You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							208 lines
						
					
					
						
							5.4 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							208 lines
						
					
					
						
							5.4 KiB
						
					
					
				| %% This LaTeX-file was created by <bruno> Sun Feb 16 14:05:43 1997 | |
| %% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team | |
|  | |
| %% Don't edit this file unless you are sure what you are doing. | |
| \documentclass[12pt,a4paper,oneside,onecolumn]{article} | |
| \usepackage[]{fontenc} | |
| \usepackage[latin1]{inputenc} | |
| \usepackage[dvips]{epsfig} | |
| 
 | |
| %% | |
| %% BEGIN The lyx specific LaTeX commands. | |
| %% | |
|  | |
| \makeatletter | |
| \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}% | |
| \newcommand{\lyxtitle}[1] {\thispagestyle{empty} | |
| \global\@topnum\z@ | |
| \section*{\LARGE \centering \sffamily \bfseries \protect#1 } | |
| } | |
| \newcommand{\lyxline}[1]{ | |
| {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}} | |
| } | |
| \newenvironment{lyxsectionbibliography} | |
| { | |
| \section*{\refname} | |
| \@mkboth{\uppercase{\refname}}{\uppercase{\refname}} | |
| \begin{list}{}{ | |
| \itemindent-\leftmargin | |
| \labelsep 0pt | |
| \renewcommand{\makelabel}{} | |
| } | |
| } | |
| {\end{list}} | |
| \newenvironment{lyxchapterbibliography} | |
| { | |
| \chapter*{\bibname} | |
| \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}} | |
| \begin{list}{}{ | |
| \itemindent-\leftmargin | |
| \labelsep 0pt | |
| \renewcommand{\makelabel}{} | |
| } | |
| } | |
| {\end{list}} | |
| \def\lxq{"} | |
| \newenvironment{lyxcode} | |
| {\list{}{ | |
| \rightmargin\leftmargin | |
| \raggedright | |
| \itemsep 0pt | |
| \parsep 0pt | |
| \ttfamily | |
| }% | |
| \item[] | |
| } | |
| {\endlist} | |
| \newcommand{\lyxlabel}[1]{#1 \hfill} | |
| \newenvironment{lyxlist}[1] | |
| {\begin{list}{} | |
| {\settowidth{\labelwidth}{#1} | |
| \setlength{\leftmargin}{\labelwidth} | |
| \addtolength{\leftmargin}{\labelsep} | |
| \renewcommand{\makelabel}{\lyxlabel}}} | |
| {\end{list}} | |
| \newcommand{\lyxletterstyle}{ | |
| \setlength\parskip{0.7em} | |
| \setlength\parindent{0pt} | |
| } | |
| \newcommand{\lyxaddress}[1]{ | |
| \par {\raggedright #1  | |
| \vspace{1.4em} | |
| \noindent\par} | |
| } | |
| \newcommand{\lyxrightaddress}[1]{ | |
| \par {\raggedleft \begin{tabular}{l}\ignorespaces | |
| #1 | |
| \end{tabular} | |
| \vspace{1.4em} | |
| \par} | |
| } | |
| \newcommand{\lyxformula}[1]{ | |
| \begin{eqnarray*} | |
| #1 | |
| \end{eqnarray*} | |
| } | |
| \newcommand{\lyxnumberedformula}[1]{ | |
| \begin{eqnarray} | |
| #1 | |
| \end{eqnarray} | |
| } | |
| \makeatother | |
| 
 | |
| %% | |
| %% END The lyx specific LaTeX commands. | |
| %% | |
|  | |
| \pagestyle{plain} | |
| \setcounter{secnumdepth}{3} | |
| \setcounter{tocdepth}{3} | |
| \begin{document} | |
| 
 | |
| The Tschebychev polynomials (of the 1st kind)  \( T_{n}(x) \) are defined through | |
| the recurrence relation | |
| 
 | |
| 
 | |
| \[ | |
| T_{0}(x)=1\] | |
| 
 | |
| 
 | |
| 
 | |
| \[ | |
| T_{1}(x)=x\] | |
| 
 | |
| 
 | |
| 
 | |
| \[ | |
| T_{n+2}(x)=2x\cdot T_{n+1}(x)-T_{n}(x)\] | |
|  for  \( n\geq 0 \). | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Theorem:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
|  \( T_{n}(x) \) satisfies the differential equation  \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \) for all  \( n\geq 0 \). | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Proof:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
