You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							4843 lines
						
					
					
						
							143 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							4843 lines
						
					
					
						
							143 KiB
						
					
					
				| <HTML> | |
| <HEAD> | |
| <!-- Created by texi2html 1.56k from cln.texi on 19 May 2000 --> | |
| 
 | |
| <TITLE>CLN, a Class Library for Numbers</TITLE> | |
| </HEAD> | |
| <BODY> | |
| <H1>CLN, a Class Library for Numbers</H1> | |
| <ADDRESS>by Bruno Haible</ADDRESS> | |
| <P> | |
| <P><HR><P> | |
| <H1>Table of Contents</H1> | |
| <UL> | |
| <LI><A NAME="TOC1" HREF="cln.html#SEC1">1. Introduction</A> | |
| <LI><A NAME="TOC2" HREF="cln.html#SEC2">2. Installation</A> | |
| <UL> | |
| <LI><A NAME="TOC3" HREF="cln.html#SEC3">2.1 Prerequisites</A> | |
| <UL> | |
| <LI><A NAME="TOC4" HREF="cln.html#SEC4">2.1.1 C++ compiler</A> | |
| <LI><A NAME="TOC5" HREF="cln.html#SEC5">2.1.2 Make utility</A> | |
| <LI><A NAME="TOC6" HREF="cln.html#SEC6">2.1.3 Sed utility</A> | |
| </UL> | |
| <LI><A NAME="TOC7" HREF="cln.html#SEC7">2.2 Building the library</A> | |
| <UL> | |
| <LI><A NAME="TOC8" HREF="cln.html#SEC8">2.2.1 Using the GNU MP Library</A> | |
| </UL> | |
| <LI><A NAME="TOC9" HREF="cln.html#SEC9">2.3 Installing the library</A> | |
| <LI><A NAME="TOC10" HREF="cln.html#SEC10">2.4 Cleaning up</A> | |
| </UL> | |
| <LI><A NAME="TOC11" HREF="cln.html#SEC11">3. Ordinary number types</A> | |
| <UL> | |
| <LI><A NAME="TOC12" HREF="cln.html#SEC12">3.1 Exact numbers</A> | |
| <LI><A NAME="TOC13" HREF="cln.html#SEC13">3.2 Floating-point numbers</A> | |
| <LI><A NAME="TOC14" HREF="cln.html#SEC14">3.3 Complex numbers</A> | |
| <LI><A NAME="TOC15" HREF="cln.html#SEC15">3.4 Conversions</A> | |
| </UL> | |
| <LI><A NAME="TOC16" HREF="cln.html#SEC16">4. Functions on numbers</A> | |
| <UL> | |
| <LI><A NAME="TOC17" HREF="cln.html#SEC17">4.1 Constructing numbers</A> | |
| <UL> | |
| <LI><A NAME="TOC18" HREF="cln.html#SEC18">4.1.1 Constructing integers</A> | |
| <LI><A NAME="TOC19" HREF="cln.html#SEC19">4.1.2 Constructing rational numbers</A> | |
| <LI><A NAME="TOC20" HREF="cln.html#SEC20">4.1.3 Constructing floating-point numbers</A> | |
| <LI><A NAME="TOC21" HREF="cln.html#SEC21">4.1.4 Constructing complex numbers</A> | |
| </UL> | |
| <LI><A NAME="TOC22" HREF="cln.html#SEC22">4.2 Elementary functions</A> | |
| <LI><A NAME="TOC23" HREF="cln.html#SEC23">4.3 Elementary rational functions</A> | |
| <LI><A NAME="TOC24" HREF="cln.html#SEC24">4.4 Elementary complex functions</A> | |
| <LI><A NAME="TOC25" HREF="cln.html#SEC25">4.5 Comparisons</A> | |
| <LI><A NAME="TOC26" HREF="cln.html#SEC26">4.6 Rounding functions</A> | |
| <LI><A NAME="TOC27" HREF="cln.html#SEC27">4.7 Roots</A> | |
| <LI><A NAME="TOC28" HREF="cln.html#SEC28">4.8 Transcendental functions</A> | |
| <UL> | |
| <LI><A NAME="TOC29" HREF="cln.html#SEC29">4.8.1 Exponential and logarithmic functions</A> | |
| <LI><A NAME="TOC30" HREF="cln.html#SEC30">4.8.2 Trigonometric functions</A> | |
| <LI><A NAME="TOC31" HREF="cln.html#SEC31">4.8.3 Hyperbolic functions</A> | |
| <LI><A NAME="TOC32" HREF="cln.html#SEC32">4.8.4 Euler gamma</A> | |
| <LI><A NAME="TOC33" HREF="cln.html#SEC33">4.8.5 Riemann zeta</A> | |
| </UL> | |
| <LI><A NAME="TOC34" HREF="cln.html#SEC34">4.9 Functions on integers</A> | |
| <UL> | |
| <LI><A NAME="TOC35" HREF="cln.html#SEC35">4.9.1 Logical functions</A> | |
| <LI><A NAME="TOC36" HREF="cln.html#SEC36">4.9.2 Number theoretic functions</A> | |
| <LI><A NAME="TOC37" HREF="cln.html#SEC37">4.9.3 Combinatorial functions</A> | |
| </UL> | |
| <LI><A NAME="TOC38" HREF="cln.html#SEC38">4.10 Functions on floating-point numbers</A> | |
| <LI><A NAME="TOC39" HREF="cln.html#SEC39">4.11 Conversion functions</A> | |
| <UL> | |
| <LI><A NAME="TOC40" HREF="cln.html#SEC40">4.11.1 Conversion to floating-point numbers</A> | |
| <LI><A NAME="TOC41" HREF="cln.html#SEC41">4.11.2 Conversion to rational numbers</A> | |
| </UL> | |
| <LI><A NAME="TOC42" HREF="cln.html#SEC42">4.12 Random number generators</A> | |
| <LI><A NAME="TOC43" HREF="cln.html#SEC43">4.13 Obfuscating operators</A> | |
| </UL> | |
| <LI><A NAME="TOC44" HREF="cln.html#SEC44">5. Input/Output</A> | |
| <UL> | |
| <LI><A NAME="TOC45" HREF="cln.html#SEC45">5.1 Internal and printed representation</A> | |
| <LI><A NAME="TOC46" HREF="cln.html#SEC46">5.2 Input functions</A> | |
| <LI><A NAME="TOC47" HREF="cln.html#SEC47">5.3 Output functions</A> | |
| </UL> | |
| <LI><A NAME="TOC48" HREF="cln.html#SEC48">6. Rings</A> | |
| <LI><A NAME="TOC49" HREF="cln.html#SEC49">7. Modular integers</A> | |
| <UL> | |
| <LI><A NAME="TOC50" HREF="cln.html#SEC50">7.1 Modular integer rings</A> | |
| <LI><A NAME="TOC51" HREF="cln.html#SEC51">7.2 Functions on modular integers</A> | |
| </UL> | |
| <LI><A NAME="TOC52" HREF="cln.html#SEC52">8. Symbolic data types</A> | |
| <UL> | |
| <LI><A NAME="TOC53" HREF="cln.html#SEC53">8.1 Strings</A> | |
| <LI><A NAME="TOC54" HREF="cln.html#SEC54">8.2 Symbols</A> | |
| </UL> | |
| <LI><A NAME="TOC55" HREF="cln.html#SEC55">9. Univariate polynomials</A> | |
| <UL> | |
| <LI><A NAME="TOC56" HREF="cln.html#SEC56">9.1 Univariate polynomial rings</A> | |
| <LI><A NAME="TOC57" HREF="cln.html#SEC57">9.2 Functions on univariate polynomials</A> | |
| <LI><A NAME="TOC58" HREF="cln.html#SEC58">9.3 Special polynomials</A> | |
| </UL> | |
| <LI><A NAME="TOC59" HREF="cln.html#SEC59">10. Internals</A> | |
| <UL> | |
| <LI><A NAME="TOC60" HREF="cln.html#SEC60">10.1 Why C++ ?</A> | |
| <LI><A NAME="TOC61" HREF="cln.html#SEC61">10.2 Memory efficiency</A> | |
| <LI><A NAME="TOC62" HREF="cln.html#SEC62">10.3 Speed efficiency</A> | |
| <LI><A NAME="TOC63" HREF="cln.html#SEC63">10.4 Garbage collection</A> | |
| </UL> | |
| <LI><A NAME="TOC64" HREF="cln.html#SEC64">11. Using the library</A> | |
| <UL> | |
| <LI><A NAME="TOC65" HREF="cln.html#SEC65">11.1 Compiler options</A> | |
| <LI><A NAME="TOC66" HREF="cln.html#SEC66">11.2 Include files</A> | |
| <LI><A NAME="TOC67" HREF="cln.html#SEC67">11.3 An Example</A> | |
| <LI><A NAME="TOC68" HREF="cln.html#SEC68">11.4 Debugging support</A> | |
| </UL> | |
| <LI><A NAME="TOC69" HREF="cln.html#SEC69">12. Customizing</A> | |
| <UL> | |
| <LI><A NAME="TOC70" HREF="cln.html#SEC70">12.1 Error handling</A> | |
| <LI><A NAME="TOC71" HREF="cln.html#SEC71">12.2 Floating-point underflow</A> | |
| <LI><A NAME="TOC72" HREF="cln.html#SEC72">12.3 Customizing I/O</A> | |
| <LI><A NAME="TOC73" HREF="cln.html#SEC73">12.4 Customizing the memory allocator</A> | |
| </UL> | |
| <LI><A NAME="TOC74" HREF="cln.html#SEC74">Index</A> | |
| </UL> | |
| <P><HR><P> | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC1" HREF="cln.html#TOC1">1. Introduction</A></H1> | |
| 
 | |
| <P> | |
| CLN is a library for computations with all kinds of numbers. | |
| It has a rich set of number classes: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| Integers (with unlimited precision), | |
| 
 | |
| <LI> | |
| 
 | |
| Rational numbers, | |
| 
 | |
| <LI> | |
| 
 | |
| Floating-point numbers: | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| Short float, | |
| <LI> | |
| 
 | |
| Single float, | |
| <LI> | |
| 
 | |
| Double float, | |
| <LI> | |
| 
 | |
| Long float (with unlimited precision), | |
| </UL> | |
| 
 | |
| <LI> | |
| 
 | |
| Complex numbers, | |
| 
 | |
| <LI> | |
| 
 | |
| Modular integers (integers modulo a fixed integer), | |
| 
 | |
| <LI> | |
| 
 | |
| Univariate polynomials. | |
| </UL> | |
| 
 | |
| <P> | |
| The subtypes of the complex numbers among these are exactly the | |
| types of numbers known to the Common Lisp language. Therefore | |
| <CODE>CLN</CODE> can be used for Common Lisp implementations, giving | |
| <SAMP>`CLN'</SAMP> another meaning: it becomes an abbreviation of | |
| "Common Lisp Numbers". | |
| 
 | |
| 
 | |
| <P> | |
| The CLN package implements | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| Elementary functions (<CODE>+</CODE>, <CODE>-</CODE>, <CODE>*</CODE>, <CODE>/</CODE>, <CODE>sqrt</CODE>, | |
| comparisons, ...), | |
| 
 | |
| <LI> | |
| 
 | |
| Logical functions (logical <CODE>and</CODE>, <CODE>or</CODE>, <CODE>not</CODE>, ...), | |
| 
 | |
| <LI> | |
| 
 | |
| Transcendental functions (exponential, logarithmic, trigonometric, hyperbolic | |
| functions and their inverse functions). | |
| </UL> | |
| 
 | |
| <P> | |
| CLN is a C++ library. Using C++ as an implementation language provides | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| efficiency: it compiles to machine code, | |
| <LI> | |
| 
 | |
| type safety: the C++ compiler knows about the number types and complains | |
| if, for example, you try to assign a float to an integer variable. | |
| <LI> | |
| 
 | |
| algebraic syntax: You can use the <CODE>+</CODE>, <CODE>-</CODE>, <CODE>*</CODE>, <CODE>=</CODE>, | |
| <CODE>==</CODE>, ... operators as in C or C++. | |
| </UL> | |
| 
 | |
| <P> | |
| CLN is memory efficient: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| Small integers and short floats are immediate, not heap allocated. | |
| <LI> | |
| 
 | |
| Heap-allocated memory is reclaimed through an automatic, non-interruptive | |
| garbage collection. | |
| </UL> | |
| 
 | |
| <P> | |
| CLN is speed efficient: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| The kernel of CLN has been written in assembly language for some CPUs | |
| (<CODE>i386</CODE>, <CODE>m68k</CODE>, <CODE>sparc</CODE>, <CODE>mips</CODE>, <CODE>arm</CODE>). | |
| <LI> | |
| 
 | |
| <A NAME="IDX1"></A> | |
| On all CPUs, CLN may be configured to use the superefficient low-level | |
| routines from GNU GMP version 3. | |
| <LI> | |
| 
 | |
| It uses Karatsuba multiplication, which is significantly faster | |
| for large numbers than the standard multiplication algorithm. | |
| <LI> | |
| 
 | |
| For very large numbers (more than 12000 decimal digits), it uses | |
| Schönhage-Strassen | |
| <A NAME="IDX2"></A> | |
| multiplication, which is an asymptotically optimal multiplication | |
| algorithm, for multiplication, division and radix conversion. | |
| </UL> | |
| 
 | |
| <P> | |
| CLN aims at being easily integrated into larger software packages: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| The garbage collection imposes no burden on the main application. | |
| <LI> | |
| 
 | |
| The library provides hooks for memory allocation and exceptions. | |
| </UL> | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC2" HREF="cln.html#TOC2">2. Installation</A></H1> | |
| 
 | |
| <P> | |
| This section describes how to install the CLN package on your system. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC3" HREF="cln.html#TOC3">2.1 Prerequisites</A></H2> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC4" HREF="cln.html#TOC4">2.1.1 C++ compiler</A></H3> | |
| 
 | |
| <P> | |
| To build CLN, you need a C++ compiler. | |
| Actually, you need GNU <CODE>g++ 2.7.0</CODE> or newer. | |
| On HPPA, you need GNU <CODE>g++ 2.8.0</CODE> or newer. | |
| I recommend GNU <CODE>g++ 2.95</CODE> or newer. | |
| 
 | |
| 
 | |
| <P> | |
| The following C++ features are used: | |
| classes, member functions, | |
| overloading of functions and operators, | |
| constructors and destructors, inline, const, | |
| multiple inheritance, templates. | |
| 
 | |
| 
 | |
| <P> | |
| The following C++ features are not used: | |
| <CODE>new</CODE>, <CODE>delete</CODE>, virtual inheritance, | |
| exceptions. | |
| 
 | |
| 
 | |
| <P> | |
| CLN relies on semi-automatic ordering of initializations | |
| of static and global variables, a feature which I could | |
| implement for GNU g++ only. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC5" HREF="cln.html#TOC5">2.1.2 Make utility</A></H3> | |
| <P> | |
| <A NAME="IDX3"></A> | |
| 
 | |
| 
 | |
| <P> | |
| To build CLN, you also need to have GNU <CODE>make</CODE> installed. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC6" HREF="cln.html#TOC6">2.1.3 Sed utility</A></H3> | |
| <P> | |
| <A NAME="IDX4"></A> | |
| 
 | |
| 
 | |
| <P> | |
| To build CLN on HP-UX, you also need to have GNU <CODE>sed</CODE> installed. | |
| This is because the libtool script, which creates the CLN library, relies | |
| on <CODE>sed</CODE>, and the vendor's <CODE>sed</CODE> utility on these systems is too | |
| limited. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC7" HREF="cln.html#TOC7">2.2 Building the library</A></H2> | |
| 
 | |
| <P> | |
| As with any autoconfiguring GNU software, installation is as easy as this: | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
| $ ./configure | |
| $ make | |
| $ make check | |
| </PRE> | |
| 
 | |
| <P> | |
| If on your system, <SAMP>`make'</SAMP> is not GNU <CODE>make</CODE>, you have to use | |
| <SAMP>`gmake'</SAMP> instead of <SAMP>`make'</SAMP> above. | |
| 
 | |
| 
 | |
| <P> | |
| The <CODE>configure</CODE> command checks out some features of your system and | |
| C++ compiler and builds the <CODE>Makefile</CODE>s. The <CODE>make</CODE> command | |
| builds the library. This step may take 4 hours on an average workstation. | |
| The <CODE>make check</CODE> runs some test to check that no important subroutine | |
| has been miscompiled. | |
| 
 | |
| 
 | |
| <P> | |
| The <CODE>configure</CODE> command accepts options. To get a summary of them, try | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
| $ ./configure --help | |
| </PRE> | |
| 
 | |
| <P> | |
| Some of the options are explained in detail in the <SAMP>`INSTALL.generic'</SAMP> file. | |
| 
 | |
| 
 | |
| <P> | |
| You can specify the C compiler, the C++ compiler and their options through | |
| the following environment variables when running <CODE>configure</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>CC</CODE> | |
