You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							224 lines
						
					
					
						
							6.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							224 lines
						
					
					
						
							6.7 KiB
						
					
					
				
								%% This LaTeX-file was created by <bruno> Sun Feb 16 14:24:52 1997
							 | 
						|
								%% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
							 | 
						|
								
							 | 
						|
								%% Don't edit this file unless you are sure what you are doing.
							 | 
						|
								\documentclass[12pt,a4paper,oneside,onecolumn]{article}
							 | 
						|
								\usepackage[]{fontenc}
							 | 
						|
								\usepackage[latin1]{inputenc}
							 | 
						|
								\usepackage[dvips]{epsfig}
							 | 
						|
								
							 | 
						|
								%%
							 | 
						|
								%% BEGIN The lyx specific LaTeX commands.
							 | 
						|
								%%
							 | 
						|
								
							 | 
						|
								\makeatletter
							 | 
						|
								\def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
							 | 
						|
								\newcommand{\lyxtitle}[1] {\thispagestyle{empty}
							 | 
						|
								\global\@topnum\z@
							 | 
						|
								\section*{\LARGE \centering \sffamily \bfseries \protect#1 }
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxline}[1]{
							 | 
						|
								{#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
							 | 
						|
								}
							 | 
						|
								\newenvironment{lyxsectionbibliography}
							 | 
						|
								{
							 | 
						|
								\section*{\refname}
							 | 
						|
								\@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
							 | 
						|
								\begin{list}{}{
							 | 
						|
								\itemindent-\leftmargin
							 | 
						|
								\labelsep 0pt
							 | 
						|
								\renewcommand{\makelabel}{}
							 | 
						|
								}
							 | 
						|
								}
							 | 
						|
								{\end{list}}
							 | 
						|
								\newenvironment{lyxchapterbibliography}
							 | 
						|
								{
							 | 
						|
								\chapter*{\bibname}
							 | 
						|
								\@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
							 | 
						|
								\begin{list}{}{
							 | 
						|
								\itemindent-\leftmargin
							 | 
						|
								\labelsep 0pt
							 | 
						|
								\renewcommand{\makelabel}{}
							 | 
						|
								}
							 | 
						|
								}
							 | 
						|
								{\end{list}}
							 | 
						|
								\def\lxq{"}
							 | 
						|
								\newenvironment{lyxcode}
							 | 
						|
								{\list{}{
							 | 
						|
								\rightmargin\leftmargin
							 | 
						|
								\raggedright
							 | 
						|
								\itemsep 0pt
							 | 
						|
								\parsep 0pt
							 | 
						|
								\ttfamily
							 | 
						|
								}%
							 | 
						|
								\item[]
							 | 
						|
								}
							 | 
						|
								{\endlist}
							 | 
						|
								\newcommand{\lyxlabel}[1]{#1 \hfill}
							 | 
						|
								\newenvironment{lyxlist}[1]
							 | 
						|
								{\begin{list}{}
							 | 
						|
								{\settowidth{\labelwidth}{#1}
							 | 
						|
								\setlength{\leftmargin}{\labelwidth}
							 | 
						|
								\addtolength{\leftmargin}{\labelsep}
							 | 
						|
								\renewcommand{\makelabel}{\lyxlabel}}}
							 | 
						|
								{\end{list}}
							 | 
						|
								\newcommand{\lyxletterstyle}{
							 | 
						|
								\setlength\parskip{0.7em}
							 | 
						|
								\setlength\parindent{0pt}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxaddress}[1]{
							 | 
						|
								\par {\raggedright #1 
							 | 
						|
								\vspace{1.4em}
							 | 
						|
								\noindent\par}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxrightaddress}[1]{
							 | 
						|
								\par {\raggedleft \begin{tabular}{l}\ignorespaces
							 | 
						|
								#1
							 | 
						|
								\end{tabular}
							 | 
						|
								\vspace{1.4em}
							 | 
						|
								\par}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxformula}[1]{
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								#1
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								}
							 | 
						|
								\newcommand{\lyxnumberedformula}[1]{
							 | 
						|
								\begin{eqnarray}
							 | 
						|
								#1
							 | 
						|
								\end{eqnarray}
							 | 
						|
								}
							 | 
						|
								\makeatother
							 | 
						|
								
							 | 
						|
								%%
							 | 
						|
								%% END The lyx specific LaTeX commands.
							 | 
						|
								%%
							 | 
						|
								
