You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							234 lines
						
					
					
						
							7.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							234 lines
						
					
					
						
							7.1 KiB
						
					
					
				
								// Univariate Polynomials over the rational numbers.
							 | 
						|
								
							 | 
						|
								#ifndef _CL_UNIVPOLY_RATIONAL_H
							 | 
						|
								#define _CL_UNIVPOLY_RATIONAL_H
							 | 
						|
								
							 | 
						|
								#include "cln/ring.h"
							 | 
						|
								#include "cln/univpoly.h"
							 | 
						|
								#include "cln/number.h"
							 | 
						|
								#include "cln/rational_class.h"
							 | 
						|
								#include "cln/integer_class.h"
							 | 
						|
								#include "cln/rational_ring.h"
							 | 
						|
								
							 | 
						|
								namespace cln {
							 | 
						|
								
							 | 
						|
								// Normal univariate polynomials with stricter static typing:
							 | 
						|
								// `cl_RA' instead of `cl_ring_element'.
							 | 
						|
								
							 | 
						|
								#ifdef notyet
							 | 
						|
								
							 | 
						|
								typedef cl_UP_specialized<cl_RA> cl_UP_RA;
							 | 
						|
								typedef cl_univpoly_specialized_ring<cl_RA> cl_univpoly_rational_ring;
							 | 
						|
								//typedef cl_heap_univpoly_specialized_ring<cl_RA> cl_heap_univpoly_rational_ring;
							 | 
						|
								
							 | 
						|
								#else
							 | 
						|
								
							 | 
						|
								class cl_heap_univpoly_rational_ring;
							 | 
						|
								
							 | 
						|
								class cl_univpoly_rational_ring : public cl_univpoly_ring {
							 | 
						|
								public:
							 | 
						|
									// Default constructor.
							 | 
						|
									cl_univpoly_rational_ring () : cl_univpoly_ring () {}
							 | 
						|
									// Copy constructor.
							 | 
						|
									cl_univpoly_rational_ring (const cl_univpoly_rational_ring&);
							 | 
						|
									// Assignment operator.
							 | 
						|
									cl_univpoly_rational_ring& operator= (const cl_univpoly_rational_ring&);
							 | 
						|
									// Automatic dereferencing.
							 | 
						|
									cl_heap_univpoly_rational_ring* operator-> () const
							 | 
						|
									{ return (cl_heap_univpoly_rational_ring*)heappointer; }
							 | 
						|
								};
							 | 
						|
								// Copy constructor and assignment operator.
							 | 
						|
								CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_rational_ring,cl_univpoly_ring)
							 | 
						|
								CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_rational_ring,cl_univpoly_rational_ring)
							 | 
						|
								
							 | 
						|
								class cl_UP_RA : public cl_UP {
							 | 
						|
								public:
							 | 
						|
									const cl_univpoly_rational_ring& ring () const { return The(cl_univpoly_rational_ring)(_ring); }
							 | 
						|
									// Conversion.
							 | 
						|
									CL_DEFINE_CONVERTER(cl_ring_element)
							 | 
						|
									// Destructive modification.
							 | 
						|
									void set_coeff (uintL index, const cl_RA& y);
							 | 
						|
									void finalize();
							 | 
						|
									// Evaluation.
							 | 
						|
									const cl_RA operator() (const cl_RA& y) const;
							 | 
						|
								public:	// Ability to place an object at a given address.
							 | 
						|
									void* operator new (size_t size) { return malloc_hook(size); }
							 | 
						|
									void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
							 | 
						|
									void operator delete (void* ptr) { free_hook(ptr); }
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								class cl_heap_univpoly_rational_ring : public cl_heap_univpoly_ring {
							 | 
						|
									SUBCLASS_cl_heap_univpoly_ring()
							 | 
						|
									// High-level operations.
							 | 
						|
									void fprint (std::ostream& stream, const cl_UP_RA& x)
							 | 
						|
									{
							 | 
						|
										cl_heap_univpoly_ring::fprint(stream,x);
							 | 
						|
									}
							 | 
						|
									cl_boolean equal (const cl_UP_RA& x, const cl_UP_RA& y)
							 | 
						|
									{
							 | 
						|
										return cl_heap_univpoly_ring::equal(x,y);
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA zero ()
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::zero());
							 | 
						|
									}
							 | 
						|
									cl_boolean zerop (const cl_UP_RA& x)
							 | 
						|
									{
							 | 
						|
										return cl_heap_univpoly_ring::zerop(x);
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA plus (const cl_UP_RA& x, const cl_UP_RA& y)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::plus(x,y));
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA minus (const cl_UP_RA& x, const cl_UP_RA& y)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::minus(x,y));
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA uminus (const cl_UP_RA& x)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::uminus(x));
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA one ()
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::one());
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA canonhom (const cl_I& x)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::canonhom(x));
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA mul (const cl_UP_RA& x, const cl_UP_RA& y)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::mul(x,y));
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA square (const cl_UP_RA& x)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::square(x));
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::expt_pos(x,y));
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA scalmul (const cl_RA& x, const cl_UP_RA& y)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::scalmul(cl_ring_element(cl_RA_ring,x),y));
							 | 
						|
									}
							 | 
						|
									sintL degree (const cl_UP_RA& x)
							 | 
						|
									{
							 | 
						|
										return cl_heap_univpoly_ring::degree(x);
							 | 
						|
									}
							 | 
						|
									sintL ldegree (const cl_UP_RA& x)
							 | 
						|
									{
							 | 
						|
										return cl_heap_univpoly_ring::ldegree(x);
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA monomial (const cl_RA& x, uintL e)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_RA_ring,x),e));
							 | 
						|
									}
							 | 
						|
									const cl_RA coeff (const cl_UP_RA& x, uintL index)
							 | 
						|
									{
							 | 
						|
										return The(cl_RA)(cl_heap_univpoly_ring::coeff(x,index));
							 | 
						|
									}
							 | 
						|
									const cl_UP_RA create (sintL deg)
							 | 
						|
									{
							 | 
						|
										return The2(cl_UP_RA)(cl_heap_univpoly_ring::create(deg));
							 | 
						|
									}
							 | 
						|
									void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y)
							 | 
						|
									{
							 | 
						|
										cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_RA_ring,y));
							 | 
						|
									}
							 | 
						|
									void finalize (cl_UP_RA& x)
							 | 
						|
									{
							 | 
						|
										cl_heap_univpoly_ring::finalize(x);
							 | 
						|
									}
							 | 
						|
									const cl_RA eval (const cl_UP_RA& x, const cl_RA& y)
							 | 
						|
									{
							 | 
						|
										return The(cl_RA)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_RA_ring,y)));
							 | 
						|
									}
							 | 
						|
								private:
							 | 
						|
									// No need for any constructors.
							 | 
						|
									cl_heap_univpoly_rational_ring ();
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// Lookup of polynomial rings.
							 | 
						|
								inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r)
							 | 
						|
								{ return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r)); }
							 | 
						|
								inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r, const cl_symbol& varname)
							 | 
						|
								{ return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r,varname)); }
							 | 
						|
								