| <DD> | |
| Specifies the C compiler. | |
| 
 | |
| <DT><CODE>CFLAGS</CODE> | |
| <DD> | |
| Flags to be given to the C compiler when compiling programs (not when linking). | |
| 
 | |
| <DT><CODE>CXX</CODE> | |
| <DD> | |
| Specifies the C++ compiler. | |
| 
 | |
| <DT><CODE>CXXFLAGS</CODE> | |
| <DD> | |
| Flags to be given to the C++ compiler when compiling programs (not when linking). | |
| </DL> | |
| 
 | |
| <P> | |
| Examples: | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
| $ CC="gcc" CFLAGS="-O" CXX="g++" CXXFLAGS="-O" ./configure | |
| $ CC="gcc -V 2.7.2" CFLAGS="-O -g" \ | |
|   CXX="g++ -V 2.7.2" CXXFLAGS="-O -g" ./configure | |
| $ CC="gcc -V 2.8.1" CFLAGS="-O -fno-exceptions" \ | |
|   CXX="g++ -V 2.8.1" CXXFLAGS="-O -fno-exceptions" ./configure | |
| $ CC="gcc -V egcs-2.91.60" CFLAGS="-O2 -fno-exceptions" \ | |
|   CXX="g++ -V egcs-2.91.60" CFLAGS="-O2 -fno-exceptions" ./configure | |
| </PRE> | |
| 
 | |
| <P> | |
| Note that for these environment variables to take effect, you have to set | |
| them (assuming a Bourne-compatible shell) on the same line as the | |
| <CODE>configure</CODE> command. If you made the settings in earlier shell | |
| commands, you have to <CODE>export</CODE> the environment variables before | |
| calling <CODE>configure</CODE>. In a <CODE>csh</CODE> shell, you have to use the | |
| <SAMP>`setenv'</SAMP> command for setting each of the environment variables. | |
| 
 | |
| 
 | |
| <P> | |
| On Linux, <CODE>g++</CODE> needs 15 MB to compile the tests. So you should better | |
| have 17 MB swap space and 1 MB room in $TMPDIR. | |
| 
 | |
| 
 | |
| <P> | |
| If you use <CODE>g++</CODE> version 2.7.x, don't add <SAMP>`-O2'</SAMP> to the CXXFLAGS, | |
| because <SAMP>`g++ -O'</SAMP> generates better code for CLN than <SAMP>`g++ -O2'</SAMP>. | |
| 
 | |
| 
 | |
| <P> | |
| If you use <CODE>g++</CODE> version 2.8.x or egcs-2.91.x (a.k.a. egcs-1.1) or | |
| gcc-2.95.x, I recommend adding <SAMP>`-fno-exceptions'</SAMP> to the CXXFLAGS. | |
| This will likely generate better code. | |
| 
 | |
| 
 | |
| <P> | |
| If you use <CODE>g++</CODE> version egcs-2.91.x (egcs-1.1) or gcc-2.95.x on Sparc, | |
| add either <SAMP>`-O'</SAMP> or <SAMP>`-O2 -fno-schedule-insns'</SAMP> to the CXXFLAGS. | |
| With full <SAMP>`-O2'</SAMP>, <CODE>g++</CODE> miscompiles the division routines. Also, for | |
| --enable-shared to work, you need egcs-1.1.2 or newer. | |
| 
 | |
| 
 | |
| <P> | |
| By default, only a static library is built. You can build CLN as a shared | |
| library too, by calling <CODE>configure</CODE> with the option <SAMP>`--enable-shared'</SAMP>. | |
| To get it built as a shared library only, call <CODE>configure</CODE> with the options | |
| <SAMP>`--enable-shared --disable-static'</SAMP>. | |
| 
 | |
| 
 | |
| <P> | |
| If you use <CODE>g++</CODE> version egcs-2.91.x (egcs-1.1) on Sparc, you cannot | |
| use <SAMP>`--enable-shared'</SAMP> because <CODE>g++</CODE> would miscompile parts of the | |
| library. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC8" HREF="cln.html#TOC8">2.2.1 Using the GNU MP Library</A></H3> | |
| <P> | |
| <A NAME="IDX5"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Starting with version 1.0.4, CLN may be configured to make use of a | |
| preinstalled <CODE>gmp</CODE> library.  Please make sure that you have at | |
| least <CODE>gmp</CODE> version 3.0 installed since earlier versions are | |
| unsupported and likely not to work.  Enabling this feature by calling | |
| <CODE>configure</CODE> with the option <SAMP>`--with-gmp'</SAMP> is known to be quite | |
| a boost for CLN's performance. | |
| 
 | |
| 
 | |
| <P> | |
| If you have installed the <CODE>gmp</CODE> library and its header file in | |
| some place where your compiler cannot find it by default, you must help | |
| <CODE>configure</CODE> by setting <CODE>CPPFLAGS</CODE> and <CODE>LDFLAGS</CODE>.  Here is | |
| an example: | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
| $ CC="gcc" CFLAGS="-O2" CXX="g++" CXXFLAGS="-O2 -fno-exceptions" \ | |
|   CPPFLAGS="-I/opt/gmp/include" LDFLAGS="-L/opt/gmp/lib" ./configure --with-gmp | |
| </PRE> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC9" HREF="cln.html#TOC9">2.3 Installing the library</A></H2> | |
| <P> | |
| <A NAME="IDX6"></A> | |
| 
 | |
| 
 | |
| <P> | |
| As with any autoconfiguring GNU software, installation is as easy as this: | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
| $ make install | |
| </PRE> | |
| 
 | |
| <P> | |
| The <SAMP>`make install'</SAMP> command installs the library and the include files | |
| into public places (<TT>`/usr/local/lib/'</TT> and <TT>`/usr/local/include/'</TT>, | |
| if you haven't specified a <CODE>--prefix</CODE> option to <CODE>configure</CODE>). | |
| This step may require superuser privileges. | |
| 
 | |
| 
 | |
| <P> | |
| If you have already built the library and wish to install it, but didn't | |
| specify <CODE>--prefix=...</CODE> at configure time, just re-run | |
| <CODE>configure</CODE>, giving it the same options as the first time, plus | |
| the <CODE>--prefix=...</CODE> option. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC10" HREF="cln.html#TOC10">2.4 Cleaning up</A></H2> | |
| 
 | |
| <P> | |
| You can remove system-dependent files generated by <CODE>make</CODE> through | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
| $ make clean | |
| </PRE> | |
| 
 | |
| <P> | |
| You can remove all files generated by <CODE>make</CODE>, thus reverting to a | |
| virgin distribution of CLN, through | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
| $ make distclean | |
| </PRE> | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC11" HREF="cln.html#TOC11">3. Ordinary number types</A></H1> | |
| 
 | |
| <P> | |
| CLN implements the following class hierarchy: | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
|                         Number | |
|                        cl_number | |
|                      <cl_number.h> | |
|                           | | |
|                           | | |
|                  Real or complex number | |
|                         cl_N | |
|                      <cl_complex.h> | |
|                           | | |
|                           | | |
|                      Real number | |
|                         cl_R | |
|                       <cl_real.h> | |
|                           | | |
|       +-------------------+-------------------+ | |
|       |                                       | | |
| Rational number                     Floating-point number | |
|     cl_RA                                   cl_F | |
| <cl_rational.h>                          <cl_float.h> | |
|       |                                       | | |
|       |                  +-------------+-------------+-------------+ | |
|    Integer               |             |             |             | | |
|     cl_I            Short-Float   Single-Float  Double-Float   Long-Float | |
|  <cl_integer.h>        cl_SF         cl_FF         cl_DF         cl_LF | |
|                    <cl_sfloat.h> <cl_ffloat.h> <cl_dfloat.h> <cl_lfloat.h> | |
| </PRE> | |
| 
 | |
| <P> | |
| <A NAME="IDX7"></A> | |
| <A NAME="IDX8"></A> | |
| The base class <CODE>cl_number</CODE> is an abstract base class. | |
| It is not useful to declare a variable of this type except if you want | |
| to completely disable compile-time type checking and use run-time type | |
| checking instead. | |
| 
 | |
| 
 | |
| <P> | |
| <A NAME="IDX9"></A> | |
| <A NAME="IDX10"></A> | |
| <A NAME="IDX11"></A> | |
| The class <CODE>cl_N</CODE> comprises real and complex numbers. There is | |
| no special class for complex numbers since complex numbers with imaginary | |
| part <CODE>0</CODE> are automatically converted to real numbers. | |
| 
 | |
| 
 | |
| <P> | |
| <A NAME="IDX12"></A> | |
| The class <CODE>cl_R</CODE> comprises real numbers of different kinds. It is an | |
| abstract class. | |
| 
 | |
| 
 | |
| <P> | |
| <A NAME="IDX13"></A> | |
| <A NAME="IDX14"></A> | |
| <A NAME="IDX15"></A> | |
| The class <CODE>cl_RA</CODE> comprises exact real numbers: rational numbers, including | |
| integers. There is no special class for non-integral rational numbers | |
| since rational numbers with denominator <CODE>1</CODE> are automatically converted | |
| to integers. | |
| 
 | |
| 
 | |
| <P> | |
| <A NAME="IDX16"></A> | |
| The class <CODE>cl_F</CODE> implements floating-point approximations to real numbers. | |
| It is an abstract class. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC12" HREF="cln.html#TOC12">3.1 Exact numbers</A></H2> | |
| <P> | |
| <A NAME="IDX17"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Some numbers are represented as exact numbers: there is no loss of information | |
| when such a number is converted from its mathematical value to its internal | |
| representation. On exact numbers, the elementary operations (<CODE>+</CODE>, | |
| <CODE>-</CODE>, <CODE>*</CODE>, <CODE>/</CODE>, comparisons, ...) compute the completely | |
| correct result. | |
| 
 | |
| 
 | |
| <P> | |
| In CLN, the exact numbers are: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| rational numbers (including integers), | |
| <LI> | |
| 
 | |
| complex numbers whose real and imaginary parts are both rational numbers. | |
| </UL> | |
| 
 | |
| <P> | |
| Rational numbers are always normalized to the form | |
| <CODE><VAR>numerator</VAR>/<VAR>denominator</VAR></CODE> where the numerator and denominator | |
| are coprime integers and the denominator is positive. If the resulting | |
| denominator is <CODE>1</CODE>, the rational number is converted to an integer. | |
| 
 | |
| 
 | |
| <P> | |
| Small integers (typically in the range <CODE>-2^30</CODE>...<CODE>2^30-1</CODE>, | |
| for 32-bit machines) are especially efficient, because they consume no heap | |
| allocation. Otherwise the distinction between these immediate integers | |
| (called "fixnums") and heap allocated integers (called "bignums") | |
| is completely transparent. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC13" HREF="cln.html#TOC13">3.2 Floating-point numbers</A></H2> | |
| <P> | |
| <A NAME="IDX18"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Not all real numbers can be represented exactly. (There is an easy mathematical | |
| proof for this: Only a countable set of numbers can be stored exactly in | |
| a computer, even if one assumes that it has unlimited storage. But there | |
| are uncountably many real numbers.) So some approximation is needed. | |
| CLN implements ordinary floating-point numbers, with mantissa and exponent. | |
| 
 | |
| 
 | |
| <P> | |
| <A NAME="IDX19"></A> | |
| The elementary operations (<CODE>+</CODE>, <CODE>-</CODE>, <CODE>*</CODE>, <CODE>/</CODE>, ...) | |
| only return approximate results. For example, the value of the expression | |
| <CODE>(cl_F) 0.3 + (cl_F) 0.4</CODE> prints as <SAMP>`0.70000005'</SAMP>, not as | |
| <SAMP>`0.7'</SAMP>. Rounding errors like this one are inevitable when computing | |
| with floating-point numbers. | |
| 
 | |
| 
 | |
| <P> | |
| Nevertheless, CLN rounds the floating-point results of the operations <CODE>+</CODE>, | |
| <CODE>-</CODE>, <CODE>*</CODE>, <CODE>/</CODE>, <CODE>sqrt</CODE> according to the "round-to-even" | |
| rule: It first computes the exact mathematical result and then returns the | |
| floating-point number which is nearest to this. If two floating-point numbers | |
| are equally distant from the ideal result, the one with a <CODE>0</CODE> in its least | |
| significant mantissa bit is chosen. | |
| 
 | |
| 
 | |
| <P> | |
| Similarly, testing floating point numbers for equality <SAMP>`x == y'</SAMP> | |
| is gambling with random errors. Better check for <SAMP>`abs(x - y) < epsilon'</SAMP> | |
| for some well-chosen <CODE>epsilon</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| Floating point numbers come in four flavors: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <A NAME="IDX20"></A> | |
| Short floats, type <CODE>cl_SF</CODE>. | |
| They have 1 sign bit, 8 exponent bits (including the exponent's sign), | |
| and 17 mantissa bits (including the "hidden" bit). | |
| They don't consume heap allocation. | |
| 
 | |
| <LI> | |
| 
 | |
| <A NAME="IDX21"></A> | |
| Single floats, type <CODE>cl_FF</CODE>. | |
| They have 1 sign bit, 8 exponent bits (including the exponent's sign), | |
| and 24 mantissa bits (including the "hidden" bit). | |
| In CLN, they are represented as IEEE single-precision floating point numbers. | |
| This corresponds closely to the C/C++ type <SAMP>`float'</SAMP>. | |
| 
 | |
| <LI> | |
| 
 | |
| <A NAME="IDX22"></A> | |
| Double floats, type <CODE>cl_DF</CODE>. | |
| They have 1 sign bit, 11 exponent bits (including the exponent's sign), | |
| and 53 mantissa bits (including the "hidden" bit). | |
| In CLN, they are represented as IEEE double-precision floating point numbers. | |
| This corresponds closely to the C/C++ type <SAMP>`double'</SAMP>. | |
| 
 | |
| <LI> | |
| 
 | |
| <A NAME="IDX23"></A> | |
| Long floats, type <CODE>cl_LF</CODE>. | |
| They have 1 sign bit, 32 exponent bits (including the exponent's sign), | |
| and n mantissa bits (including the "hidden" bit), where n >= 64. | |
| The precision of a long float is unlimited, but once created, a long float | |
| has a fixed precision. (No "lazy recomputation".) | |
| </UL> | |
| 
 | |
| <P> | |
| Of course, computations with long floats are more expensive than those | |
| with smaller floating-point formats. | |
| 
 | |
| 
 | |
| <P> | |
| CLN does not implement features like NaNs, denormalized numbers and | |