							 | 
						|
								\pagestyle{plain}
							 | 
						|
								\setcounter{secnumdepth}{3}
							 | 
						|
								\setcounter{tocdepth}{3}
							 | 
						|
								
							 | 
						|
								%% Begin LyX user specified preamble:
							 | 
						|
								\catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
							 | 
						|
								\def\mod#1{\allowbreak \mkern8mu \mathop{\operator@font mod}\,\,{#1}}
							 | 
						|
								\def\pmod#1{\allowbreak \mkern8mu \left({\mathop{\operator@font mod}\,\,{#1}}\right)}
							 | 
						|
								\catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								%% End LyX user specified preamble.
							 | 
						|
								\begin{document}
							 | 
						|
								
							 | 
						|
								The Legendre polynomials  \( P_{n}(x) \) are defined through 
							 | 
						|
								\[
							 | 
						|
								P_{n}(x)=\frac{1}{2^{n}n!}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{2}-1)^{n}\]
							 | 
						|
								(For a motivation
							 | 
						|
								of the  \( 2^{n} \) in the denominator, look at  \( P_{n}(x) \) modulo an odd prime  \( p \), and
							 | 
						|
								observe that  \( P_{n}(x)\equiv P_{p-1-n}(x)\mod p \) for  \( 0\leq n\leq p-1 \). This wouldn't hold if the  \( 2^{n} \) factor in the denominator
							 | 
						|
								weren't present.)
							 | 
						|
								
							 | 
						|
								\begin{description}
							 | 
						|
								
							 | 
						|
								\item [Theorem:]~
							 | 
						|
								
							 | 
						|
								\end{description}
							 | 
						|
								
							 | 
						|
								 \( P_{n}(x) \) satisfies the recurrence relation
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								P_{0}(x)=1\]
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								(n+1)\cdot P_{n+1}(x)=(2n+1)x\cdot P_{n}(x)-n\cdot P_{n-1}(x)\]
							 | 
						|
								for  \( n\geq 0 \) and the differential equation  \( (1-x^{2})\cdot P_{n}^{''}(x)-2x\cdot P_{n}^{'}(x)+(n^{2}+n)\cdot P_{n}(x)=0 \) for all  \( n\geq 0 \).
							 | 
						|
								
