You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							333 lines
						
					
					
						
							5.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							333 lines
						
					
					
						
							5.7 KiB
						
					
					
				
								#This file was created by <bruno> Sun Feb 16 00:32:21 1997
							 | 
						|
								#LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
							 | 
						|
								\lyxformat 2.10
							 | 
						|
								\textclass article
							 | 
						|
								\language default
							 | 
						|
								\inputencoding latin1
							 | 
						|
								\fontscheme default
							 | 
						|
								\epsfig dvips
							 | 
						|
								\papersize a4paper 
							 | 
						|
								\paperfontsize 12 
							 | 
						|
								\baselinestretch 1.00 
							 | 
						|
								\secnumdepth 3 
							 | 
						|
								\tocdepth 3 
							 | 
						|
								\paragraph_separation indent 
							 | 
						|
								\quotes_language english 
							 | 
						|
								\quotes_times 2 
							 | 
						|
								\paperorientation portrait 
							 | 
						|
								\papercolumns 1 
							 | 
						|
								\papersides 1 
							 | 
						|
								\paperpagestyle plain 
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								The Tschebychev polynomials (of the 1st kind) 
							 | 
						|
								\begin_inset Formula  \( T_{n}(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 are defined through the recurrence relation
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								T_{0}(x)=1\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								T_{1}(x)=x\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								T_{n+2}(x)=2x\cdot T_{n+1}(x)-T_{n}(x)\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 for 
							 | 
						|
								\begin_inset Formula  \( n\geq 0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Theorem:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula  \( T_{n}(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 satisfies the differential equation 
							 | 
						|
								\begin_inset Formula  \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 for all 
							 | 
						|
								\begin_inset Formula  \( n\geq 0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Proof:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Let 
							 | 
						|
								\begin_inset Formula  \( F:=\sum ^{\infty }_{n=0}T_{n}(x)z^{n} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 be the generating function of the sequence of polynomials.
							 | 
						|
								 The recurrence is equivalent to the equation 
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								(1-2x\cdot z+z^{2})\cdot F=1-x\cdot z\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Proof
							 | 
						|
								\protected_separator 
							 | 
						|
								1:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula  \( F \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is a rational function in 
							 | 
						|
								\begin_inset Formula  \( z \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, 
							 | 
						|
								\begin_inset Formula  \( F=\frac{1-xz}{1-2xz+z^{2}} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 From the theory of recursions with constant coefficients, we know that
							 | 
						|
								 we have to perform a partial fraction decomposition.
							 | 
						|
								 So let 
							 | 
						|
								\begin_inset Formula  \( p(z)=z^{2}-2x\cdot z+1 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 be the denominator and 
							 | 
						|
								\begin_inset Formula  \( \alpha =x+\sqrt{x^{2}-1} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( \alpha ^{-1} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 its zeroes.
							 | 
						|
								 The partial fraction decomposition reads 
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								F=\frac{1-xz}{1-2xz+z^{2}}=\frac{1}{2}\left( \frac{1}{1-\alpha z}+\frac{1}{1-\alpha ^{-1}z}\right) \]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 hence 
							 | 
						|
								\begin_inset Formula  \( T_{n}(x)=\frac{1}{2}(\alpha ^{n}+\alpha ^{-n}) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Note that the field 
							 | 
						|
								\begin_inset Formula  \( Q(x)(\alpha ) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, being a finite dimensional extension field of 
							 | 
						|
								\begin_inset Formula  \( Q(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 in characteristic 0, has a unique derivation extending 
							 | 
						|
								\begin_inset Formula  \( \frac{d}{dx} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 on 
							 | 
						|
								\begin_inset Formula  \( Q(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 We can therefore try to construct an annihilating differential operator
							 | 
						|
								 for 
							 | 
						|
								\begin_inset Formula  \( T_{n}(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 by combination of annihilating differential operators for 
							 | 
						|
								\begin_inset Formula  \( \alpha ^{n} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( \alpha ^{-n} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 In fact, 
							 | 
						|
								\begin_inset Formula  \( L_{1}:=(\alpha -x)\frac{d}{dx}-n \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 satisfies 
							 | 
						|
								\begin_inset Formula  \( L_{1}[\alpha ^{n}]=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, and 
							 | 
						|
								\begin_inset Formula  \( L_{2}:=(\alpha -x)\frac{d}{dx}+n \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 satisfies 
							 | 
						|
								\begin_inset Formula  \( L_{2}[\alpha ^{-n}]=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 A common multiple of 
							 | 
						|
								\begin_inset Formula  \( L_{1} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( L_{2} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is easily found by solving an appropriate system of linear equations:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula  \( L=(x^{2}-1)\left( \frac{d}{dx}\right) ^{2}+x\frac{d}{dx}-n^{2}=\left( (\alpha -x)\frac{d}{dx}+n\right) \cdot L_{1}=\left( (\alpha -x)\frac{d}{dx}-n\right) \cdot L_{2} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								It follows that both 
							 | 
						|
								\begin_inset Formula  \( L[\alpha ^{n}]=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( L[\alpha ^{-n}]=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, hence 
							 | 
						|
								\begin_inset Formula  \( L[T_{n}(x)]=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Proof
							 | 
						|
								\protected_separator 
							 | 
						|
								2:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Starting from the above equation, we compute a linear relation for the partial
							 | 
						|
								 derivatives of 
							 | 
						|
								\begin_inset Formula  \( F \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Write 
							 | 
						|
								\begin_inset Formula  \( \partial _{x}=\frac{d}{dx} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( \Delta _{z}=z\frac{d}{dz} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 One computes
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) \cdot F=1-xz\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}F=z-z^{3}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}^{2}F=4z^{2}-4z^{4}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}F=xz-2z^{2}+xz^{3}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}\Delta _{z}F=z+2xz^{2}-6z^{3}+2xz^{4}+z^{5}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) ^{3}\cdot \Delta _{z}^{2}F=xz+(2x^{2}-4)z^{2}-(2x^{2}-4)z^{4}-xz^{5}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Solve a 
							 | 
						|
								\begin_inset Formula  \( 6\times 6 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 system of linear equations over 
							 | 
						|
								\begin_inset Formula  \( Q(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 to get 
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								x\cdot \partial _{x}F+(x^{2}-1)\cdot \partial _{x}^{2}F-\Delta _{z}^{2}F=0\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								This is equivalent to the claimed equation 
							 | 
						|
								\begin_inset Formula  \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Bibliography
							 | 
						|
								\cursor 137 
							 | 
						|
								[1] Bruno Haible: D-finite power series in several variables.
							 | 
						|
								 
							 | 
						|
								\shape italic 
							 | 
						|
								Diploma thesis, University of Karlsruhe, June 1989.
							 | 
						|
								
							 | 
						|
								\shape default 
							 | 
						|
								 Sections 2.
							 | 
						|
								12 and 2.
							 | 
						|
								15.
							 | 
						|
								
							 |