| gradual underflow. If the exponent range of some floating-point type | |
| is too limited for your application, choose another floating-point type | |
| with larger exponent range. | |
| 
 | |
| 
 | |
| <P> | |
| <A NAME="IDX24"></A> | |
| As a user of CLN, you can forget about the differences between the | |
| four floating-point types and just declare all your floating-point | |
| variables as being of type <CODE>cl_F</CODE>. This has the advantage that | |
| when you change the precision of some computation (say, from <CODE>cl_DF</CODE> | |
| to <CODE>cl_LF</CODE>), you don't have to change the code, only the precision | |
| of the initial values. Also, many transcendental functions have been | |
| declared as returning a <CODE>cl_F</CODE> when the argument is a <CODE>cl_F</CODE>, | |
| but such declarations are missing for the types <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, | |
| <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>. (Such declarations would be wrong if | |
| the floating point contagion rule happened to change in the future.) | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC14" HREF="cln.html#TOC14">3.3 Complex numbers</A></H2> | |
| <P> | |
| <A NAME="IDX25"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Complex numbers, as implemented by the class <CODE>cl_N</CODE>, have a real | |
| part and an imaginary part, both real numbers. A complex number whose | |
| imaginary part is the exact number <CODE>0</CODE> is automatically converted | |
| to a real number. | |
| 
 | |
| 
 | |
| <P> | |
| Complex numbers can arise from real numbers alone, for example | |
| through application of <CODE>sqrt</CODE> or transcendental functions. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC15" HREF="cln.html#TOC15">3.4 Conversions</A></H2> | |
| <P> | |
| <A NAME="IDX26"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Conversions from any class to any its superclasses ("base classes" in | |
| C++ terminology) is done automatically. | |
| 
 | |
| 
 | |
| <P> | |
| Conversions from the C built-in types <SAMP>`long'</SAMP> and <SAMP>`unsigned long'</SAMP> | |
| are provided for the classes <CODE>cl_I</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_R</CODE>, | |
| <CODE>cl_N</CODE> and <CODE>cl_number</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| Conversions from the C built-in types <SAMP>`int'</SAMP> and <SAMP>`unsigned int'</SAMP> | |
| are provided for the classes <CODE>cl_I</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_R</CODE>, | |
| <CODE>cl_N</CODE> and <CODE>cl_number</CODE>. However, these conversions emphasize | |
| efficiency. Their range is therefore limited: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| The conversion from <SAMP>`int'</SAMP> works only if the argument is < 2^29 and > -2^29. | |
| <LI> | |
| 
 | |
| The conversion from <SAMP>`unsigned int'</SAMP> works only if the argument is < 2^29. | |
| </UL> | |
| 
 | |
| <P> | |
| In a declaration like <SAMP>`cl_I x = 10;'</SAMP> the C++ compiler is able to | |
| do the conversion of <CODE>10</CODE> from <SAMP>`int'</SAMP> to <SAMP>`cl_I'</SAMP> at compile time | |
| already. On the other hand, code like <SAMP>`cl_I x = 1000000000;'</SAMP> is | |
| in error. | |
| So, if you want to be sure that an <SAMP>`int'</SAMP> whose magnitude is not guaranteed | |
| to be < 2^29 is correctly converted to a <SAMP>`cl_I'</SAMP>, first convert it to a | |
| <SAMP>`long'</SAMP>. Similarly, if a large <SAMP>`unsigned int'</SAMP> is to be converted to a | |
| <SAMP>`cl_I'</SAMP>, first convert it to an <SAMP>`unsigned long'</SAMP>. | |
| 
 | |
| 
 | |
| <P> | |
| Conversions from the C built-in type <SAMP>`float'</SAMP> are provided for the classes | |
| <CODE>cl_FF</CODE>, <CODE>cl_F</CODE>, <CODE>cl_R</CODE>, <CODE>cl_N</CODE> and <CODE>cl_number</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| Conversions from the C built-in type <SAMP>`double'</SAMP> are provided for the classes | |
| <CODE>cl_DF</CODE>, <CODE>cl_F</CODE>, <CODE>cl_R</CODE>, <CODE>cl_N</CODE> and <CODE>cl_number</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| Conversions from <SAMP>`const char *'</SAMP> are provided for the classes | |
| <CODE>cl_I</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>, <CODE>cl_F</CODE>, | |
| <CODE>cl_R</CODE>, <CODE>cl_N</CODE>. | |
| The easiest way to specify a value which is outside of the range of the | |
| C++ built-in types is therefore to specify it as a string, like this: | |
| <A NAME="IDX27"></A> | |
| 
 | |
| <PRE> | |
|    cl_I order_of_rubiks_cube_group = "43252003274489856000"; | |
| </PRE> | |
| 
 | |
| <P> | |
| Note that this conversion is done at runtime, not at compile-time. | |
| 
 | |
| 
 | |
| <P> | |
| Conversions from <CODE>cl_I</CODE> to the C built-in types <SAMP>`int'</SAMP>, | |
| <SAMP>`unsigned int'</SAMP>, <SAMP>`long'</SAMP>, <SAMP>`unsigned long'</SAMP> are provided through | |
| the functions | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>int cl_I_to_int (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX28"></A> | |
| <DT><CODE>unsigned int cl_I_to_uint (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX29"></A> | |
| <DT><CODE>long cl_I_to_long (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX30"></A> | |
| <DT><CODE>unsigned long cl_I_to_ulong (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX31"></A> | |
| Returns <CODE>x</CODE> as element of the C type <VAR>ctype</VAR>. If <CODE>x</CODE> is not | |
| representable in the range of <VAR>ctype</VAR>, a runtime error occurs. | |
| </DL> | |
| 
 | |
| <P> | |
| Conversions from the classes <CODE>cl_I</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>, <CODE>cl_F</CODE> and | |
| <CODE>cl_R</CODE> | |
| to the C built-in types <SAMP>`float'</SAMP> and <SAMP>`double'</SAMP> are provided through | |
| the functions | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>float cl_float_approx (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX32"></A> | |
| <DT><CODE>double cl_double_approx (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX33"></A> | |
| Returns an approximation of <CODE>x</CODE> of C type <VAR>ctype</VAR>. | |
| If <CODE>abs(x)</CODE> is too close to 0 (underflow), 0 is returned. | |
| If <CODE>abs(x)</CODE> is too large (overflow), an IEEE infinity is returned. | |
| </DL> | |
| 
 | |
| <P> | |
| Conversions from any class to any of its subclasses ("derived classes" in | |
| C++ terminology) are not provided. Instead, you can assert and check | |
| that a value belongs to a certain subclass, and return it as element of that | |
| class, using the <SAMP>`As'</SAMP> and <SAMP>`The'</SAMP> macros. | |
| <A NAME="IDX34"></A> | |
| <CODE>As(<VAR>type</VAR>)(<VAR>value</VAR>)</CODE> checks that <VAR>value</VAR> belongs to | |
| <VAR>type</VAR> and returns it as such. | |
| <A NAME="IDX35"></A> | |
| <CODE>The(<VAR>type</VAR>)(<VAR>value</VAR>)</CODE> assumes that <VAR>value</VAR> belongs to | |
| <VAR>type</VAR> and returns it as such. It is your responsibility to ensure | |
| that this assumption is valid. | |
| Example: | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
|    cl_I x = ...; | |
|    if (!(x >= 0)) abort(); | |
|    cl_I ten_x = The(cl_I)(expt(10,x)); // If x >= 0, 10^x is an integer. | |
|                 // In general, it would be a rational number. | |
| </PRE> | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC16" HREF="cln.html#TOC16">4. Functions on numbers</A></H1> | |
| 
 | |
| <P> | |
| Each of the number classes declares its mathematical operations in the | |
| corresponding include file. For example, if your code operates with | |
| objects of type <CODE>cl_I</CODE>, it should <CODE>#include <cl_integer.h></CODE>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC17" HREF="cln.html#TOC17">4.1 Constructing numbers</A></H2> | |
| 
 | |
| <P> | |
| Here is how to create number objects "from nothing". | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC18" HREF="cln.html#TOC18">4.1.1 Constructing integers</A></H3> | |
| 
 | |
| <P> | |
| <CODE>cl_I</CODE> objects are most easily constructed from C integers and from | |
| strings. See section <A HREF="cln.html#SEC15">3.4 Conversions</A>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC19" HREF="cln.html#TOC19">4.1.2 Constructing rational numbers</A></H3> | |
| 
 | |
| <P> | |
| <CODE>cl_RA</CODE> objects can be constructed from strings. The syntax | |
| for rational numbers is described in section <A HREF="cln.html#SEC45">5.1 Internal and printed representation</A>. | |
| Another standard way to produce a rational number is through application | |
| of <SAMP>`operator /'</SAMP> or <SAMP>`recip'</SAMP> on integers. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC20" HREF="cln.html#TOC20">4.1.3 Constructing floating-point numbers</A></H3> | |
| 
 | |
| <P> | |
| <CODE>cl_F</CODE> objects with low precision are most easily constructed from | |
| C <SAMP>`float'</SAMP> and <SAMP>`double'</SAMP>. See section <A HREF="cln.html#SEC15">3.4 Conversions</A>. | |
| 
 | |
| 
 | |
| <P> | |
| To construct a <CODE>cl_F</CODE> with high precision, you can use the conversion | |
| from <SAMP>`const char *'</SAMP>, but you have to specify the desired precision | |
| within the string. (See section <A HREF="cln.html#SEC45">5.1 Internal and printed representation</A>.) | |
| Example: | |
| 
 | |
| <PRE> | |
|    cl_F e = "0.271828182845904523536028747135266249775724709369996e+1_40"; | |
| </PRE> | |
| 
 | |
| <P> | |
| will set <SAMP>`e'</SAMP> to the given value, with a precision of 40 decimal digits. | |
| 
 | |
| 
 | |
| <P> | |
| The programmatic way to construct a <CODE>cl_F</CODE> with high precision is | |
| through the <CODE>cl_float</CODE> conversion function, see | |
| section <A HREF="cln.html#SEC40">4.11.1 Conversion to floating-point numbers</A>. For example, to compute | |
| <CODE>e</CODE> to 40 decimal places, first construct 1.0 to 40 decimal places | |
| and then apply the exponential function: | |
| 
 | |
| <PRE> | |
|    cl_float_format_t precision = cl_float_format(40); | |
|    cl_F e = exp(cl_float(1,precision)); | |
| </PRE> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC21" HREF="cln.html#TOC21">4.1.4 Constructing complex numbers</A></H3> | |
| 
 | |
| <P> | |
| Non-real <CODE>cl_N</CODE> objects are normally constructed through the function | |
| 
 | |
| <PRE> | |
|    cl_N complex (const cl_R& realpart, const cl_R& imagpart) | |
| </PRE> | |
| 
 | |
| <P> | |
| See section <A HREF="cln.html#SEC24">4.4 Elementary complex functions</A>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC22" HREF="cln.html#TOC22">4.2 Elementary functions</A></H2> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> operator + (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX36"></A> | |
| Addition. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> operator - (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX37"></A> | |
| Subtraction. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> operator - (const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| Returns the negative of the argument. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> plus1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX38"></A> | |
| Returns <CODE>x + 1</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> minus1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX39"></A> | |
| Returns <CODE>x - 1</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> operator * (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX40"></A> | |
| Multiplication. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> square (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX41"></A> | |
| Returns <CODE>x * x</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> operator / (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX42"></A> | |
| Division. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> recip (const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX43"></A> | |
| Returns the reciprocal of the argument. | |
| </DL> | |
| 
 | |
| <P> | |
| The class <CODE>cl_I</CODE> doesn't define a <SAMP>`/'</SAMP> operation because | |
| in the C/C++ language this operator, applied to integral types, | |
| denotes the <SAMP>`floor'</SAMP> or <SAMP>`truncate'</SAMP> operation (which one of these, | |
| is implementation dependent). (See section <A HREF="cln.html#SEC26">4.6 Rounding functions</A>.) | |
| Instead, <CODE>cl_I</CODE> defines an "exact quotient" function: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I exquo (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX44"></A> | |
| Checks that <CODE>y</CODE> divides <CODE>x</CODE>, and returns the quotient <CODE>x</CODE>/<CODE>y</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The following exponentiation functions are defined: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I expt_pos (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX45"></A> | |
| <DT><CODE>cl_RA expt_pos (const cl_RA& x, const cl_I& y)</CODE> | |
| <DD> | |
| <CODE>y</CODE> must be > 0. Returns <CODE>x^y</CODE>. | |
| 
 | |
| <DT><CODE>cl_RA expt (const cl_RA& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX46"></A> | |
| <DT><CODE>cl_R expt (const cl_R& x, const cl_I& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_N expt (const cl_N& x, const cl_I& y)</CODE> | |
| <DD> | |
| Returns <CODE>x^y</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> abs (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX47"></A> | |
| Returns the absolute value of <CODE>x</CODE>. | |