							 | 
						|
								\begin{description}
							 | 
						|
								
							 | 
						|
								\item [Proof:]~
							 | 
						|
								
							 | 
						|
								\end{description}
							 | 
						|
								
							 | 
						|
								Let  \( F:=\sum ^{\infty }_{n=0}P_{n}(x)\cdot z^{n} \) be the generating function of the sequence of polynomials. It
							 | 
						|
								is the diagonal series of the power series
							 | 
						|
								\[
							 | 
						|
								G:=\sum _{m,n=0}^{\infty }\frac{1}{2^{n}m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{2}-1)^{n}\cdot y^{m}\cdot z^{n}\]
							 | 
						|
								Because the Taylor series
							 | 
						|
								development theorem holds in formal power series rings (see [1], section
							 | 
						|
								2.16), we can simplify
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								G & = & \sum _{n=0}^{\infty }\frac{1}{2^{n}}\cdot \left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{2}-1)^{n}\cdot y^{m}\right) \cdot z^{n}\\
							 | 
						|
								 & = & \sum _{n=0}^{\infty }\frac{1}{2^{n}}\cdot \left( (x+y)^{2}-1\right) ^{n}\cdot z^{n}\\
							 | 
						|
								 & = & \frac{1}{1-\frac{1}{2}\left( (x+y)^{2}-1\right) z}
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								We take over the terminology from the ``diag\_rational''
							 | 
						|
								paper; here  \( R=Q[x] \) and  \( M=Q[[x]] \) (or, if you like it better,  \( M=H(C) \), the algebra of
							 | 
						|
								functions holomorphic in the entire complex plane).  \( G\in M[[y,z]] \) is rational;
							 | 
						|
								hence  \( F \) is algebraic over  \( R[z] \). Let's proceed exactly as in the ``diag\_series''
							 | 
						|
								paper.  \( F(z^{2}) \) is the coefficient of  \( t^{0} \) in
							 | 
						|
								\[
							 | 
						|
								G(zt,\frac{z}{t})=\frac{2t}{2t-\left( (x+zt)^{2}-1\right) z}=\frac{2t}{-z^{3}\cdot t^{2}+2(1-xz^{2})\cdot t+(z-x^{2}z)}\]
							 | 
						|
								The splitting field of the denominator
							 | 
						|
								is  \( L=Q(x)(z)(\alpha ) \) where 
							 | 
						|
								\[
							 | 
						|
								\alpha _{1/2}=\frac{1-xz^{2}\pm \sqrt{1-2xz^{2}+z^{4}}}{z^{3}}\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\alpha =\alpha _{1}=\frac{2}{z^{3}}-\frac{2x}{z}+\frac{1-x^{2}}{2}z+\cdots \in Q(x)[[z]][\frac{1}{z}]\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\alpha _{2}=\frac{x^{2}-1}{2}z+\cdots \in Q(x)[[z]][\frac{1}{z}]\]
							 | 
						|
								The partial fraction decomposition of  \( G(zt,\frac{z}{t}) \) reads
							 | 
						|
								\[
							 | 
						|
								G(zt,\frac{z}{t})=-\frac{2}{z^{3}}\cdot \frac{1}{\alpha _{1}-\alpha _{2}}\cdot \left( \frac{\alpha _{1}}{t-\alpha _{1}}-\frac{\alpha _{2}}{t-\alpha _{2}}\right) \]
							 | 
						|
								It follows
							 | 
						|
								that
							 | 
						|
								\[
							 | 
						|
								F(z^{2})=-\frac{2}{z^{3}}\cdot \frac{1}{\alpha _{1}-\alpha _{2}}\cdot \left( \frac{\alpha _{1}}{0-\alpha _{1}}-0\right) =\frac{1}{\sqrt{1-2xz^{2}+z^{4}}}\]
							 | 
						|
								hence
							 | 
						|
								\[
							 | 
						|
								F(z)=\frac{1}{\sqrt{1-2xz+z^{2}}}\]
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								It follows that  \( (1-2xz+z^{2})\cdot \frac{d}{dz}F+(z-x)\cdot F=0 \). This is equivalent to the claimed recurrence.
							 | 
						|
								
							 | 
						|
								Starting from the closed form for  \( F \), we compute a linear relation
							 | 
						|
								for the partial derivatives of  \( F \). Write  \( \partial _{x}=\frac{d}{dx} \) and  \( \Delta _{z}=z\frac{d}{dz} \). One computes
							 | 
						|
								\[
							 | 
						|
								F=1\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) \cdot \partial _{x}F=z\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}^{2}F=3z^{2}\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) \cdot \Delta _{z}F=(xz-z^{2})\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}\Delta _{z}F=(z+xz^{2}-2z^{3})\cdot F\]
							 | 
						|
								
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}^{2}F=\left( xz+(x^{2}-2)z^{2}-xz^{3}+z^{4}\right) \cdot F\]
							 | 
						|
								Solve
							 | 
						|
								a homogeneous  \( 5\times 6 \) system of linear equations over  \( Q(x) \) to get 
							 | 
						|
								\[
							 | 
						|
								\left( 1-2xz+z^{2}\right) ^{2}\cdot \left( (-2x)\cdot \partial _{x}F+(1-x^{2})\cdot \partial _{x}^{2}F+\Delta _{z}F+\Delta _{z}^{2}F\right) =0\]
							 | 
						|
								Divide by
							 | 
						|
								the first factor to get
							 | 
						|
								\[
							 | 
						|
								(-2x)\cdot \partial _{x}F+(1-x^{2})\cdot \partial _{x}^{2}F+\Delta _{z}F+\Delta _{z}^{2}F=0\]
							 | 
						|
								This is equivalent to the claimed equation
							 | 
						|
								 \( (1-x^{2})\cdot P_{n}^{''}(x)-2x\cdot P_{n}^{'}(x)+(n^{2}+n)\cdot P_{n}(x)=0 \).
							 | 
						|
								
							 | 
						|
								\begin{lyxsectionbibliography}
							 | 
						|
								
							 | 
						|
								\item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
							 | 
						|
								thesis, University of Karlsruhe, June 1989\em . Sections 2.14, 2.15
							 | 
						|
								and 2.22.
							 | 
						|
								
							 | 
						|
								\end{lyxsectionbibliography}
							 | 
						|
								
							 | 
						|
								\end{document}
							 |