							 | 
						|
								// Operations on polynomials.
							 | 
						|
								
							 | 
						|
								// Add.
							 | 
						|
								inline const cl_UP_RA operator+ (const cl_UP_RA& x, const cl_UP_RA& y)
							 | 
						|
									{ return x.ring()->plus(x,y); }
							 | 
						|
								
							 | 
						|
								// Negate.
							 | 
						|
								inline const cl_UP_RA operator- (const cl_UP_RA& x)
							 | 
						|
									{ return x.ring()->uminus(x); }
							 | 
						|
								
							 | 
						|
								// Subtract.
							 | 
						|
								inline const cl_UP_RA operator- (const cl_UP_RA& x, const cl_UP_RA& y)
							 | 
						|
									{ return x.ring()->minus(x,y); }
							 | 
						|
								
							 | 
						|
								// Multiply.
							 | 
						|
								inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_UP_RA& y)
							 | 
						|
									{ return x.ring()->mul(x,y); }
							 | 
						|
								
							 | 
						|
								// Squaring.
							 | 
						|
								inline const cl_UP_RA square (const cl_UP_RA& x)
							 | 
						|
									{ return x.ring()->square(x); }
							 | 
						|
								
							 | 
						|
								// Exponentiation x^y, where y > 0.
							 | 
						|
								inline const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y)
							 | 
						|
									{ return x.ring()->expt_pos(x,y); }
							 | 
						|
								
							 | 
						|
								// Scalar multiplication.
							 | 
						|
								#if 0 // less efficient
							 | 
						|
								inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y)
							 | 
						|
									{ return y.ring()->mul(y.ring()->canonhom(x),y); }
							 | 
						|
								inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y)
							 | 
						|
									{ return x.ring()->mul(x.ring()->canonhom(y),x); }
							 | 
						|
								#endif
							 | 
						|
								inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y)
							 | 
						|
									{ return y.ring()->scalmul(x,y); }
							 | 
						|
								inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y)
							 | 
						|
									{ return x.ring()->scalmul(y,x); }
							 | 
						|
								inline const cl_UP_RA operator* (const cl_RA& x, const cl_UP_RA& y)
							 | 
						|
									{ return y.ring()->scalmul(x,y); }
							 | 
						|
								inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_RA& y)
							 | 
						|
									{ return x.ring()->scalmul(y,x); }
							 | 
						|
								
							 | 
						|
								// Coefficient.
							 | 
						|
								inline const cl_RA coeff (const cl_UP_RA& x, uintL index)
							 | 
						|
									{ return x.ring()->coeff(x,index); }
							 | 
						|
								
							 | 
						|
								// Destructive modification.
							 | 
						|
								inline void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y)
							 | 
						|
									{ x.ring()->set_coeff(x,index,y); }
							 | 
						|
								inline void finalize (cl_UP_RA& x)
							 | 
						|
									{ x.ring()->finalize(x); }
							 | 
						|
								inline void cl_UP_RA::set_coeff (uintL index, const cl_RA& y)
							 | 
						|
									{ ring()->set_coeff(*this,index,y); }
							 | 
						|
								inline void cl_UP_RA::finalize ()
							 | 
						|
									{ ring()->finalize(*this); }
							 | 
						|
								
							 | 
						|
								// Evaluation. (No extension of the base ring allowed here for now.)
							 | 
						|
								inline const cl_RA cl_UP_RA::operator() (const cl_RA& y) const
							 | 
						|
								{
							 | 
						|
									return ring()->eval(*this,y);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// Derivative.
							 | 
						|
								inline const cl_UP_RA deriv (const cl_UP_RA& x)
							 | 
						|
									{ return The2(cl_UP_RA)(deriv((const cl_UP&)x)); }
							 | 
						|
								
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								CL_REQUIRE(cl_RA_ring)
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// Returns the n-th Legendre polynomial (n >= 0).
							 | 
						|
								extern const cl_UP_RA legendre (sintL n);
							 | 
						|
								
							 | 
						|
								}  // namespace cln
							 | 
						|
								
							 | 
						|
								#endif /* _CL_UNIVPOLY_RATIONAL_H */
							 |