| This is <CODE>x</CODE> if <CODE>x >= 0</CODE>, and <CODE>-x</CODE> if <CODE>x <= 0</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The class <CODE>cl_N</CODE> implements this as follows: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_R abs (const cl_N x)</CODE> | |
| <DD> | |
| Returns the absolute value of <CODE>x</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> signum (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX48"></A> | |
| Returns the sign of <CODE>x</CODE>, in the same number format as <CODE>x</CODE>. | |
| This is defined as <CODE>x / abs(x)</CODE> if <CODE>x</CODE> is non-zero, and | |
| <CODE>x</CODE> if <CODE>x</CODE> is zero. If <CODE>x</CODE> is real, the value is either | |
| 0 or 1 or -1. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC23" HREF="cln.html#TOC23">4.3 Elementary rational functions</A></H2> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_RA</CODE>, <CODE>cl_I</CODE> defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I numerator (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX49"></A> | |
| Returns the numerator of <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>cl_I denominator (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX50"></A> | |
| Returns the denominator of <CODE>x</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The numerator and denominator of a rational number are normalized in such | |
| a way that they have no factor in common and the denominator is positive. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC24" HREF="cln.html#TOC24">4.4 Elementary complex functions</A></H2> | |
| 
 | |
| <P> | |
| The class <CODE>cl_N</CODE> defines the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_N complex (const cl_R& a, const cl_R& b)</CODE> | |
| <DD> | |
| <A NAME="IDX51"></A> | |
| Returns the complex number <CODE>a+bi</CODE>, that is, the complex number with | |
| real part <CODE>a</CODE> and imaginary part <CODE>b</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE> defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_R realpart (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX52"></A> | |
| Returns the real part of <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>cl_R imagpart (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX53"></A> | |
| Returns the imaginary part of <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> conjugate (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX54"></A> | |
| Returns the complex conjugate of <CODE>x</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| We have the relations | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>x = complex(realpart(x), imagpart(x))</CODE> | |
| <LI> | |
| 
 | |
| <CODE>conjugate(x) = complex(realpart(x), -imagpart(x))</CODE> | |
| </UL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC25" HREF="cln.html#TOC25">4.5 Comparisons</A></H2> | |
| <P> | |
| <A NAME="IDX55"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>bool operator == (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX56"></A> | |
| <DT><CODE>bool operator != (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX57"></A> | |
| Comparison, as in C and C++. | |
| 
 | |
| <DT><CODE>uint32 cl_equal_hashcode (const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX58"></A> | |
| Returns a 32-bit hash code that is the same for any two numbers which are | |
| the same according to <CODE>==</CODE>. This hash code depends on the number's value, | |
| not its type or precision. | |
| 
 | |
| <DT><CODE>cl_boolean zerop (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX59"></A> | |
| Compare against zero: <CODE>x == 0</CODE> | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_signean cl_compare (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX60"></A> | |
| Compares <CODE>x</CODE> and <CODE>y</CODE>. Returns +1 if <CODE>x</CODE>><CODE>y</CODE>, | |
| -1 if <CODE>x</CODE><<CODE>y</CODE>, 0 if <CODE>x</CODE>=<CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>bool operator <= (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX61"></A> | |
| <DT><CODE>bool operator < (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX62"></A> | |
| <DT><CODE>bool operator >= (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX63"></A> | |
| <DT><CODE>bool operator > (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX64"></A> | |
| Comparison, as in C and C++. | |
| 
 | |
| <DT><CODE>cl_boolean minusp (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX65"></A> | |
| Compare against zero: <CODE>x < 0</CODE> | |
| 
 | |
| <DT><CODE>cl_boolean plusp (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX66"></A> | |
| Compare against zero: <CODE>x > 0</CODE> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> max (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX67"></A> | |
| Return the maximum of <CODE>x</CODE> and <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> min (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX68"></A> | |
| Return the minimum of <CODE>x</CODE> and <CODE>y</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| When a floating point number and a rational number are compared, the float | |
| is first converted to a rational number using the function <CODE>rational</CODE>. | |
| Since a floating point number actually represents an interval of real numbers, | |
| the result might be surprising. | |
| For example, <CODE>(cl_F)(cl_R)"1/3" == (cl_R)"1/3"</CODE> returns false because | |
| there is no floating point number whose value is exactly <CODE>1/3</CODE>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC26" HREF="cln.html#TOC26">4.6 Rounding functions</A></H2> | |
| <P> | |
| <A NAME="IDX69"></A> | |
| 
 | |
| 
 | |
| <P> | |
| When a real number is to be converted to an integer, there is no "best" | |
| rounding. The desired rounding function depends on the application. | |
| The Common Lisp and ISO Lisp standards offer four rounding functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>floor(x)</CODE> | |
| <DD> | |
| This is the largest integer <=<CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>ceiling(x)</CODE> | |
| <DD> | |
| This is the smallest integer >=<CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>truncate(x)</CODE> | |
| <DD> | |
| Among the integers between 0 and <CODE>x</CODE> (inclusive) the one nearest to <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>round(x)</CODE> | |
| <DD> | |
| The integer nearest to <CODE>x</CODE>. If <CODE>x</CODE> is exactly halfway between two | |
| integers, choose the even one. | |
| </DL> | |
| 
 | |
| <P> | |
| These functions have different advantages: | |
| 
 | |
| 
 | |
| <P> | |
| <CODE>floor</CODE> and <CODE>ceiling</CODE> are translation invariant: | |
| <CODE>floor(x+n) = floor(x) + n</CODE> and <CODE>ceiling(x+n) = ceiling(x) + n</CODE> | |
| for every <CODE>x</CODE> and every integer <CODE>n</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| On the other hand, <CODE>truncate</CODE> and <CODE>round</CODE> are symmetric: | |
| <CODE>truncate(-x) = -truncate(x)</CODE> and <CODE>round(-x) = -round(x)</CODE>, | |
| and furthermore <CODE>round</CODE> is unbiased: on the "average", it rounds | |
| down exactly as often as it rounds up. | |
| 
 | |
| 
 | |
| <P> | |
| The functions are related like this: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>ceiling(m/n) = floor((m+n-1)/n) = floor((m-1)/n)+1</CODE> | |
| for rational numbers <CODE>m/n</CODE> (<CODE>m</CODE>, <CODE>n</CODE> integers, <CODE>n</CODE>>0), and | |
| <LI> | |
| 
 | |
| <CODE>truncate(x) = sign(x) * floor(abs(x))</CODE> | |
| </UL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I floor1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX70"></A> | |
| Returns <CODE>floor(x)</CODE>. | |
| <DT><CODE>cl_I ceiling1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX71"></A> | |
| Returns <CODE>ceiling(x)</CODE>. | |
| <DT><CODE>cl_I truncate1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX72"></A> | |
| Returns <CODE>truncate(x)</CODE>. | |
| <DT><CODE>cl_I round1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX73"></A> | |
| Returns <CODE>round(x)</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I floor1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| Returns <CODE>floor(x/y)</CODE>. | |
| <DT><CODE>cl_I ceiling1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| Returns <CODE>ceiling(x/y)</CODE>. | |
| <DT><CODE>cl_I truncate1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| Returns <CODE>truncate(x/y)</CODE>. | |
| <DT><CODE>cl_I round1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| Returns <CODE>round(x/y)</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| These functions are called <SAMP>`floor1'</SAMP>, ... here instead of | |
| <SAMP>`floor'</SAMP>, ..., because on some systems, system dependent include | |
| files define <SAMP>`floor'</SAMP> and <SAMP>`ceiling'</SAMP> as macros. | |
| 
 | |
| 
 | |
| <P> | |
| In many cases, one needs both the quotient and the remainder of a division. | |
| It is more efficient to compute both at the same time than to perform | |
| two divisions, one for quotient and the next one for the remainder. | |
| The following functions therefore return a structure containing both | |
| the quotient and the remainder. The suffix <SAMP>`2'</SAMP> indicates the number | |
| of "return values". The remainder is defined as follows: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| for the computation of <CODE>quotient = floor(x)</CODE>, | |
| <CODE>remainder = x - quotient</CODE>, | |
| <LI> | |
| 
 | |
| for the computation of <CODE>quotient = floor(x,y)</CODE>, | |
| <CODE>remainder = x - quotient*y</CODE>, | |
| </UL> | |
| 
 | |
| <P> | |
| and similarly for the other three operations. | |
| 
 | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>struct <VAR>type</VAR>_div_t { cl_I quotient; <VAR>type</VAR> remainder; };</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_div_t floor2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_div_t ceiling2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_div_t truncate2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_div_t round2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>struct <VAR>type</VAR>_div_t { cl_I quotient; <VAR>type</VAR> remainder; };</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_div_t floor2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX74"></A> | |
| <DT><CODE><VAR>type</VAR>_div_t ceiling2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX75"></A> | |
| <DT><CODE><VAR>type</VAR>_div_t truncate2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX76"></A> | |
| <DT><CODE><VAR>type</VAR>_div_t round2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX77"></A> | |
| </DL> | |
| 
 | |
| <P> | |
| Sometimes, one wants the quotient as a floating-point number (of the | |
| same format as the argument, if the argument is a float) instead of as | |
| an integer. The prefix <SAMP>`f'</SAMP> indicates this. | |
| 
 | |
| 
 | |
| <P> | |
| Each of the classes | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> ffloor (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX78"></A> | |
| <DT><CODE><VAR>type</VAR> fceiling (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX79"></A> | |
| <DT><CODE><VAR>type</VAR> ftruncate (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX80"></A> | |
| <DT><CODE><VAR>type</VAR> fround (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX81"></A> | |
| </DL> | |
| 
 | |
| <P> | |
| and similarly for class <CODE>cl_R</CODE>, but with return type <CODE>cl_F</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| The class <CODE>cl_R</CODE> defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F ffloor (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_F fceiling (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_F ftruncate (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_F fround (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| </DL> | |
| 
 | |
| <P> | |
| These functions also exist in versions which return both the quotient | |
| and the remainder. The suffix <SAMP>`2'</SAMP> indicates this. | |
| 
 | |
| 
 | |
| <P> | |
| Each of the classes | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| <A NAME="IDX82"></A> | |
| <A NAME="IDX83"></A> | |
| <A NAME="IDX84"></A> | |
| <A NAME="IDX85"></A> | |
| <A NAME="IDX86"></A> | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>struct <VAR>type</VAR>_fdiv_t { <VAR>type</VAR> quotient; <VAR>type</VAR> remainder; };</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t ffloor2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX87"></A> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t fceiling2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX88"></A> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t ftruncate2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX89"></A> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t fround2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX90"></A> | |
| </DL> | |
| <P> | |
| and similarly for class <CODE>cl_R</CODE>, but with quotient type <CODE>cl_F</CODE>. | |
| <A NAME="IDX91"></A> | |
| 
 | |
| 
 | |
| <P> | |
| The class <CODE>cl_R</CODE> defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>struct <VAR>type</VAR>_fdiv_t { cl_F quotient; cl_R remainder; };</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t ffloor2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t fceiling2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t ftruncate2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t fround2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| </DL> | |
