |
| 	const _cl_UP _scalmul (const cl_ring_element& x, const _cl_UP& y) | |
| 		{ return modulops->scalmul(this,x,y); } | |
| 	sintL _degree (const _cl_UP& x) | |
| 		{ return polyops->degree(this,x); } | |
| 	sintL _ldegree (const _cl_UP& x) | |
| 		{ return polyops->ldegree(this,x); } | |
| 	const _cl_UP _monomial (const cl_ring_element& x, uintL e) | |
| 		{ return polyops->monomial(this,x,e); } | |
| 	const cl_ring_element _coeff (const _cl_UP& x, uintL index) | |
| 		{ return polyops->coeff(this,x,index); } | |
| 	const _cl_UP _create (sintL deg) | |
| 		{ return polyops->create(this,deg); } | |
| 	void _set_coeff (_cl_UP& x, uintL index, const cl_ring_element& y) | |
| 		{ polyops->set_coeff(this,x,index,y); } | |
| 	void _finalize (_cl_UP& x) | |
| 		{ polyops->finalize(this,x); } | |
| 	const cl_ring_element _eval (const _cl_UP& x, const cl_ring_element& y) | |
| 		{ return polyops->eval(this,x,y); } | |
| 	// High-level operations. | |
| 	void fprint (std::ostream& stream, const cl_UP& x) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		_fprint(stream,x); | |
| 	} | |
| 	cl_boolean equal (const cl_UP& x, const cl_UP& y) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		if (!(y.ring() == this)) cl_abort(); | |
| 		return _equal(x,y); | |
| 	} | |
| 	const cl_UP zero () | |
| 	{ | |
| 		return cl_UP(this,_zero()); | |
| 	} | |
| 	cl_boolean zerop (const cl_UP& x) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		return _zerop(x); | |
| 	} | |
| 	const cl_UP plus (const cl_UP& x, const cl_UP& y) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		if (!(y.ring() == this)) cl_abort(); | |
| 		return cl_UP(this,_plus(x,y)); | |
| 	} | |
| 	const cl_UP minus (const cl_UP& x, const cl_UP& y) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		if (!(y.ring() == this)) cl_abort(); | |
| 		return cl_UP(this,_minus(x,y)); | |
| 	} | |
| 	const cl_UP uminus (const cl_UP& x) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		return cl_UP(this,_uminus(x)); | |
| 	} | |
| 	const cl_UP one () | |
| 	{ | |
| 		return cl_UP(this,_one()); | |
| 	} | |
| 	const cl_UP canonhom (const cl_I& x) | |
| 	{ | |
| 		return cl_UP(this,_canonhom(x)); | |
| 	} | |
| 	const cl_UP mul (const cl_UP& x, const cl_UP& y) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		if (!(y.ring() == this)) cl_abort(); | |
| 		return cl_UP(this,_mul(x,y)); | |
| 	} | |
| 	const cl_UP square (const cl_UP& x) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		return cl_UP(this,_square(x)); | |
| 	} | |
| 	const cl_UP expt_pos (const cl_UP& x, const cl_I& y) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		return cl_UP(this,_expt_pos(x,y)); | |
| 	} | |
| 	const cl_UP scalmul (const cl_ring_element& x, const cl_UP& y) | |
| 	{ | |
| 		if (!(y.ring() == this)) cl_abort(); | |
| 		return cl_UP(this,_scalmul(x,y)); | |
| 	} | |
| 	sintL degree (const cl_UP& x) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		return _degree(x); | |
| 	} | |
| 	sintL ldegree (const cl_UP& x) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		return _ldegree(x); | |
| 	} | |
| 	const cl_UP monomial (const cl_ring_element& x, uintL e) | |
| 	{ | |
| 		return cl_UP(this,_monomial(x,e)); | |
| 	} | |
| 	const cl_ring_element coeff (const cl_UP& x, uintL index) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		return _coeff(x,index); | |
| 	} | |
| 	const cl_UP create (sintL deg) | |
| 	{ | |
| 		return cl_UP(this,_create(deg)); | |
| 	} | |
| 	void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		_set_coeff(x,index,y); | |
| 	} | |
| 	void finalize (cl_UP& x) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		_finalize(x); | |
| 	} | |
| 	const cl_ring_element eval (const cl_UP& x, const cl_ring_element& y) | |
| 	{ | |
| 		if (!(x.ring() == this)) cl_abort(); | |
