You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

176 lines
4.1 KiB

%% This LaTeX-file was created by <bruno> Sun Feb 16 14:05:55 1997
%% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
%% Don't edit this file unless you are sure what you are doing.
\documentclass[12pt,a4paper,oneside,onecolumn]{article}
\usepackage[]{fontenc}
\usepackage[latin1]{inputenc}
\usepackage[dvips]{epsfig}
%%
%% BEGIN The lyx specific LaTeX commands.
%%
\makeatletter
\def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
\newcommand{\lyxtitle}[1] {\thispagestyle{empty}
\global\@topnum\z@
\section*{\LARGE \centering \sffamily \bfseries \protect#1 }
}
\newcommand{\lyxline}[1]{
{#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
}
\newenvironment{lyxsectionbibliography}
{
\section*{\refname}
\@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
\begin{list}{}{
\itemindent-\leftmargin
\labelsep 0pt
\renewcommand{\makelabel}{}
}
}
{\end{list}}
\newenvironment{lyxchapterbibliography}
{
\chapter*{\bibname}
\@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
\begin{list}{}{
\itemindent-\leftmargin
\labelsep 0pt
\renewcommand{\makelabel}{}
}
}
{\end{list}}
\def\lxq{"}
\newenvironment{lyxcode}
{\list{}{
\rightmargin\leftmargin
\raggedright
\itemsep 0pt
\parsep 0pt
\ttfamily
}%
\item[]
}
{\endlist}
\newcommand{\lyxlabel}[1]{#1 \hfill}
\newenvironment{lyxlist}[1]
{\begin{list}{}
{\settowidth{\labelwidth}{#1}
\setlength{\leftmargin}{\labelwidth}
\addtolength{\leftmargin}{\labelsep}
\renewcommand{\makelabel}{\lyxlabel}}}
{\end{list}}
\newcommand{\lyxletterstyle}{
\setlength\parskip{0.7em}
\setlength\parindent{0pt}
}
\newcommand{\lyxaddress}[1]{
\par {\raggedright #1
\vspace{1.4em}
\noindent\par}
}
\newcommand{\lyxrightaddress}[1]{
\par {\raggedleft \begin{tabular}{l}\ignorespaces
#1
\end{tabular}
\vspace{1.4em}
\par}
}
\newcommand{\lyxformula}[1]{
\begin{eqnarray*}
#1
\end{eqnarray*}
}
\newcommand{\lyxnumberedformula}[1]{
\begin{eqnarray}
#1
\end{eqnarray}
}
\makeatother
%%
%% END The lyx specific LaTeX commands.
%%
\pagestyle{plain}
\setcounter{secnumdepth}{3}
\setcounter{tocdepth}{3}
\begin{document}
The Hermite polynomials \( H_{n}(x) \) are defined through
\[
H_{n}(x)=(-1)^{n}e^{x^{2}}\cdot \left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \]
\begin{description}
\item [Theorem:]~
\end{description}
\( H_{n}(x) \) satisfies the recurrence relation
\[
H_{0}(x)=1\]
\[
H_{n+1}(x)=2x\cdot H_{n}(x)-2n\cdot H_{n-1}(x)\]
for \( n\geq 0 \) and the differential equation \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \) for all \( n\geq 0 \).
\begin{description}
\item [Proof:]~
\end{description}
Let \( F:=\sum ^{\infty }_{n=0}\frac{H_{n}(x)}{n!}z^{n} \) be the exponential generating function of the sequence of polynomials.
Then, because the Taylor series development theorem holds in formal
power series rings (see [1], section 2.16), we can simplify
\begin{eqnarray*}
F & = & e^{x^{2}}\cdot \sum ^{\infty }_{n=0}\frac{1}{n!}\left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \cdot (-z)^{n}\\
& = & e^{x^{2}}\cdot e^{-(x-z)^{2}}\\
& = & e^{2xz-z^{2}}
\end{eqnarray*}
It follows
that \( \frac{d}{dz}F=(2x-2z)\cdot F \). This is equivalent to the claimed recurrence.
Starting from this equation, we compute a linear relation for the
partial derivatives of \( F \). Write \( \partial _{x}=\frac{d}{dx} \) and \( \Delta _{z}=z\frac{d}{dz} \). One computes
\[
F=1\cdot F\]
\[
\partial _{x}F=2z\cdot F\]
\[
\partial _{x}^{2}F=4z^{2}\cdot F\]
\[
\Delta _{z}F=(2xz-2z^{2})\cdot F\]
\[
\partial _{x}\Delta _{z}F=(2z+4xz^{2}-4z^{3})\cdot F\]
\[
\Delta _{z}^{2}F=\left( 2x\cdot z+(4x^{2}-4)\cdot z^{2}-8x\cdot z^{3}+4\cdot z^{4}\right) \cdot F\]
Solve
a homogeneous \( 5\times 6 \) system of linear equations over \( Q(x) \) to get
\[
(-2x)\cdot \partial _{x}F+\partial _{x}^{2}F+2\cdot \Delta _{z}F=0\]
This is
equivalent to the claimed equation \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \).
\begin{lyxsectionbibliography}
\item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and
2.22.
\end{lyxsectionbibliography}
\end{document}