| 
 | |
| <P> | |
| Other applications need only the remainder of a division. | |
| The remainder of <SAMP>`floor'</SAMP> and <SAMP>`ffloor'</SAMP> is called <SAMP>`mod'</SAMP> | |
| (abbreviation of "modulo"). The remainder <SAMP>`truncate'</SAMP> and | |
| <SAMP>`ftruncate'</SAMP> is called <SAMP>`rem'</SAMP> (abbreviation of "remainder"). | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>mod(x,y) = floor2(x,y).remainder = x - floor(x/y)*y</CODE> | |
| <LI> | |
| 
 | |
| <CODE>rem(x,y) = truncate2(x,y).remainder = x - truncate(x/y)*y</CODE> | |
| </UL> | |
| 
 | |
| <P> | |
| If <CODE>x</CODE> and <CODE>y</CODE> are both >= 0, <CODE>mod(x,y) = rem(x,y) >= 0</CODE>. | |
| In general, <CODE>mod(x,y)</CODE> has the sign of <CODE>y</CODE> or is zero, | |
| and <CODE>rem(x,y)</CODE> has the sign of <CODE>x</CODE> or is zero. | |
| 
 | |
| 
 | |
| <P> | |
| The classes <CODE>cl_R</CODE>, <CODE>cl_I</CODE> define the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> mod (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX92"></A> | |
| <DT><CODE><VAR>type</VAR> rem (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX93"></A> | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC27" HREF="cln.html#TOC27">4.7 Roots</A></H2> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> sqrt (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX94"></A> | |
| <CODE>x</CODE> must be >= 0. This function returns the square root of <CODE>x</CODE>, | |
| normalized to be >= 0. If <CODE>x</CODE> is the square of a rational number, | |
| <CODE>sqrt(x)</CODE> will be a rational number, else it will return a | |
| floating-point approximation. | |
| </DL> | |
| 
 | |
| <P> | |
| The classes <CODE>cl_RA</CODE>, <CODE>cl_I</CODE> define the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_boolean sqrtp (const <VAR>type</VAR>& x, <VAR>type</VAR>* root)</CODE> | |
| <DD> | |
| <A NAME="IDX95"></A> | |
| This tests whether <CODE>x</CODE> is a perfect square. If so, it returns true | |
| and the exact square root in <CODE>*root</CODE>, else it returns false. | |
| </DL> | |
| 
 | |
| <P> | |
| Furthermore, for integers, similarly: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_boolean isqrt (const <VAR>type</VAR>& x, <VAR>type</VAR>* root)</CODE> | |
| <DD> | |
| <A NAME="IDX96"></A> | |
| <CODE>x</CODE> should be >= 0. This function sets <CODE>*root</CODE> to | |
| <CODE>floor(sqrt(x))</CODE> and returns the same value as <CODE>sqrtp</CODE>: | |
| the boolean value <CODE>(expt(*root,2) == x)</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| For <CODE>n</CODE>th roots, the classes <CODE>cl_RA</CODE>, <CODE>cl_I</CODE> | |
| define the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_boolean rootp (const <VAR>type</VAR>& x, const cl_I& n, <VAR>type</VAR>* root)</CODE> | |
| <DD> | |
| <A NAME="IDX97"></A> | |
| <CODE>x</CODE> must be >= 0. <CODE>n</CODE> must be > 0. | |
| This tests whether <CODE>x</CODE> is an <CODE>n</CODE>th power of a rational number. | |
| If so, it returns true and the exact root in <CODE>*root</CODE>, else it returns | |
| false. | |
| </DL> | |
| 
 | |
| <P> | |
| The only square root function which accepts negative numbers is the one | |
| for class <CODE>cl_N</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_N sqrt (const cl_N& z)</CODE> | |
| <DD> | |
| <A NAME="IDX98"></A> | |
| Returns the square root of <CODE>z</CODE>, as defined by the formula | |
| <CODE>sqrt(z) = exp(log(z)/2)</CODE>. Conversion to a floating-point type | |
| or to a complex number are done if necessary. The range of the result is the | |
| right half plane <CODE>realpart(sqrt(z)) >= 0</CODE> | |
| including the positive imaginary axis and 0, but excluding | |
| the negative imaginary axis. | |
| The result is an exact number only if <CODE>z</CODE> is an exact number. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC28" HREF="cln.html#TOC28">4.8 Transcendental functions</A></H2> | |
| <P> | |
| <A NAME="IDX99"></A> | |
| 
 | |
| 
 | |
| <P> | |
| The transcendental functions return an exact result if the argument | |
| is exact and the result is exact as well. Otherwise they must return | |
| inexact numbers even if the argument is exact. | |
| For example, <CODE>cos(0) = 1</CODE> returns the rational number <CODE>1</CODE>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC29" HREF="cln.html#TOC29">4.8.1 Exponential and logarithmic functions</A></H3> | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_R exp (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX100"></A> | |
| <DT><CODE>cl_N exp (const cl_N& x)</CODE> | |
| <DD> | |
| Returns the exponential function of <CODE>x</CODE>. This is <CODE>e^x</CODE> where | |
| <CODE>e</CODE> is the base of the natural logarithms. The range of the result | |
| is the entire complex plane excluding 0. | |
| 
 | |
| <DT><CODE>cl_R ln (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX101"></A> | |
| <CODE>x</CODE> must be > 0. Returns the (natural) logarithm of x. | |
| 
 | |
| <DT><CODE>cl_N log (const cl_N& x)</CODE> | |
| <DD> | |
| <A NAME="IDX102"></A> | |
| Returns the (natural) logarithm of x. If <CODE>x</CODE> is real and positive, | |
| this is <CODE>ln(x)</CODE>. In general, <CODE>log(x) = log(abs(x)) + i*phase(x)</CODE>. | |
| The range of the result is the strip in the complex plane | |
| <CODE>-pi < imagpart(log(x)) <= pi</CODE>. | |
| 
 | |
| <DT><CODE>cl_R phase (const cl_N& x)</CODE> | |
| <DD> | |
| <A NAME="IDX103"></A> | |
| Returns the angle part of <CODE>x</CODE> in its polar representation as a | |
| complex number. That is, <CODE>phase(x) = atan(realpart(x),imagpart(x))</CODE>. | |
| This is also the imaginary part of <CODE>log(x)</CODE>. | |
| The range of the result is the interval <CODE>-pi < phase(x) <= pi</CODE>. | |
| The result will be an exact number only if <CODE>zerop(x)</CODE> or | |
| if <CODE>x</CODE> is real and positive. | |
| 
 | |
| <DT><CODE>cl_R log (const cl_R& a, const cl_R& b)</CODE> | |
| <DD> | |
| <CODE>a</CODE> and <CODE>b</CODE> must be > 0. Returns the logarithm of <CODE>a</CODE> with | |
| respect to base <CODE>b</CODE>. <CODE>log(a,b) = ln(a)/ln(b)</CODE>. | |
| The result can be exact only if <CODE>a = 1</CODE> or if <CODE>a</CODE> and <CODE>b</CODE> | |
| are both rational. | |
| 
 | |
| <DT><CODE>cl_N log (const cl_N& a, const cl_N& b)</CODE> | |
| <DD> | |
| Returns the logarithm of <CODE>a</CODE> with respect to base <CODE>b</CODE>. | |
| <CODE>log(a,b) = log(a)/log(b)</CODE>. | |
| 
 | |
| <DT><CODE>cl_N expt (const cl_N& x, const cl_N& y)</CODE> | |
| <DD> | |
| <A NAME="IDX104"></A> | |
| Exponentiation: Returns <CODE>x^y = exp(y*log(x))</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The constant e = exp(1) = 2.71828... is returned by the following functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_exp1 (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX105"></A> | |
| Returns e as a float of format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_exp1 (const cl_F& y)</CODE> | |
| <DD> | |
| Returns e in the float format of <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_exp1 (void)</CODE> | |
| <DD> | |
| Returns e as a float of format <CODE>cl_default_float_format</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC30" HREF="cln.html#TOC30">4.8.2 Trigonometric functions</A></H3> | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_R sin (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX106"></A> | |
| Returns <CODE>sin(x)</CODE>. The range of the result is the interval | |
| <CODE>-1 <= sin(x) <= 1</CODE>. | |
| 
 | |
| <DT><CODE>cl_N sin (const cl_N& z)</CODE> | |
| <DD> | |
| Returns <CODE>sin(z)</CODE>. The range of the result is the entire complex plane. | |
| 
 | |
| <DT><CODE>cl_R cos (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX107"></A> | |
| Returns <CODE>cos(x)</CODE>. The range of the result is the interval | |
| <CODE>-1 <= cos(x) <= 1</CODE>. | |
| 
 | |
| <DT><CODE>cl_N cos (const cl_N& x)</CODE> | |
| <DD> | |
| Returns <CODE>cos(z)</CODE>. The range of the result is the entire complex plane. | |
| 
 | |
| <DT><CODE>struct cl_cos_sin_t { cl_R cos; cl_R sin; };</CODE> | |
| <DD> | |
| <A NAME="IDX108"></A> | |
| <DT><CODE>cl_cos_sin_t cl_cos_sin (const cl_R& x)</CODE> | |
| <DD> | |
| Returns both <CODE>sin(x)</CODE> and <CODE>cos(x)</CODE>. This is more efficient than | |
| <A NAME="IDX109"></A> | |
| computing them separately. The relation <CODE>cos^2 + sin^2 = 1</CODE> will | |
| hold only approximately. | |
| 
 | |
| <DT><CODE>cl_R tan (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX110"></A> | |
| <DT><CODE>cl_N tan (const cl_N& x)</CODE> | |
| <DD> | |
| Returns <CODE>tan(x) = sin(x)/cos(x)</CODE>. | |
| 
 | |
| <DT><CODE>cl_N cis (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX111"></A> | |
| <DT><CODE>cl_N cis (const cl_N& x)</CODE> | |
| <DD> | |
| Returns <CODE>exp(i*x)</CODE>. The name <SAMP>`cis'</SAMP> means "cos + i sin", because | |
| <CODE>e^(i*x) = cos(x) + i*sin(x)</CODE>. | |
| 
 | |
| <A NAME="IDX112"></A> | |
| <A NAME="IDX113"></A> | |
| <DT><CODE>cl_N asin (const cl_N& z)</CODE> | |
| <DD> | |
| Returns <CODE>arcsin(z)</CODE>. This is defined as | |
| <CODE>arcsin(z) = log(iz+sqrt(1-z^2))/i</CODE> and satisfies | |
| <CODE>arcsin(-z) = -arcsin(z)</CODE>. | |
| The range of the result is the strip in the complex domain | |
| <CODE>-pi/2 <= realpart(arcsin(z)) <= pi/2</CODE>, excluding the numbers | |
| with <CODE>realpart = -pi/2</CODE> and <CODE>imagpart < 0</CODE> and the numbers | |
| with <CODE>realpart = pi/2</CODE> and <CODE>imagpart > 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_N acos (const cl_N& z)</CODE> | |
| <DD> | |
| <A NAME="IDX114"></A> | |
| Returns <CODE>arccos(z)</CODE>. This is defined as | |
| <CODE>arccos(z) = pi/2 - arcsin(z) = log(z+i*sqrt(1-z^2))/i</CODE> | |
| and satisfies <CODE>arccos(-z) = pi - arccos(z)</CODE>. | |
| The range of the result is the strip in the complex domain | |
| <CODE>0 <= realpart(arcsin(z)) <= pi</CODE>, excluding the numbers | |
| with <CODE>realpart = 0</CODE> and <CODE>imagpart < 0</CODE> and the numbers | |
| with <CODE>realpart = pi</CODE> and <CODE>imagpart > 0</CODE>. | |
| 
 | |
| <A NAME="IDX115"></A> | |
| <A NAME="IDX116"></A> | |
| <DT><CODE>cl_R atan (const cl_R& x, const cl_R& y)</CODE> | |
| <DD> | |
| Returns the angle of the polar representation of the complex number | |
| <CODE>x+iy</CODE>. This is <CODE>atan(y/x)</CODE> if <CODE>x>0</CODE>. The range of | |
| the result is the interval <CODE>-pi < atan(x,y) <= pi</CODE>. The result will | |
| be an exact number only if <CODE>x > 0</CODE> and <CODE>y</CODE> is the exact <CODE>0</CODE>. | |
| WARNING: In Common Lisp, this function is called as <CODE>(atan y x)</CODE>, | |
| with reversed order of arguments. | |
| 
 | |
| <DT><CODE>cl_R atan (const cl_R& x)</CODE> | |
| <DD> | |
| Returns <CODE>arctan(x)</CODE>. This is the same as <CODE>atan(1,x)</CODE>. The range | |
| of the result is the interval <CODE>-pi/2 < atan(x) < pi/2</CODE>. The result | |
| will be an exact number only if <CODE>x</CODE> is the exact <CODE>0</CODE>. | |
| 
 | |
| <DT><CODE>cl_N atan (const cl_N& z)</CODE> | |
| <DD> | |
| Returns <CODE>arctan(z)</CODE>. This is defined as | |
| <CODE>arctan(z) = (log(1+iz)-log(1-iz)) / 2i</CODE> and satisfies | |
| <CODE>arctan(-z) = -arctan(z)</CODE>. The range of the result is | |
| the strip in the complex domain | |
| <CODE>-pi/2 <= realpart(arctan(z)) <= pi/2</CODE>, excluding the numbers | |
| with <CODE>realpart = -pi/2</CODE> and <CODE>imagpart >= 0</CODE> and the numbers | |
| with <CODE>realpart = pi/2</CODE> and <CODE>imagpart <= 0</CODE>. | |
| 
 | |
| </DL> | |
| 
 | |
| <P> | |
| <A NAME="IDX117"></A> | |
| <A NAME="IDX118"></A> | |
| Archimedes' constant pi = 3.14... is returned by the following functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_pi (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX119"></A> | |
| Returns pi as a float of format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_pi (const cl_F& y)</CODE> | |
| <DD> | |
| Returns pi in the float format of <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_pi (void)</CODE> | |
| <DD> | |
| Returns pi as a float of format <CODE>cl_default_float_format</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC31" HREF="cln.html#TOC31">4.8.3 Hyperbolic functions</A></H3> | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_R sinh (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX120"></A> | |
| Returns <CODE>sinh(x)</CODE>. | |
| 
 | |
| <DT><CODE>cl_N sinh (const cl_N& z)</CODE> | |
| <DD> | |
| Returns <CODE>sinh(z)</CODE>. The range of the result is the entire complex plane. | |
| 
 | |
| <DT><CODE>cl_R cosh (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX121"></A> | |
| Returns <CODE>cosh(x)</CODE>. The range of the result is the interval | |
| <CODE>cosh(x) >= 1</CODE>. | |
| 
 | |
| <DT><CODE>cl_N cosh (const cl_N& z)</CODE> | |
| <DD> | |
| Returns <CODE>cosh(z)</CODE>. The range of the result is the entire complex plane. | |
| 
 | |
| <DT><CODE>struct cl_cosh_sinh_t { cl_R cosh; cl_R sinh; };</CODE> | |
| <DD> | |
| <A NAME="IDX122"></A> | |
| <DT><CODE>cl_cosh_sinh_t cl_cosh_sinh (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX123"></A> | |
| Returns both <CODE>sinh(x)</CODE> and <CODE>cosh(x)</CODE>. This is more efficient than | |
| computing them separately. The relation <CODE>cosh^2 - sinh^2 = 1</CODE> will | |
| hold only approximately. | |
| 
 | |
| <DT><CODE>cl_R tanh (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX124"></A> | |