| 		return _eval(x,y); | |
| 	} | |
| 	// Property operations. | |
| 	cl_property* get_property (const cl_symbol& key) | |
| 		{ return properties.get_property(key); } | |
| 	void add_property (cl_property* new_property) | |
| 		{ properties.add_property(new_property); } | |
| // Constructor. | |
| 	cl_heap_univpoly_ring (const cl_ring& r, cl_univpoly_setops*, cl_univpoly_addops*, cl_univpoly_mulops*, cl_univpoly_modulops*, cl_univpoly_polyops*); | |
| // This class is intented to be subclassable, hence needs a virtual destructor. | |
| 	virtual ~cl_heap_univpoly_ring () {} | |
| private: | |
| 	virtual void dummy (); | |
| }; | |
| #define SUBCLASS_cl_heap_univpoly_ring() \ | |
|   SUBCLASS_cl_heap_ring() | |
|  | |
| 
 | |
| // Lookup or create the "standard" univariate polynomial ring over a ring r. | |
| extern const cl_univpoly_ring find_univpoly_ring (const cl_ring& r); | |
| //CL_REQUIRE(cl_UP_unnamed) | |
|  | |
| // Lookup or create a univariate polynomial ring with a named variable over r. | |
| extern const cl_univpoly_ring find_univpoly_ring (const cl_ring& r, const cl_symbol& varname); | |
| //CL_REQUIRE(cl_UP_named) | |
|  | |
| CL_REQUIRE(cl_UP) | |
| 
 | |
| // Runtime typing support. | |
| extern cl_class cl_class_univpoly_ring; | |
| 
 | |
| 
 | |
| // Operations on polynomials. | |
|  | |
| // Output. | |
| inline void fprint (std::ostream& stream, const cl_UP& x) | |
| 	{ x.ring()->fprint(stream,x); } | |
| CL_DEFINE_PRINT_OPERATOR(cl_UP) | |
| 
 | |
| // Add. | |
| inline const cl_UP operator+ (const cl_UP& x, const cl_UP& y) | |
| 	{ return x.ring()->plus(x,y); } | |
| 
 | |
| // Negate. | |
| inline const cl_UP operator- (const cl_UP& x) | |
| 	{ return x.ring()->uminus(x); } | |
| 
 | |
| // Subtract. | |
| inline const cl_UP operator- (const cl_UP& x, const cl_UP& y) | |
| 	{ return x.ring()->minus(x,y); } | |
| 
 | |
| // Equality. | |
| inline bool operator== (const cl_UP& x, const cl_UP& y) | |
| 	{ return x.ring()->equal(x,y); } | |
| inline bool operator!= (const cl_UP& x, const cl_UP& y) | |
| 	{ return !x.ring()->equal(x,y); } | |
| 
 | |
| // Compare against 0. | |
| inline cl_boolean zerop (const cl_UP& x) | |
| 	{ return x.ring()->zerop(x); } | |
| 
 | |
| // Multiply. | |
| inline const cl_UP operator* (const cl_UP& x, const cl_UP& y) | |
| 	{ return x.ring()->mul(x,y); } | |
| 
 | |
| // Squaring. | |
| inline const cl_UP square (const cl_UP& x) | |
| 	{ return x.ring()->square(x); } | |
| 
 | |
| // Exponentiation x^y, where y > 0. | |
| inline const cl_UP expt_pos (const cl_UP& x, const cl_I& y) | |
| 	{ return x.ring()->expt_pos(x,y); } | |
| 
 | |
| // Scalar multiplication. | |
| #if 0 // less efficient | |
| inline const cl_UP operator* (const cl_I& x, const cl_UP& y) | |
| 	{ return y.ring()->mul(y.ring()->canonhom(x),y); } | |
| inline const cl_UP operator* (const cl_UP& x, const cl_I& y) | |
| 	{ return x.ring()->mul(x.ring()->canonhom(y),x); } | |
| #endif | |
| inline const cl_UP operator* (const cl_I& x, const cl_UP& y) | |
| 	{ return y.ring()->scalmul(y.ring()->basering()->canonhom(x),y); } | |
| inline const cl_UP operator* (const cl_UP& x, const cl_I& y) | |
| 	{ return x.ring()->scalmul(x.ring()->basering()->canonhom(y),x); } | |
| inline const cl_UP operator* (const cl_ring_element& x, const cl_UP& y) | |
| 	{ return y.ring()->scalmul(x,y); } | |
| inline const cl_UP operator* (const cl_UP& x, const cl_ring_element& y) | |
| 	{ return x.ring()->scalmul(y,x); } | |
| 
 | |
| // Degree. | |
| inline sintL degree (const cl_UP& x) | |
| 	{ return x.ring()->degree(x); } | |
| 
 | |
| // Low degree. | |
| inline sintL ldegree (const cl_UP& x) | |
| 	{ return x.ring()->ldegree(x); } | |
| 
 | |
| // Coefficient. | |
| inline const cl_ring_element coeff (const cl_UP& x, uintL index) | |
