You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							302 lines
						
					
					
						
							9.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							302 lines
						
					
					
						
							9.3 KiB
						
					
					
				
								// Public short float operations.
							 | 
						|
								
							 | 
						|
								#ifndef _CL_SFLOAT_H
							 | 
						|
								#define _CL_SFLOAT_H
							 | 
						|
								
							 | 
						|
								#include "cln/number.h"
							 | 
						|
								#include "cln/sfloat_class.h"
							 | 
						|
								#include "cln/integer_class.h"
							 | 
						|
								#include "cln/float.h"
							 | 
						|
								
							 | 
						|
								namespace cln {
							 | 
						|
								
							 | 
						|
								CL_DEFINE_AS_CONVERSION(cl_SF)
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// Liefert zu einem Short-Float x : (- x), ein SF.
							 | 
						|
								extern const cl_SF operator- (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// compare(x,y) vergleicht zwei Short-Floats x und y.
							 | 
						|
								// Ergebnis: 0 falls x=y, +1 falls x>y, -1 falls x<y.
							 | 
						|
								extern cl_signean compare (const cl_SF& x, const cl_SF& y);
							 | 
						|
								
							 | 
						|
								// equal_hashcode(x) liefert einen equal-invarianten Hashcode für x.
							 | 
						|
								extern uint32 equal_hashcode (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								inline bool operator== (const cl_SF& x, const cl_SF& y)
							 | 
						|
									{ return compare(x,y)==0; }
							 | 
						|
								inline bool operator!= (const cl_SF& x, const cl_SF& y)
							 | 
						|
									{ return compare(x,y)!=0; }
							 | 
						|
								inline bool operator<= (const cl_SF& x, const cl_SF& y)
							 | 
						|
									{ return compare(x,y)<=0; }
							 | 
						|
								inline bool operator< (const cl_SF& x, const cl_SF& y)
							 | 
						|
									{ return compare(x,y)<0; }
							 | 
						|
								inline bool operator>= (const cl_SF& x, const cl_SF& y)
							 | 
						|
									{ return compare(x,y)>=0; }
							 | 
						|
								inline bool operator> (const cl_SF& x, const cl_SF& y)
							 | 
						|
									{ return compare(x,y)>0; }
							 | 
						|
								
							 | 
						|
								// minusp(x) == (< x 0)
							 | 
						|
								extern cl_boolean minusp (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// zerop(x) stellt fest, ob ein Short-Float x = 0.0 ist.
							 | 
						|
								extern cl_boolean zerop (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// plusp(x) == (> x 0)
							 | 
						|
								extern cl_boolean plusp (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// Liefert zu zwei Short-Float x und y : (+ x y), ein SF.
							 | 
						|
								extern const cl_SF operator+ (const cl_SF& x, const cl_SF& y);
							 | 
						|
								
							 | 
						|
								// Liefert zu zwei Short-Float x und y : (- x y), ein SF.
							 | 
						|
								extern const cl_SF operator- (const cl_SF& x, const cl_SF& y);
							 | 
						|
								
							 | 
						|
								// Liefert zu zwei Short-Float x und y : (* x y), ein SF.
							 | 
						|
								extern const cl_SF operator* (const cl_SF& x, const cl_SF& y);
							 | 
						|
								
							 | 
						|
								// Liefert zu einem Short-Float x : (* x x), ein SF.
							 | 
						|
								inline const cl_SF square (const cl_SF& x) { return x*x; }
							 | 
						|
								
							 | 
						|
								// Liefert zu zwei Short-Float x und y : (/ x y), ein SF.
							 | 
						|
								extern const cl_SF operator/ (const cl_SF& x, const cl_SF& y);
							 | 
						|
								