| <DT><CODE>cl_N tanh (const cl_N& x)</CODE> | |
| <DD> | |
| Returns <CODE>tanh(x) = sinh(x)/cosh(x)</CODE>. | |
| 
 | |
| <DT><CODE>cl_N asinh (const cl_N& z)</CODE> | |
| <DD> | |
| <A NAME="IDX125"></A> | |
| Returns <CODE>arsinh(z)</CODE>. This is defined as | |
| <CODE>arsinh(z) = log(z+sqrt(1+z^2))</CODE> and satisfies | |
| <CODE>arsinh(-z) = -arsinh(z)</CODE>. | |
| The range of the result is the strip in the complex domain | |
| <CODE>-pi/2 <= imagpart(arsinh(z)) <= pi/2</CODE>, excluding the numbers | |
| with <CODE>imagpart = -pi/2</CODE> and <CODE>realpart > 0</CODE> and the numbers | |
| with <CODE>imagpart = pi/2</CODE> and <CODE>realpart < 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_N acosh (const cl_N& z)</CODE> | |
| <DD> | |
| <A NAME="IDX126"></A> | |
| Returns <CODE>arcosh(z)</CODE>. This is defined as | |
| <CODE>arcosh(z) = 2*log(sqrt((z+1)/2)+sqrt((z-1)/2))</CODE>. | |
| The range of the result is the half-strip in the complex domain | |
| <CODE>-pi < imagpart(arcosh(z)) <= pi, realpart(arcosh(z)) >= 0</CODE>, | |
| excluding the numbers with <CODE>realpart = 0</CODE> and <CODE>-pi < imagpart < 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_N atanh (const cl_N& z)</CODE> | |
| <DD> | |
| <A NAME="IDX127"></A> | |
| Returns <CODE>artanh(z)</CODE>. This is defined as | |
| <CODE>artanh(z) = (log(1+z)-log(1-z)) / 2</CODE> and satisfies | |
| <CODE>artanh(-z) = -artanh(z)</CODE>. The range of the result is | |
| the strip in the complex domain | |
| <CODE>-pi/2 <= imagpart(artanh(z)) <= pi/2</CODE>, excluding the numbers | |
| with <CODE>imagpart = -pi/2</CODE> and <CODE>realpart <= 0</CODE> and the numbers | |
| with <CODE>imagpart = pi/2</CODE> and <CODE>realpart >= 0</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC32" HREF="cln.html#TOC32">4.8.4 Euler gamma</A></H3> | |
| <P> | |
| <A NAME="IDX128"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Euler's constant C = 0.577... is returned by the following functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_eulerconst (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX129"></A> | |
| Returns Euler's constant as a float of format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_eulerconst (const cl_F& y)</CODE> | |
| <DD> | |
| Returns Euler's constant in the float format of <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_eulerconst (void)</CODE> | |
| <DD> | |
| Returns Euler's constant as a float of format <CODE>cl_default_float_format</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Catalan's constant G = 0.915... is returned by the following functions: | |
| <A NAME="IDX130"></A> | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_catalanconst (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX131"></A> | |
| Returns Catalan's constant as a float of format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_catalanconst (const cl_F& y)</CODE> | |
| <DD> | |
| Returns Catalan's constant in the float format of <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_catalanconst (void)</CODE> | |
| <DD> | |
| Returns Catalan's constant as a float of format <CODE>cl_default_float_format</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC33" HREF="cln.html#TOC33">4.8.5 Riemann zeta</A></H3> | |
| <P> | |
| <A NAME="IDX132"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Riemann's zeta function at an integral point <CODE>s>1</CODE> is returned by the | |
| following functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_zeta (int s, cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX133"></A> | |
| Returns Riemann's zeta function at <CODE>s</CODE> as a float of format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_zeta (int s, const cl_F& y)</CODE> | |
| <DD> | |
| Returns Riemann's zeta function at <CODE>s</CODE> in the float format of <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_zeta (int s)</CODE> | |
| <DD> | |
| Returns Riemann's zeta function at <CODE>s</CODE> as a float of format | |
| <CODE>cl_default_float_format</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC34" HREF="cln.html#TOC34">4.9 Functions on integers</A></H2> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC35" HREF="cln.html#TOC35">4.9.1 Logical functions</A></H3> | |
| 
 | |
| <P> | |
| Integers, when viewed as in two's complement notation, can be thought as | |
| infinite bit strings where the bits' values eventually are constant. | |
| For example, | |
| 
 | |
| <PRE> | |
|     17 = ......00010001 | |
|     -6 = ......11111010 | |
| </PRE> | |
| 
 | |
| <P> | |
| The logical operations view integers as such bit strings and operate | |
| on each of the bit positions in parallel. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I lognot (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX134"></A> | |
| <DT><CODE>cl_I operator ~ (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX135"></A> | |
| Logical not, like <CODE>~x</CODE> in C. This is the same as <CODE>-1-x</CODE>. | |
| 
 | |
| <DT><CODE>cl_I logand (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX136"></A> | |
| <DT><CODE>cl_I operator & (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX137"></A> | |
| Logical and, like <CODE>x & y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logior (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX138"></A> | |
| <DT><CODE>cl_I operator | (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX139"></A> | |
| Logical (inclusive) or, like <CODE>x | y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logxor (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX140"></A> | |
| <DT><CODE>cl_I operator ^ (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX141"></A> | |
| Exclusive or, like <CODE>x ^ y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logeqv (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX142"></A> | |
| Bitwise equivalence, like <CODE>~(x ^ y)</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I lognand (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX143"></A> | |
| Bitwise not and, like <CODE>~(x & y)</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I lognor (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX144"></A> | |
| Bitwise not or, like <CODE>~(x | y)</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logandc1 (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX145"></A> | |
| Logical and, complementing the first argument, like <CODE>~x & y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logandc2 (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX146"></A> | |
| Logical and, complementing the second argument, like <CODE>x & ~y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logorc1 (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX147"></A> | |
| Logical or, complementing the first argument, like <CODE>~x | y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logorc2 (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX148"></A> | |
| Logical or, complementing the second argument, like <CODE>x | ~y</CODE> in C. | |
| </DL> | |
| 
 | |
| <P> | |
| These operations are all available though the function | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I boole (cl_boole op, const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX149"></A> | |
| </DL> | |
| <P> | |
| where <CODE>op</CODE> must have one of the 16 values (each one stands for a function | |
| which combines two bits into one bit): <CODE>boole_clr</CODE>, <CODE>boole_set</CODE>, | |
| <CODE>boole_1</CODE>, <CODE>boole_2</CODE>, <CODE>boole_c1</CODE>, <CODE>boole_c2</CODE>, | |
| <CODE>boole_and</CODE>, <CODE>boole_ior</CODE>, <CODE>boole_xor</CODE>, <CODE>boole_eqv</CODE>, | |
| <CODE>boole_nand</CODE>, <CODE>boole_nor</CODE>, <CODE>boole_andc1</CODE>, <CODE>boole_andc2</CODE>, | |
| <CODE>boole_orc1</CODE>, <CODE>boole_orc2</CODE>. | |
| <A NAME="IDX150"></A> | |
| <A NAME="IDX151"></A> | |
| <A NAME="IDX152"></A> | |
| <A NAME="IDX153"></A> | |
| <A NAME="IDX154"></A> | |
| <A NAME="IDX155"></A> | |
| <A NAME="IDX156"></A> | |
| <A NAME="IDX157"></A> | |
| <A NAME="IDX158"></A> | |
| <A NAME="IDX159"></A> | |
| <A NAME="IDX160"></A> | |
| <A NAME="IDX161"></A> | |
| <A NAME="IDX162"></A> | |
| <A NAME="IDX163"></A> | |
| <A NAME="IDX164"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Other functions that view integers as bit strings: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_boolean logtest (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX165"></A> | |
| Returns true if some bit is set in both <CODE>x</CODE> and <CODE>y</CODE>, i.e. if | |
| <CODE>logand(x,y) != 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_boolean logbitp (const cl_I& n, const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX166"></A> | |
| Returns true if the <CODE>n</CODE>th bit (from the right) of <CODE>x</CODE> is set. | |
| Bit 0 is the least significant bit. | |
| 
 | |
| <DT><CODE>uintL logcount (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX167"></A> | |
| Returns the number of one bits in <CODE>x</CODE>, if <CODE>x</CODE> >= 0, or | |
| the number of zero bits in <CODE>x</CODE>, if <CODE>x</CODE> < 0. | |
| </DL> | |
| 
 | |
| <P> | |
| The following functions operate on intervals of bits in integers.  | |
| The type | |
| 
 | |
| <PRE> | |
| struct cl_byte { uintL size; uintL position; }; | |
| </PRE> | |
| 
 | |
| <P> | |
| <A NAME="IDX168"></A> | |
| represents the bit interval containing the bits | |
| <CODE>position</CODE>...<CODE>position+size-1</CODE> of an integer. | |
| The constructor <CODE>cl_byte(size,position)</CODE> constructs a <CODE>cl_byte</CODE>. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I ldb (const cl_I& n, const cl_byte& b)</CODE> | |
| <DD> | |
| <A NAME="IDX169"></A> | |
| extracts the bits of <CODE>n</CODE> described by the bit interval <CODE>b</CODE> | |
| and returns them as a nonnegative integer with <CODE>b.size</CODE> bits. | |
| 
 | |
| <DT><CODE>cl_boolean ldb_test (const cl_I& n, const cl_byte& b)</CODE> | |
| <DD> | |
| <A NAME="IDX170"></A> | |
| Returns true if some bit described by the bit interval <CODE>b</CODE> is set in | |
| <CODE>n</CODE>. | |
| 
 | |
| <DT><CODE>cl_I dpb (const cl_I& newbyte, const cl_I& n, const cl_byte& b)</CODE> | |
| <DD> | |
| <A NAME="IDX171"></A> | |
| Returns <CODE>n</CODE>, with the bits described by the bit interval <CODE>b</CODE> | |
| replaced by <CODE>newbyte</CODE>. Only the lowest <CODE>b.size</CODE> bits of | |
| <CODE>newbyte</CODE> are relevant. | |
| </DL> | |
| 
 | |
| <P> | |
| The functions <CODE>ldb</CODE> and <CODE>dpb</CODE> implicitly shift. The following | |
| functions are their counterparts without shifting: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I mask_field (const cl_I& n, const cl_byte& b)</CODE> | |
| <DD> | |
| <A NAME="IDX172"></A> | |
| returns an integer with the bits described by the bit interval <CODE>b</CODE> | |
| copied from the corresponding bits in <CODE>n</CODE>, the other bits zero. | |
| 
 | |
| <DT><CODE>cl_I deposit_field (const cl_I& newbyte, const cl_I& n, const cl_byte& b)</CODE> | |
| <DD> | |
| <A NAME="IDX173"></A> | |
| returns an integer where the bits described by the bit interval <CODE>b</CODE> | |
| come from <CODE>newbyte</CODE> and the other bits come from <CODE>n</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The following relations hold: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>ldb (n, b) = mask_field(n, b) >> b.position</CODE>, | |
| <LI> | |
| 
 | |
| <CODE>dpb (newbyte, n, b) = deposit_field (newbyte << b.position, n, b)</CODE>, | |
| <LI> | |
| 
 | |
| <CODE>deposit_field(newbyte,n,b) = n ^ mask_field(n,b) ^ mask_field(new_byte,b)</CODE>. | |
| </UL> | |
| 
 | |
| <P> | |
| The following operations on integers as bit strings are efficient shortcuts | |
| for common arithmetic operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_boolean oddp (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX174"></A> | |
| Returns true if the least significant bit of <CODE>x</CODE> is 1. Equivalent to | |
| <CODE>mod(x,2) != 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_boolean evenp (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX175"></A> | |
| Returns true if the least significant bit of <CODE>x</CODE> is 0. Equivalent to | |
| <CODE>mod(x,2) == 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_I operator << (const cl_I& x, const cl_I& n)</CODE> | |
| <DD> | |
| <A NAME="IDX176"></A> | |
| Shifts <CODE>x</CODE> by <CODE>n</CODE> bits to the left. <CODE>n</CODE> should be >=0. | |
| Equivalent to <CODE>x * expt(2,n)</CODE>. | |
| 
 | |
| <DT><CODE>cl_I operator >> (const cl_I& x, const cl_I& n)</CODE> | |
| <DD> | |
| <A NAME="IDX177"></A> | |
| Shifts <CODE>x</CODE> by <CODE>n</CODE> bits to the right. <CODE>n</CODE> should be >=0. | |
| Bits shifted out to the right are thrown away. | |
| Equivalent to <CODE>floor(x / expt(2,n))</CODE>. | |
| 
 | |
| <DT><CODE>cl_I ash (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX178"></A> | |
| Shifts <CODE>x</CODE> by <CODE>y</CODE> bits to the left (if <CODE>y</CODE>>=0) or | |
| by <CODE>-y</CODE> bits to the right (if <CODE>y</CODE><=0). In other words, this | |
| returns <CODE>floor(x * expt(2,y))</CODE>. | |
| 
 | |
| <DT><CODE>uintL integer_length (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX179"></A> | |
| Returns the number of bits (excluding the sign bit) needed to represent <CODE>x</CODE> | |
| in two's complement notation. This is the smallest n >= 0 such that | |
| -2^n <= x < 2^n. If x > 0, this is the unique n > 0 such that | |