| 	{ return x.ring()->coeff(x,index); } | |
| 
 | |
| // Destructive modification. | |
| inline void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y) | |
| 	{ x.ring()->set_coeff(x,index,y); } | |
| inline void finalize (cl_UP& x) | |
| 	{ x.ring()->finalize(x); } | |
| inline void cl_UP::set_coeff (uintL index, const cl_ring_element& y) | |
| 	{ ring()->set_coeff(*this,index,y); } | |
| inline void cl_UP::finalize () | |
| 	{ ring()->finalize(*this); } | |
| 
 | |
| // Evaluation. (No extension of the base ring allowed here for now.) | |
| inline const cl_ring_element cl_UP::operator() (const cl_ring_element& y) const | |
| { | |
| 	return ring()->eval(*this,y); | |
| } | |
| 
 | |
| // Derivative. | |
| extern const cl_UP deriv (const cl_UP& x); | |
| 
 | |
| 
 | |
| // Ring of uninitialized elements. | |
| // Any operation results in a run-time error. | |
|  | |
| extern const cl_univpoly_ring cl_no_univpoly_ring; | |
| extern cl_class cl_class_no_univpoly_ring; | |
| CL_REQUIRE(cl_UP_no_ring) | |
| 
 | |
| inline cl_univpoly_ring::cl_univpoly_ring () | |
| 	: cl_ring (as_cl_private_thing(cl_no_univpoly_ring)) {} | |
| inline _cl_UP::_cl_UP () | |
| 	: rep ((cl_private_thing) cl_combine(cl_FN_tag,0)) {} | |
| inline cl_UP::cl_UP () | |
| 	: _cl_UP (), _ring () {} | |
| 
 | |
| 
 | |
| // Debugging support. | |
| #ifdef CL_DEBUG | |
| extern int cl_UP_debug_module; | |
| CL_FORCE_LINK(cl_UP_debug_dummy, cl_UP_debug_module) | |
| #endif | |
|  | |
| }  // namespace cln | |
|  | |
| #endif /* _CL_UNIVPOLY_H */ | |
|  | |
| namespace cln { | |
| 
 | |
| // Templates for univariate polynomials of complex/real/rational/integers. | |
|  | |
| #ifdef notyet | |
| // Unfortunately, this is not usable now, because of gcc-2.7 bugs: | |
| // - A template inline function is not inline in the first function that | |
| //   uses it. | |
| // - Argument matching bug: User-defined conversions are not tried (or | |
| //   tried with too low priority) for template functions w.r.t. normal | |
| //   functions. For example, a call expt_pos(cl_UP_specialized<cl_N>,int) | |
| //   is compiled as expt_pos(const cl_UP&, const cl_I&) instead of | |
| //   expt_pos(const cl_UP_specialized<cl_N>&, const cl_I&). | |
| // It will, however, be usable when gcc-2.8 is released. | |
|  | |
| #if defined(_CL_UNIVPOLY_COMPLEX_H) || defined(_CL_UNIVPOLY_REAL_H) || defined(_CL_UNIVPOLY_RATIONAL_H) || defined(_CL_UNIVPOLY_INTEGER_H) | |
| #ifndef _CL_UNIVPOLY_AUX_H | |
|  | |
| // Normal univariate polynomials with stricter static typing: | |
| // `class T' instead of `cl_ring_element'. | |
|  | |
| template <class T> class cl_univpoly_specialized_ring; | |
| template <class T> class cl_UP_specialized; | |
| template <class T> class cl_heap_univpoly_specialized_ring; | |
| 
 | |
| template <class T> | |
| class cl_univpoly_specialized_ring : public cl_univpoly_ring { | |
| public: | |
| 	// Default constructor. | |
| 	cl_univpoly_specialized_ring () : cl_univpoly_ring () {} | |
| 	// Copy constructor. | |
| 	cl_univpoly_specialized_ring (const cl_univpoly_specialized_ring&); | |
| 	// Assignment operator. | |
| 	cl_univpoly_specialized_ring& operator= (const cl_univpoly_specialized_ring&); | |
| 	// Automatic dereferencing. | |
| 	cl_heap_univpoly_specialized_ring<T>* operator-> () const | |
| 	{ return (cl_heap_univpoly_specialized_ring<T>*)heappointer; } | |
| }; | |
| // Copy constructor and assignment operator. | |
| template <class T> | |
| _CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_specialized_ring<T>,cl_univpoly_specialized_ring,cl_univpoly_ring) | |
| template <class T> | |
| CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_specialized_ring<T>,cl_univpoly_specialized_ring<T>) | |
| 
 | |
| template <class T> | |
| class cl_UP_specialized : public cl_UP { | |