| Let  \( F:=\sum ^{\infty }_{n=0}T_{n}(x)z^{n} \) be the generating function of the sequence of polynomials. The | |
| recurrence is equivalent to the equation  | |
| \[ | |
| (1-2x\cdot z+z^{2})\cdot F=1-x\cdot z\] | |
| 
 | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Proof~1:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
|  \( F \) is a rational function in  \( z \),  \( F=\frac{1-xz}{1-2xz+z^{2}} \). From the theory of recursions with | |
| constant coefficients, we know that we have to perform a partial fraction | |
| decomposition. So let  \( p(z)=z^{2}-2x\cdot z+1 \) be the denominator and  \( \alpha =x+\sqrt{x^{2}-1} \) and  \( \alpha ^{-1} \) its zeroes. | |
| The partial fraction decomposition reads  | |
| \[ | |
| F=\frac{1-xz}{1-2xz+z^{2}}=\frac{1}{2}\left( \frac{1}{1-\alpha z}+\frac{1}{1-\alpha ^{-1}z}\right) \] | |
|  hence  \( T_{n}(x)=\frac{1}{2}(\alpha ^{n}+\alpha ^{-n}) \). Note that the | |
| field  \( Q(x)(\alpha ) \), being a finite dimensional extension field of  \( Q(x) \) in characteristic | |
| 0, has a unique derivation extending  \( \frac{d}{dx} \) on  \( Q(x) \). We can therefore try | |
| to construct an annihilating differential operator for  \( T_{n}(x) \) by combination | |
| of annihilating differential operators for  \( \alpha ^{n} \) and  \( \alpha ^{-n} \). In fact,  \( L_{1}:=(\alpha -x)\frac{d}{dx}-n \) satisfies | |
|  \( L_{1}[\alpha ^{n}]=0 \), and  \( L_{2}:=(\alpha -x)\frac{d}{dx}+n \) satisfies  \( L_{2}[\alpha ^{-n}]=0 \). A common multiple of  \( L_{1} \) and  \( L_{2} \) is easily found | |
| by solving an appropriate system of linear equations: | |
| 
 | |
|  \( L=(x^{2}-1)\left( \frac{d}{dx}\right) ^{2}+x\frac{d}{dx}-n^{2}=\left( (\alpha -x)\frac{d}{dx}+n\right) \cdot L_{1}=\left( (\alpha -x)\frac{d}{dx}-n\right) \cdot L_{2} \) | |
| 
 | |
| It follows that both  \( L[\alpha ^{n}]=0 \) and  \( L[\alpha ^{-n}]=0 \), hence  \( L[T_{n}(x)]=0 \). | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Proof~2:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
| Starting from the above equation, we compute a linear relation for | |
| the partial derivatives of  \( F \). Write  \( \partial _{x}=\frac{d}{dx} \) and  \( \Delta _{z}=z\frac{d}{dz} \). One computes | |
| 
 | |
| 
 | |
| \[ | |
| \left( 1-2xz+z^{2}\right) \cdot F=1-xz\] | |
| 
 | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}F=z-z^{3}\] | |
| 
 | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}^{2}F=4z^{2}-4z^{4}\] | |
| 
 | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}F=xz-2z^{2}+xz^{3}\] | |
| 
 | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}\Delta _{z}F=z+2xz^{2}-6z^{3}+2xz^{4}+z^{5}\] | |
| 
 | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{3}\cdot \Delta _{z}^{2}F=xz+(2x^{2}-4)z^{2}-(2x^{2}-4)z^{4}-xz^{5}\] | |
| 
 | |
| 
 | |
| Solve a  \( 6\times 6 \) system of linear equations over  \( Q(x) \) to get  | |
| \[ | |
| x\cdot \partial _{x}F+(x^{2}-1)\cdot \partial _{x}^{2}F-\Delta _{z}^{2}F=0\] | |
| 
 | |
| 
 | |
| This is equivalent to the claimed equation  \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \). | |
| 
 | |
| \begin{lyxsectionbibliography} | |
| 
 | |
| \item [1] Bruno Haible: D-finite power series in several variables. \em Diploma | |
| thesis, University of Karlsruhe, June 1989. \em Sections 2.12 and | |
| 2.15. | |
| 
 | |
| \end{lyxsectionbibliography} | |
| 
 | |
| \end{document}
 |