							 | 
						|
								// Liefert zu einem Short-Float x>=0 : (sqrt x), ein SF.
							 | 
						|
								extern const cl_SF sqrt (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// recip(x) liefert (/ x), wo x ein Short-Float ist.
							 | 
						|
								extern const cl_SF recip (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// abs(x) liefert (abs x), wo x ein Short-Float ist.
							 | 
						|
								extern const cl_SF abs (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// (1+ x), wo x ein Short-Float ist.
							 | 
						|
								inline const cl_SF plus1 (const cl_SF& x)
							 | 
						|
								{
							 | 
						|
									extern const cl_SF cl_I_to_SF (const cl_I&);
							 | 
						|
									return x + cl_I_to_SF(cl_I(1));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// (1- x), wo x ein Short-Float ist.
							 | 
						|
								inline const cl_SF minus1 (const cl_SF& x)
							 | 
						|
								{
							 | 
						|
									extern const cl_SF cl_I_to_SF (const cl_I&);
							 | 
						|
									return x + cl_I_to_SF(cl_I(-1));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// ffloor(x) liefert (ffloor x), wo x ein SF ist.
							 | 
						|
								extern const cl_SF ffloor (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// fceiling(x) liefert (fceiling x), wo x ein SF ist.
							 | 
						|
								extern const cl_SF fceiling (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// ftruncate(x) liefert (ftruncate x), wo x ein SF ist.
							 | 
						|
								extern const cl_SF ftruncate (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// fround(x) liefert (fround x), wo x ein SF ist.
							 | 
						|
								extern const cl_SF fround (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// Return type for frounding operators.
							 | 
						|
								// x / y  --> (q,r) with x = y*q+r.
							 | 
						|
								struct cl_SF_fdiv_t {
							 | 
						|
									cl_SF quotient;
							 | 
						|
									cl_SF remainder;
							 | 
						|
								// Constructor.
							 | 
						|
									cl_SF_fdiv_t () {}
							 | 
						|
									cl_SF_fdiv_t (const cl_SF& q, const cl_SF& r) : quotient(q), remainder(r) {}
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// ffloor2(x) liefert (ffloor x), wo x ein SF ist.
							 | 
						|
								inline const cl_SF_fdiv_t ffloor2 (const cl_SF& x)
							 | 
						|
									{ cl_SF q = ffloor(x); return cl_SF_fdiv_t(q,x-q); }
							 | 
						|
								
							 | 
						|
								// fceiling2(x) liefert (fceiling x), wo x ein SF ist.
							 | 
						|
								inline const cl_SF_fdiv_t fceiling2 (const cl_SF& x)
							 | 
						|
									{ cl_SF q = fceiling(x); return cl_SF_fdiv_t(q,x-q); }
							 | 
						|
								
							 | 
						|
								// ftruncate2(x) liefert (ftruncate x), wo x ein SF ist.
							 | 
						|
								inline const cl_SF_fdiv_t ftruncate2 (const cl_SF& x)
							 | 
						|
									{ cl_SF q = ftruncate(x); return cl_SF_fdiv_t(q,x-q); }
							 | 
						|
								