| public: | |
| 	const cl_univpoly_specialized_ring<T>& ring () const { return The(cl_univpoly_specialized_ring<T>)(_ring); } | |
| 	// Conversion. | |
| 	CL_DEFINE_CONVERTER(cl_ring_element) | |
| 	// Destructive modification. | |
| 	void set_coeff (uintL index, const T& y); | |
| 	void finalize(); | |
| 	// Evaluation. | |
| 	const T operator() (const T& y) const; | |
| public:	// Ability to place an object at a given address. | |
| 	void* operator new (size_t size) { return malloc_hook(size); } | |
| 	void* operator new (size_t size, void* ptr) { (void)size; return ptr; } | |
| 	void operator delete (void* ptr) { free_hook(ptr); } | |
| }; | |
| 
 | |
| template <class T> | |
| class cl_heap_univpoly_specialized_ring : public cl_heap_univpoly_ring { | |
| 	SUBCLASS_cl_heap_univpoly_ring() | |
| 	// High-level operations. | |
| 	void fprint (std::ostream& stream, const cl_UP_specialized<T>& x) | |
| 	{ | |
| 		cl_heap_univpoly_ring::fprint(stream,x); | |
| 	} | |
| 	cl_boolean equal (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) | |
| 	{ | |
| 		return cl_heap_univpoly_ring::equal(x,y); | |
| 	} | |
| 	const cl_UP_specialized<T> zero () | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::zero()); | |
| 	} | |
| 	cl_boolean zerop (const cl_UP_specialized<T>& x) | |
| 	{ | |
| 		return cl_heap_univpoly_ring::zerop(x); | |
| 	} | |
| 	const cl_UP_specialized<T> plus (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::plus(x,y)); | |
| 	} | |
| 	const cl_UP_specialized<T> minus (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::minus(x,y)); | |
| 	} | |
| 	const cl_UP_specialized<T> uminus (const cl_UP_specialized<T>& x) | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::uminus(x)); | |
| 	} | |
| 	const cl_UP_specialized<T> one () | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::one()); | |
| 	} | |
| 	const cl_UP_specialized<T> canonhom (const cl_I& x) | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::canonhom(x)); | |
| 	} | |
| 	const cl_UP_specialized<T> mul (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::mul(x,y)); | |
| 	} | |
| 	const cl_UP_specialized<T> square (const cl_UP_specialized<T>& x) | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::square(x)); | |
| 	} | |
| 	const cl_UP_specialized<T> expt_pos (const cl_UP_specialized<T>& x, const cl_I& y) | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::expt_pos(x,y)); | |
| 	} | |
| 	const cl_UP_specialized<T> scalmul (const T& x, const cl_UP_specialized<T>& y) | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::scalmul(x,y)); | |
| 	} | |
| 	sintL degree (const cl_UP_specialized<T>& x) | |
| 	{ | |
| 		return cl_heap_univpoly_ring::degree(x); | |
| 	} | |
| 	sintL ldegree (const cl_UP_specialized<T>& x) | |
| 	{ | |
| 		return cl_heap_univpoly_ring::ldegree(x); | |
| 	} | |
| 	const cl_UP_specialized<T> monomial (const T& x, uintL e) | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_C_ring??,x),e)); | |
| 	} | |
| 	const T coeff (const cl_UP_specialized<T>& x, uintL index) | |
| 	{ | |
| 		return The(T)(cl_heap_univpoly_ring::coeff(x,index)); | |
| 	} | |
| 	const cl_UP_specialized<T> create (sintL deg) | |
| 	{ | |
| 		return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::create(deg)); | |
| 	} | |
| 	void set_coeff (cl_UP_specialized<T>& x, uintL index, const T& y) | |
| 	{ | |
| 		cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_C_ring??,y)); | |
| 	} | |
| 	void finalize (cl_UP_specialized<T>& x) | |
| 	{ | |
| 		cl_heap_univpoly_ring::finalize(x); | |
| 	} | |
| 	const T eval (const cl_UP_specialized<T>& x, const T& y) | |
| 	{ | |
| 		return The(T)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_C_ring??,y))); | |
| 	} | |
| private: | |
| 	// No need for any constructors. | |
| 	cl_heap_univpoly_specialized_ring (); | |