| 2^(n-1) <= x < 2^n. | |
| 
 | |
| <DT><CODE>uintL ord2 (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX180"></A> | |
| <CODE>x</CODE> must be non-zero. This function returns the number of 0 bits at the | |
| right of <CODE>x</CODE> in two's complement notation. This is the largest n >= 0 | |
| such that 2^n divides <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>uintL power2p (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX181"></A> | |
| <CODE>x</CODE> must be > 0. This function checks whether <CODE>x</CODE> is a power of 2. | |
| If <CODE>x</CODE> = 2^(n-1), it returns n. Else it returns 0. | |
| (See also the function <CODE>logp</CODE>.) | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC36" HREF="cln.html#TOC36">4.9.2 Number theoretic functions</A></H3> | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>uint32 gcd (uint32 a, uint32 b)</CODE> | |
| <DD> | |
| <A NAME="IDX182"></A> | |
| <DT><CODE>cl_I gcd (const cl_I& a, const cl_I& b)</CODE> | |
| <DD> | |
| This function returns the greatest common divisor of <CODE>a</CODE> and <CODE>b</CODE>, | |
| normalized to be >= 0. | |
| 
 | |
| <DT><CODE>cl_I xgcd (const cl_I& a, const cl_I& b, cl_I* u, cl_I* v)</CODE> | |
| <DD> | |
| <A NAME="IDX183"></A> | |
| This function ("extended gcd") returns the greatest common divisor <CODE>g</CODE> of | |
| <CODE>a</CODE> and <CODE>b</CODE> and at the same time the representation of <CODE>g</CODE> | |
| as an integral linear combination of <CODE>a</CODE> and <CODE>b</CODE>: | |
| <CODE>u</CODE> and <CODE>v</CODE> with <CODE>u*a+v*b = g</CODE>, <CODE>g</CODE> >= 0. | |
| <CODE>u</CODE> and <CODE>v</CODE> will be normalized to be of smallest possible absolute | |
| value, in the following sense: If <CODE>a</CODE> and <CODE>b</CODE> are non-zero, and | |
| <CODE>abs(a) != abs(b)</CODE>, <CODE>u</CODE> and <CODE>v</CODE> will satisfy the inequalities | |
| <CODE>abs(u) <= abs(b)/(2*g)</CODE>, <CODE>abs(v) <= abs(a)/(2*g)</CODE>. | |
| 
 | |
| <DT><CODE>cl_I lcm (const cl_I& a, const cl_I& b)</CODE> | |
| <DD> | |
| <A NAME="IDX184"></A> | |
| This function returns the least common multiple of <CODE>a</CODE> and <CODE>b</CODE>, | |
| normalized to be >= 0. | |
| 
 | |
| <DT><CODE>cl_boolean logp (const cl_I& a, const cl_I& b, cl_RA* l)</CODE> | |
| <DD> | |
| <A NAME="IDX185"></A> | |
| <DT><CODE>cl_boolean logp (const cl_RA& a, const cl_RA& b, cl_RA* l)</CODE> | |
| <DD> | |
| <CODE>a</CODE> must be > 0. <CODE>b</CODE> must be >0 and != 1. If log(a,b) is | |
| rational number, this function returns true and sets *l = log(a,b), else | |
| it returns false. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC37" HREF="cln.html#TOC37">4.9.3 Combinatorial functions</A></H3> | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I factorial (uintL n)</CODE> | |
| <DD> | |
| <A NAME="IDX186"></A> | |
| <CODE>n</CODE> must be a small integer >= 0. This function returns the factorial | |
| <CODE>n</CODE>! = <CODE>1*2*...*n</CODE>. | |
| 
 | |
| <DT><CODE>cl_I doublefactorial (uintL n)</CODE> | |
| <DD> | |
| <A NAME="IDX187"></A> | |
| <CODE>n</CODE> must be a small integer >= 0. This function returns the  | |
| doublefactorial <CODE>n</CODE>!! = <CODE>1*3*...*n</CODE> or  | |
| <CODE>n</CODE>!! = <CODE>2*4*...*n</CODE>, respectively. | |
| 
 | |
| <DT><CODE>cl_I binomial (uintL n, uintL k)</CODE> | |
| <DD> | |
| <A NAME="IDX188"></A> | |
| <CODE>n</CODE> and <CODE>k</CODE> must be small integers >= 0. This function returns the | |
| binomial coefficient | |
| (<CODE>n</CODE> choose <CODE>k</CODE>) = <CODE>n</CODE>! / <CODE>k</CODE>! <CODE>(n-k)</CODE>! | |
| for 0 <= k <= n, 0 else. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC38" HREF="cln.html#TOC38">4.10 Functions on floating-point numbers</A></H2> | |
| 
 | |
| <P> | |
| Recall that a floating-point number consists of a sign <CODE>s</CODE>, an | |
| exponent <CODE>e</CODE> and a mantissa <CODE>m</CODE>. The value of the number is | |
| <CODE>(-1)^s * 2^e * m</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| Each of the classes | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> scale_float (const <VAR>type</VAR>& x, sintL delta)</CODE> | |
| <DD> | |
| <A NAME="IDX189"></A> | |
| <DT><CODE><VAR>type</VAR> scale_float (const <VAR>type</VAR>& x, const cl_I& delta)</CODE> | |
| <DD> | |
| Returns <CODE>x*2^delta</CODE>. This is more efficient than an explicit multiplication | |
| because it copies <CODE>x</CODE> and modifies the exponent. | |
| </DL> | |
| 
 | |
| <P> | |
| The following functions provide an abstract interface to the underlying | |
| representation of floating-point numbers. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>sintL float_exponent (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX190"></A> | |
| Returns the exponent <CODE>e</CODE> of <CODE>x</CODE>. | |
| For <CODE>x = 0.0</CODE>, this is 0. For <CODE>x</CODE> non-zero, this is the unique | |
| integer with <CODE>2^(e-1) <= abs(x) < 2^e</CODE>. | |
| 
 | |
| <DT><CODE>sintL float_radix (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX191"></A> | |
| Returns the base of the floating-point representation. This is always <CODE>2</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> float_sign (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX192"></A> | |
| Returns the sign <CODE>s</CODE> of <CODE>x</CODE> as a float. The value is 1 for | |
| <CODE>x</CODE> >= 0, -1 for <CODE>x</CODE> < 0. | |
| 
 | |
| <DT><CODE>uintL float_digits (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX193"></A> | |
| Returns the number of mantissa bits in the floating-point representation | |
| of <CODE>x</CODE>, including the hidden bit. The value only depends on the type | |
| of <CODE>x</CODE>, not on its value. | |
| 
 | |
| <DT><CODE>uintL float_precision (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX194"></A> | |
| Returns the number of significant mantissa bits in the floating-point | |
| representation of <CODE>x</CODE>. Since denormalized numbers are not supported, | |
| this is the same as <CODE>float_digits(x)</CODE> if <CODE>x</CODE> is non-zero, and | |
| 0 if <CODE>x</CODE> = 0. | |
| </DL> | |
| 
 | |
| <P> | |
| The complete internal representation of a float is encoded in the type | |
| <A NAME="IDX195"></A> | |
| <A NAME="IDX196"></A> | |
| <A NAME="IDX197"></A> | |
| <A NAME="IDX198"></A> | |
| <A NAME="IDX199"></A> | |
| <CODE>cl_decoded_float</CODE> (or <CODE>cl_decoded_sfloat</CODE>, <CODE>cl_decoded_ffloat</CODE>, | |
| <CODE>cl_decoded_dfloat</CODE>, <CODE>cl_decoded_lfloat</CODE>, respectively), defined by | |
| 
 | |
| <PRE> | |
| struct cl_decoded_<VAR>type</VAR>float { | |
|         <VAR>type</VAR> mantissa; cl_I exponent; <VAR>type</VAR> sign; | |
| }; | |
| </PRE> | |
| 
 | |
| <P> | |
| and returned by the function | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_decoded_<VAR>type</VAR>float decode_float (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX200"></A> | |
| For <CODE>x</CODE> non-zero, this returns <CODE>(-1)^s</CODE>, <CODE>e</CODE>, <CODE>m</CODE> with | |
| <CODE>x = (-1)^s * 2^e * m</CODE> and <CODE>0.5 <= m < 1.0</CODE>. For <CODE>x</CODE> = 0, | |
| it returns <CODE>(-1)^s</CODE>=1, <CODE>e</CODE>=0, <CODE>m</CODE>=0. | |
| <CODE>e</CODE> is the same as returned by the function <CODE>float_exponent</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| A complete decoding in terms of integers is provided as type | |
| 
 | |
| <PRE> | |
| <A NAME="IDX201"></A>struct cl_idecoded_float { | |
|         cl_I mantissa; cl_I exponent; cl_I sign; | |
| }; | |
| </PRE> | |
| 
 | |
| <P> | |
| by the following function: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_idecoded_float integer_decode_float (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX202"></A> | |
| For <CODE>x</CODE> non-zero, this returns <CODE>(-1)^s</CODE>, <CODE>e</CODE>, <CODE>m</CODE> with | |
| <CODE>x = (-1)^s * 2^e * m</CODE> and <CODE>m</CODE> an integer with <CODE>float_digits(x)</CODE> | |
| bits. For <CODE>x</CODE> = 0, it returns <CODE>(-1)^s</CODE>=1, <CODE>e</CODE>=0, <CODE>m</CODE>=0. | |
| WARNING: The exponent <CODE>e</CODE> is not the same as the one returned by | |
| the functions <CODE>decode_float</CODE> and <CODE>float_exponent</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Some other function, implemented only for class <CODE>cl_F</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F float_sign (const cl_F& x, const cl_F& y)</CODE> | |
| <DD> | |
| <A NAME="IDX203"></A> | |
| This returns a floating point number whose precision and absolute value | |
| is that of <CODE>y</CODE> and whose sign is that of <CODE>x</CODE>. If <CODE>x</CODE> is | |
| zero, it is treated as positive. Same for <CODE>y</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC39" HREF="cln.html#TOC39">4.11 Conversion functions</A></H2> | |
| <P> | |
| <A NAME="IDX204"></A> | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC40" HREF="cln.html#TOC40">4.11.1 Conversion to floating-point numbers</A></H3> | |
| 
 | |
| <P> | |
| The type <CODE>cl_float_format_t</CODE> describes a floating-point format. | |
| <A NAME="IDX205"></A> | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_float_format_t cl_float_format (uintL n)</CODE> | |
| <DD> | |
| <A NAME="IDX206"></A> | |
| Returns the smallest float format which guarantees at least <CODE>n</CODE> | |
| decimal digits in the mantissa (after the decimal point). | |
| 
 | |
| <DT><CODE>cl_float_format_t cl_float_format (const cl_F& x)</CODE> | |
| <DD> | |
| Returns the floating point format of <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>cl_float_format_t cl_default_float_format</CODE> | |
| <DD> | |
| <A NAME="IDX207"></A> | |
| Global variable: the default float format used when converting rational numbers | |
| to floats. | |
| </DL> | |
| 
 | |
| <P> | |
| To convert a real number to a float, each of the types | |
| <CODE>cl_R</CODE>, <CODE>cl_F</CODE>, <CODE>cl_I</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>int</CODE>, <CODE>unsigned int</CODE>, <CODE>float</CODE>, <CODE>double</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_float (const <VAR>type</VAR>&x, cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX208"></A> | |
| Returns <CODE>x</CODE> as a float of format <CODE>f</CODE>. | |
| <DT><CODE>cl_F cl_float (const <VAR>type</VAR>&x, const cl_F& y)</CODE> | |
| <DD> | |
| Returns <CODE>x</CODE> in the float format of <CODE>y</CODE>. | |
| <DT><CODE>cl_F cl_float (const <VAR>type</VAR>&x)</CODE> | |
| <DD> | |
| Returns <CODE>x</CODE> as a float of format <CODE>cl_default_float_format</CODE> if | |
| it is an exact number, or <CODE>x</CODE> itself if it is already a float. | |
| </DL> | |
| 
 | |
| <P> | |
| Of course, converting a number to a float can lose precision. | |
| 
 | |
| 
 | |
| <P> | |
| Every floating-point format has some characteristic numbers: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F most_positive_float (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX209"></A> | |
| Returns the largest (most positive) floating point number in float format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F most_negative_float (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX210"></A> | |
| Returns the smallest (most negative) floating point number in float format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F least_positive_float (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX211"></A> | |
| Returns the least positive floating point number (i.e. > 0 but closest to 0) | |
| in float format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F least_negative_float (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX212"></A> | |
| Returns the least negative floating point number (i.e. < 0 but closest to 0) | |
| in float format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F float_epsilon (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX213"></A> | |
| Returns the smallest floating point number e > 0 such that <CODE>1+e != 1</CODE>. | |
| 
 | |
| <DT><CODE>cl_F float_negative_epsilon (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX214"></A> | |
| Returns the smallest floating point number e > 0 such that <CODE>1-e != 1</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC41" HREF="cln.html#TOC41">4.11.2 Conversion to rational numbers</A></H3> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_F</CODE> | |
| defines the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_RA rational (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX215"></A> | |
| Returns the value of <CODE>x</CODE> as an exact number. If <CODE>x</CODE> is already | |
| an exact number, this is <CODE>x</CODE>. If <CODE>x</CODE> is a floating-point number, | |
| the value is a rational number whose denominator is a power of 2. | |
| </DL> | |
| 
 | |
| <P> | |
| In order to convert back, say, <CODE>(cl_F)(cl_R)"1/3"</CODE> to <CODE>1/3</CODE>, there is | |
| the function | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_RA rationalize (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX216"></A> | |
| If <CODE>x</CODE> is a floating-point number, it actually represents an interval | |
| of real numbers, and this function returns the rational number with | |
| smallest denominator (and smallest numerator, in magnitude) | |
| which lies in this interval. | |
| If <CODE>x</CODE> is already an exact number, this function returns <CODE>x</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| If <CODE>x</CODE> is any float, one has | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>cl_float(rational(x),x) = x</CODE> | |