							 | 
						|
								// fround2(x) liefert (fround x), wo x ein SF ist.
							 | 
						|
								inline const cl_SF_fdiv_t fround2 (const cl_SF& x)
							 | 
						|
									{ cl_SF q = fround(x); return cl_SF_fdiv_t(q,x-q); }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// Return type for rounding operators.
							 | 
						|
								// x / y  --> (q,r) with x = y*q+r.
							 | 
						|
								struct cl_SF_div_t {
							 | 
						|
									cl_I quotient;
							 | 
						|
									cl_SF remainder;
							 | 
						|
								// Constructor.
							 | 
						|
									cl_SF_div_t () {}
							 | 
						|
									cl_SF_div_t (const cl_I& q, const cl_SF& r) : quotient(q), remainder(r) {}
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// floor2(x) liefert (floor x), wo x ein SF ist.
							 | 
						|
								inline const cl_SF_div_t floor2 (const cl_SF& x)
							 | 
						|
								{
							 | 
						|
									extern const cl_I cl_SF_to_I (const cl_SF& x);
							 | 
						|
									cl_SF q = ffloor(x);
							 | 
						|
									return cl_SF_div_t(cl_SF_to_I(q),x-q);
							 | 
						|
								}
							 | 
						|
								inline const cl_I floor1 (const cl_SF& x)
							 | 
						|
								{
							 | 
						|
									extern const cl_I cl_SF_to_I (const cl_SF& x);
							 | 
						|
									return cl_SF_to_I(ffloor(x));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// ceiling2(x) liefert (ceiling x), wo x ein SF ist.
							 | 
						|
								inline const cl_SF_div_t ceiling2 (const cl_SF& x)
							 | 
						|
								{
							 | 
						|
									extern const cl_I cl_SF_to_I (const cl_SF& x);
							 | 
						|
									cl_SF q = fceiling(x);
							 | 
						|
									return cl_SF_div_t(cl_SF_to_I(q),x-q);
							 | 
						|
								}
							 | 
						|
								inline const cl_I ceiling1 (const cl_SF& x)
							 | 
						|
								{
							 | 
						|
									extern const cl_I cl_SF_to_I (const cl_SF& x);
							 | 
						|
									return cl_SF_to_I(fceiling(x));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// truncate2(x) liefert (truncate x), wo x ein SF ist.
							 | 
						|
								inline const cl_SF_div_t truncate2 (const cl_SF& x)
							 | 
						|
								{
							 | 
						|
									extern const cl_I cl_SF_to_I (const cl_SF& x);
							 | 
						|
									cl_SF q = ftruncate(x);
							 | 
						|
									return cl_SF_div_t(cl_SF_to_I(q),x-q);
							 | 
						|
								}
							 | 
						|
								inline const cl_I truncate1 (const cl_SF& x)
							 | 
						|
								{
							 | 
						|
									extern const cl_I cl_SF_to_I (const cl_SF& x);
							 | 
						|
									return cl_SF_to_I(ftruncate(x));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// round2(x) liefert (round x), wo x ein SF ist.
							 | 
						|
								inline const cl_SF_div_t round2 (const cl_SF& x)
							 | 
						|
								{
							 | 
						|
									extern const cl_I cl_SF_to_I (const cl_SF& x);
							 | 
						|
									cl_SF q = fround(x);
							 | 
						|
									return cl_SF_div_t(cl_SF_to_I(q),x-q);
							 | 
						|
								}
							 | 
						|
								inline const cl_I round1 (const cl_SF& x)
							 | 
						|
								{
							 | 
						|
									extern const cl_I cl_SF_to_I (const cl_SF& x);
							 | 
						|
									return cl_SF_to_I(fround(x));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// floor2(x,y) liefert (floor x y).
							 | 
						|
								extern const cl_SF_div_t floor2 (const cl_SF& x, const cl_SF& y);
							 | 
						|
								inline const cl_I floor1 (const cl_SF& x, const cl_SF& y) { return floor1(x/y); }
							 | 
						|
								
							 | 
						|
								// ceiling2(x,y) liefert (ceiling x y).
							 | 
						|
								extern const cl_SF_div_t ceiling2 (const cl_SF& x, const cl_SF& y);
							 | 
						|
								inline const cl_I ceiling1 (const cl_SF& x, const cl_SF& y) { return ceiling1(x/y); }
							 | 
						|
								
							 | 
						|
								// truncate2(x,y) liefert (truncate x y).
							 | 
						|
								extern const cl_SF_div_t truncate2 (const cl_SF& x, const cl_SF& y);
							 | 
						|
								inline const cl_I truncate1 (const cl_SF& x, const cl_SF& y) { return truncate1(x/y); }
							 | 
						|
								