| }; | |
| 
 | |
| // Lookup of polynomial rings. | |
| template <class T> | |
| inline const cl_univpoly_specialized_ring<T> find_univpoly_ring (const cl_specialized_number_ring<T>& r) | |
| { return The(cl_univpoly_specialized_ring<T>) (find_univpoly_ring((const cl_ring&)r)); } | |
| template <class T> | |
| inline const cl_univpoly_specialized_ring<T> find_univpoly_ring (const cl_specialized_number_ring<T>& r, const cl_symbol& varname) | |
| { return The(cl_univpoly_specialized_ring<T>) (find_univpoly_ring((const cl_ring&)r,varname)); } | |
| 
 | |
| // Operations on polynomials. | |
|  | |
| // Add. | |
| template <class T> | |
| inline const cl_UP_specialized<T> operator+ (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) | |
| 	{ return x.ring()->plus(x,y); } | |
| 
 | |
| // Negate. | |
| template <class T> | |
| inline const cl_UP_specialized<T> operator- (const cl_UP_specialized<T>& x) | |
| 	{ return x.ring()->uminus(x); } | |
| 
 | |
| // Subtract. | |
| template <class T> | |
| inline const cl_UP_specialized<T> operator- (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) | |
| 	{ return x.ring()->minus(x,y); } | |
| 
 | |
| // Multiply. | |
| template <class T> | |
| inline const cl_UP_specialized<T> operator* (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) | |
| 	{ return x.ring()->mul(x,y); } | |
| 
 | |
| // Squaring. | |
| template <class T> | |
| inline const cl_UP_specialized<T> square (const cl_UP_specialized<T>& x) | |
| 	{ return x.ring()->square(x); } | |
| 
 | |
| // Exponentiation x^y, where y > 0. | |
| template <class T> | |
| inline const cl_UP_specialized<T> expt_pos (const cl_UP_specialized<T>& x, const cl_I& y) | |
| 	{ return x.ring()->expt_pos(x,y); } | |
| 
 | |
| // Scalar multiplication. | |
| // Need more discrimination on T ?? | |
| template <class T> | |
| inline const cl_UP_specialized<T> operator* (const cl_I& x, const cl_UP_specialized<T>& y) | |
| 	{ return y.ring()->mul(y.ring()->canonhom(x),y); } | |
| template <class T> | |
| inline const cl_UP_specialized<T> operator* (const cl_UP_specialized<T>& x, const cl_I& y) | |
| 	{ return x.ring()->mul(x.ring()->canonhom(y),x); } | |
| template <class T> | |
| inline const cl_UP_specialized<T> operator* (const T& x, const cl_UP_specialized<T>& y) | |
| 	{ return y.ring()->scalmul(x,y); } | |
| template <class T> | |
| inline const cl_UP_specialized<T> operator* (const cl_UP_specialized<T>& x, const T& y) | |
| 	{ return x.ring()->scalmul(y,x); } | |
| 
 | |
| // Coefficient. | |
| template <class T> | |
| inline const T coeff (const cl_UP_specialized<T>& x, uintL index) | |
| 	{ return x.ring()->coeff(x,index); } | |
| 
 | |
| // Destructive modification. | |
| template <class T> | |
| inline void set_coeff (cl_UP_specialized<T>& x, uintL index, const T& y) | |
| 	{ x.ring()->set_coeff(x,index,y); } | |
| template <class T> | |
| inline void finalize (cl_UP_specialized<T>& x) | |
| 	{ x.ring()->finalize(x); } | |
| template <class T> | |
| inline void cl_UP_specialized<T>::set_coeff (uintL index, const T& y) | |
| 	{ ring()->set_coeff(*this,index,y); } | |
| template <class T> | |
| inline void cl_UP_specialized<T>::finalize () | |
| 	{ ring()->finalize(*this); } | |
| 
 | |
| // Evaluation. (No extension of the base ring allowed here for now.) | |
| template <class T> | |
| inline const T cl_UP_specialized<T>::operator() (const T& y) const | |
| { | |
| 	return ring()->eval(*this,y); | |
| } | |
| 
 | |
| // Derivative. | |
| template <class T> | |
| inline const cl_UP_specialized<T> deriv (const cl_UP_specialized<T>& x) | |
| 	{ return The(cl_UP_specialized<T>)(deriv((const cl_UP&)x)); } | |
| 
 | |
| 
 | |
| #endif /* _CL_UNIVPOLY_AUX_H */ | |
| #endif | |
|  | |
| #endif /* notyet */ | |
|  | |
| }  // namespace cln
 |