							 | 
						|
								// round2(x,y) liefert (round x y).
							 | 
						|
								extern const cl_SF_div_t round2 (const cl_SF& x, const cl_SF& y);
							 | 
						|
								inline const cl_I round1 (const cl_SF& x, const cl_SF& y) { return round1(x/y); }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// Return type for decode_float:
							 | 
						|
								struct decoded_sfloat {
							 | 
						|
									cl_SF mantissa;
							 | 
						|
									cl_I exponent;
							 | 
						|
									cl_SF sign;
							 | 
						|
								// Constructor.
							 | 
						|
									decoded_sfloat () {}
							 | 
						|
									decoded_sfloat (const cl_SF& m, const cl_I& e, const cl_SF& s) : mantissa(m), exponent(e), sign(s) {}
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								// decode_float(x) liefert zu einem Float x: (decode-float x).
							 | 
						|
								// x = 0.0 liefert (0.0, 0, 1.0).
							 | 
						|
								// x = (-1)^s * 2^e * m liefert ((-1)^0 * 2^0 * m, e als Integer, (-1)^s).
							 | 
						|
								extern const decoded_sfloat decode_float (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// float_exponent(x) liefert zu einem Float x:
							 | 
						|
								// den Exponenten von (decode-float x).
							 | 
						|
								// x = 0.0 liefert 0.
							 | 
						|
								// x = (-1)^s * 2^e * m liefert e.
							 | 
						|
								extern sintL float_exponent (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// float_radix(x) liefert (float-radix x), wo x ein Float ist.
							 | 
						|
								inline sintL float_radix (const cl_SF& x)
							 | 
						|
								{
							 | 
						|
									(void)x; // unused x
							 | 
						|
									return 2;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// float_sign(x) liefert (float-sign x), wo x ein Float ist.
							 | 
						|
								extern const cl_SF float_sign (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// float_digits(x) liefert (float-digits x), wo x ein Float ist.
							 | 
						|
								// < ergebnis: ein uintL >0
							 | 
						|
								extern uintL float_digits (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// float_precision(x) liefert (float-precision x), wo x ein Float ist.
							 | 
						|
								// < ergebnis: ein uintL >=0
							 | 
						|
								extern uintL float_precision (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// integer_decode_float(x) liefert zu einem Float x: (integer-decode-float x).
							 | 
						|
								// x = 0.0 liefert (0, 0, 1).
							 | 
						|
								// x = (-1)^s * 2^e * m bei Float-Precision p liefert
							 | 
						|
								//   (Mantisse 2^p * m als Integer, e-p als Integer, (-1)^s als Fixnum).
							 | 
						|
								extern const cl_idecoded_float integer_decode_float (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// scale_float(x,delta) liefert x*2^delta, wo x ein SF ist.
							 | 
						|
								extern const cl_SF scale_float (const cl_SF& x, sintL delta);
							 | 
						|
								extern const cl_SF scale_float (const cl_SF& x, const cl_I& delta);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// max(x,y) liefert (max x y), wo x und y Floats sind.
							 | 
						|
								extern const cl_SF max (const cl_SF& x, const cl_SF& y);
							 | 
						|
								
							 | 
						|
								// min(x,y) liefert (min x y), wo x und y Floats sind.
							 | 
						|
								extern const cl_SF min (const cl_SF& x, const cl_SF& y);
							 | 
						|
								
							 | 
						|
								// signum(x) liefert (signum x), wo x ein Float ist.
							 | 
						|
								extern const cl_SF signum (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// Konversion zu einem C "float".
							 | 
						|
								extern float float_approx (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								// Konversion zu einem C "double".
							 | 
						|
								extern double double_approx (const cl_SF& x);
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								#ifdef WANT_OBFUSCATING_OPERATORS
							 | 
						|
								// This could be optimized to use in-place operations.
							 | 
						|
								inline cl_SF& operator+= (cl_SF& x, const cl_SF& y) { return x = x + y; }
							 | 
						|
								inline cl_SF& operator++ /* prefix */ (cl_SF& x) { return x = plus1(x); }
							 | 
						|
								inline void operator++ /* postfix */ (cl_SF& x, int dummy) { (void)dummy; x = plus1(x); }
							 | 
						|
								inline cl_SF& operator-= (cl_SF& x, const cl_SF& y) { return x = x - y; }
							 | 
						|
								inline cl_SF& operator-- /* prefix */ (cl_SF& x) { return x = minus1(x); }
							 | 
						|
								inline void operator-- /* postfix */ (cl_SF& x, int dummy) { (void)dummy; x = minus1(x); }
							 | 
						|
								inline cl_SF& operator*= (cl_SF& x, const cl_SF& y) { return x = x * y; }
							 | 
						|
								inline cl_SF& operator/= (cl_SF& x, const cl_SF& y) { return x = x / y; }
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// Runtime typing support.
							 | 
						|
								extern cl_class cl_class_sfloat;
							 | 
						|
								CL_FORCE_LINK(cl_SF_classes_dummy, cl_class_sfloat)
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								// Debugging support.
							 | 
						|
								#ifdef CL_DEBUG
							 | 
						|
								extern int cl_SF_debug_module;
							 | 
						|
								CL_FORCE_LINK(cl_SF_debug_dummy, cl_SF_debug_module)
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								}  // namespace cln
							 | 
						|
								
							 | 
						|
								#endif /* _CL_SFLOAT_H */
							 |