| <LI> | |
| 
 | |
| <CODE>cl_float(rationalize(x),x) = x</CODE> | |
| </UL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC42" HREF="cln.html#TOC42">4.12 Random number generators</A></H2> | |
| 
 | |
| <P> | |
| A random generator is a machine which produces (pseudo-)random numbers. | |
| The include file <CODE><cl_random.h></CODE> defines a class <CODE>cl_random_state</CODE> | |
| which contains the state of a random generator. If you make a copy | |
| of the random number generator, the original one and the copy will produce | |
| the same sequence of random numbers. | |
| 
 | |
| 
 | |
| <P> | |
| The following functions return (pseudo-)random numbers in different formats. | |
| Calling one of these modifies the state of the random number generator in | |
| a complicated but deterministic way. | |
| 
 | |
| 
 | |
| <P> | |
| The global variable | |
| <A NAME="IDX217"></A> | |
| <A NAME="IDX218"></A> | |
| 
 | |
| <PRE> | |
| cl_random_state cl_default_random_state | |
| </PRE> | |
| 
 | |
| <P> | |
| contains a default random number generator. It is used when the functions | |
| below are called without <CODE>cl_random_state</CODE> argument. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>uint32 random32 (cl_random_state& randomstate)</CODE> | |
| <DD> | |
| <DT><CODE>uint32 random32 ()</CODE> | |
| <DD> | |
| <A NAME="IDX219"></A> | |
| Returns a random unsigned 32-bit number. All bits are equally random. | |
| 
 | |
| <DT><CODE>cl_I random_I (cl_random_state& randomstate, const cl_I& n)</CODE> | |
| <DD> | |
| <DT><CODE>cl_I random_I (const cl_I& n)</CODE> | |
| <DD> | |
| <A NAME="IDX220"></A> | |
| <CODE>n</CODE> must be an integer > 0. This function returns a random integer <CODE>x</CODE> | |
| in the range <CODE>0 <= x < n</CODE>. | |
| 
 | |
| <DT><CODE>cl_F random_F (cl_random_state& randomstate, const cl_F& n)</CODE> | |
| <DD> | |
| <DT><CODE>cl_F random_F (const cl_F& n)</CODE> | |
| <DD> | |
| <A NAME="IDX221"></A> | |
| <CODE>n</CODE> must be a float > 0. This function returns a random floating-point | |
| number of the same format as <CODE>n</CODE> in the range <CODE>0 <= x < n</CODE>. | |
| 
 | |
| <DT><CODE>cl_R random_R (cl_random_state& randomstate, const cl_R& n)</CODE> | |
| <DD> | |
| <DT><CODE>cl_R random_R (const cl_R& n)</CODE> | |
| <DD> | |
| <A NAME="IDX222"></A> | |
| Behaves like <CODE>random_I</CODE> if <CODE>n</CODE> is an integer and like <CODE>random_F</CODE> | |
| if <CODE>n</CODE> is a float. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC43" HREF="cln.html#TOC43">4.13 Obfuscating operators</A></H2> | |
| <P> | |
| <A NAME="IDX223"></A> | |
| 
 | |
| 
 | |
| <P> | |
| The modifying C/C++ operators <CODE>+=</CODE>, <CODE>-=</CODE>, <CODE>*=</CODE>, <CODE>/=</CODE>, | |
| <CODE>&=</CODE>, <CODE>|=</CODE>, <CODE>^=</CODE>, <CODE><<=</CODE>, <CODE>>>=</CODE> | |
| are not available by default because their | |
| use tends to make programs unreadable. It is trivial to get away without | |
| them. However, if you feel that you absolutely need these operators | |
| to get happy, then add | |
| 
 | |
| <PRE> | |
| #define WANT_OBFUSCATING_OPERATORS | |
| </PRE> | |
| 
 | |
| <P> | |
| <A NAME="IDX224"></A> | |
| to the beginning of your source files, before the inclusion of any CLN | |
| include files. This flag will enable the following operators: | |
| 
 | |
| 
 | |
| <P> | |
| For the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR>& operator += (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX225"></A> | |
| <DT><CODE><VAR>type</VAR>& operator -= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX226"></A> | |
| <DT><CODE><VAR>type</VAR>& operator *= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX227"></A> | |
| <DT><CODE><VAR>type</VAR>& operator /= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX228"></A> | |
| </DL> | |
| 
 | |
| <P> | |
| For the class <CODE>cl_I</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR>& operator += (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>& operator -= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>& operator *= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>& operator &= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX229"></A> | |
| <DT><CODE><VAR>type</VAR>& operator |= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX230"></A> | |
| <DT><CODE><VAR>type</VAR>& operator ^= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX231"></A> | |
| <DT><CODE><VAR>type</VAR>& operator <<= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX232"></A> | |
| <DT><CODE><VAR>type</VAR>& operator >>= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX233"></A> | |
| </DL> | |
| 
 | |
| <P> | |
| For the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR>& operator ++ (<VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX234"></A> | |
| The prefix operator <CODE>++x</CODE>. | |
| 
 | |
| <DT><CODE>void operator ++ (<VAR>type</VAR>& x, int)</CODE> | |
| <DD> | |
| The postfix operator <CODE>x++</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR>& operator -- (<VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX235"></A> | |
| The prefix operator <CODE>--x</CODE>. | |
| 
 | |
| <DT><CODE>void operator -- (<VAR>type</VAR>& x, int)</CODE> | |
| <DD> | |
| The postfix operator <CODE>x--</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Note that by using these obfuscating operators, you wouldn't gain efficiency: | |
| In CLN <SAMP>`x += y;'</SAMP> is exactly the same as  <SAMP>`x = x+y;'</SAMP>, not more | |
| efficient. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC44" HREF="cln.html#TOC44">5. Input/Output</A></H1> | |
| <P> | |
| <A NAME="IDX236"></A> | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC45" HREF="cln.html#TOC45">5.1 Internal and printed representation</A></H2> | |
| <P> | |
| <A NAME="IDX237"></A> | |
| 
 | |
| 
 | |
| <P> | |
| All computations deal with the internal representations of the numbers. | |
| 
 | |
| 
 | |
| <P> | |
| Every number has an external representation as a sequence of ASCII characters. | |
| Several external representations may denote the same number, for example, | |
| "20.0" and "20.000". | |
| 
 | |
| 
 | |
| <P> | |
| Converting an internal to an external representation is called "printing", | |
| <A NAME="IDX238"></A> | |
| converting an external to an internal representation is called "reading". | |
| <A NAME="IDX239"></A> | |
| In CLN, it is always true that conversion of an internal to an external | |
| representation and then back to an internal representation will yield the | |
| same internal representation. Symbolically: <CODE>read(print(x)) == x</CODE>. | |
| This is called "print-read consistency".  | |
| 
 | |
| 
 | |
| <P> | |
| Different types of numbers have different external representations (case | |
| is insignificant): | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT>Integers | |
| <DD> | |
| External representation: <VAR>sign</VAR>{<VAR>digit</VAR>}+. The reader also accepts the | |
| Common Lisp syntaxes <VAR>sign</VAR>{<VAR>digit</VAR>}+<CODE>.</CODE> with a trailing dot | |
| for decimal integers | |
| and the <CODE>#<VAR>n</VAR>R</CODE>, <CODE>#b</CODE>, <CODE>#o</CODE>, <CODE>#x</CODE> prefixes. | |
| 
 | |
| <DT>Rational numbers | |
| <DD> | |
| External representation: <VAR>sign</VAR>{<VAR>digit</VAR>}+<CODE>/</CODE>{<VAR>digit</VAR>}+. | |
| The <CODE>#<VAR>n</VAR>R</CODE>, <CODE>#b</CODE>, <CODE>#o</CODE>, <CODE>#x</CODE> prefixes are allowed | |
| here as well. | |
| 
 | |
| <DT>Floating-point numbers | |
| <DD> | |
| External representation: <VAR>sign</VAR>{<VAR>digit</VAR>}*<VAR>exponent</VAR> or | |
| <VAR>sign</VAR>{<VAR>digit</VAR>}*<CODE>.</CODE>{<VAR>digit</VAR>}*<VAR>exponent</VAR> or | |
| <VAR>sign</VAR>{<VAR>digit</VAR>}*<CODE>.</CODE>{<VAR>digit</VAR>}+. A precision specifier | |
| of the form _<VAR>prec</VAR> may be appended. There must be at least | |
| one digit in the non-exponent part. The exponent has the syntax | |
| <VAR>expmarker</VAR> <VAR>expsign</VAR> {<VAR>digit</VAR>}+. | |
| The exponent marker is | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <SAMP>`s'</SAMP> for short-floats, | |
| <LI> | |
| 
 | |
| <SAMP>`f'</SAMP> for single-floats, | |
| <LI> | |
| 
 | |
| <SAMP>`d'</SAMP> for double-floats, | |
| <LI> | |
| 
 | |
| <SAMP>`L'</SAMP> for long-floats, | |
| </UL> | |
| 
 | |
| or <SAMP>`e'</SAMP>, which denotes a default float format. The precision specifying | |
| suffix has the syntax _<VAR>prec</VAR> where <VAR>prec</VAR> denotes the number of | |
| valid mantissa digits (in decimal, excluding leading zeroes), cf. also | |
| function <SAMP>`cl_float_format'</SAMP>. | |
| 
 | |
| <DT>Complex numbers | |
| <DD> | |
| External representation: | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| In algebraic notation: <CODE><VAR>realpart</VAR>+<VAR>imagpart</VAR>i</CODE>. Of course, | |
| if <VAR>imagpart</VAR> is negative, its printed representation begins with | |
| a <SAMP>`-'</SAMP>, and the <SAMP>`+'</SAMP> between <VAR>realpart</VAR> and <VAR>imagpart</VAR> | |
| may be omitted. Note that this notation cannot be used when the <VAR>imagpart</VAR> | |
| is rational and the rational number's base is >18, because the <SAMP>`i'</SAMP> | |
| is then read as a digit. | |
| <LI> | |
| 
 | |
| In Common Lisp notation: <CODE>#C(<VAR>realpart</VAR> <VAR>imagpart</VAR>)</CODE>. | |
| </UL> | |
| 
 | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC46" HREF="cln.html#TOC46">5.2 Input functions</A></H2> | |
| 
 | |
| <P> | |
| Including <CODE><cl_io.h></CODE> defines a type <CODE>cl_istream</CODE>, which is | |
| the type of the first argument to all input functions. Unless you build | |
| and use CLN with the macro CL_IO_STDIO being defined, <CODE>cl_istream</CODE> | |
| is the same as <CODE>istream&</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| The variable | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>cl_istream cl_stdin</CODE> | |
| </UL> | |
| 
 | |
| <P> | |
| contains the standard input stream. | |
| 
 | |
| 
 | |
| <P> | |
| These are the simple input functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>int freadchar (cl_istream stream)</CODE> | |
| <DD> | |
| Reads a character from <CODE>stream</CODE>. Returns <CODE>cl_EOF</CODE> (not a <SAMP>`char'</SAMP>!) | |
| if the end of stream was encountered or an error occurred. | |
| 
 | |
| <DT><CODE>int funreadchar (cl_istream stream, int c)</CODE> | |
| <DD> | |
| Puts back <CODE>c</CODE> onto <CODE>stream</CODE>. <CODE>c</CODE> must be the result of the | |
| last <CODE>freadchar</CODE> operation on <CODE>stream</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines, in <CODE><cl_<VAR>type</VAR>_io.h></CODE>, the following input function: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_istream operator>> (cl_istream stream, <VAR>type</VAR>& result)</CODE> | |
| <DD> | |
| Reads a number from <CODE>stream</CODE> and stores it in the <CODE>result</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The most flexible input functions, defined in <CODE><cl_<VAR>type</VAR>_io.h></CODE>, | |
| are the following: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_N read_complex (cl_istream stream, const cl_read_flags& flags)</CODE> | |
| <DD> | |
| <DT><CODE>cl_R read_real (cl_istream stream, const cl_read_flags& flags)</CODE> | |
| <DD> | |
| <DT><CODE>cl_F read_float (cl_istream stream, const cl_read_flags& flags)</CODE> | |
| <DD> | |
| <DT><CODE>cl_RA read_rational (cl_istream stream, const cl_read_flags& flags)</CODE> | |
| <DD> | |
| <DT><CODE>cl_I read_integer (cl_istream stream, const cl_read_flags& flags)</CODE> | |
| <DD> | |
| Reads a number from <CODE>stream</CODE>. The <CODE>flags</CODE> are parameters which | |
| affect the input syntax. Whitespace before the number is silently skipped. | |
| 
 | |
| <DT><CODE>cl_N read_complex (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE> | |
| <DD> | |
| <DT><CODE>cl_R read_real (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE> | |
| <DD> | |
| <DT><CODE>cl_F read_float (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE> | |
| <DD> | |
| <DT><CODE>cl_RA read_rational (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE> | |
| <DD> | |
| <DT><CODE>cl_I read_integer (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE> | |
| <DD> | |
| Reads a number from a string in memory. The <CODE>flags</CODE> are parameters which | |
| affect the input syntax. The string starts at <CODE>string</CODE> and ends at | |
| <CODE>string_limit</CODE> (exclusive limit). <CODE>string_limit</CODE> may also be | |
| <CODE>NULL</CODE>, denoting the entire string, i.e. equivalent to | |
| <CODE>string_limit = string + strlen(string)</CODE>. If <CODE>end_of_parse</CODE> is | |
| <CODE>NULL</CODE>, the string in memory must contain exactly one number and nothing | |
| more, else a fatal error will be signalled. If <CODE>end_of_parse</CODE> | |
| is not <CODE>NULL</CODE>, <CODE>*end_of_parse</CODE> will be assigned a pointer past | |
| the last parsed character (i.e. <CODE>string_limit</CODE> if nothing came after | |
| the number). Whitespace is not allowed. | |
| </DL> | |
| 
 | |
| <P> | |
| The structure <CODE>cl_read_flags</CODE> contains the following fields: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_read_syntax_t syntax</CODE> | |
| <DD> | |
| The possible results of the read operation. Possible values are | |
| <CODE>syntax_number</CODE>, <CODE>syntax_real</CODE>, <CODE>syntax_rational</CODE>, | |
| <CODE>syntax_integer</CODE>, <CODE>syntax_float</CODE>, <CODE>syntax_sfloat</CODE>, | |
| <CODE>syntax_ffloat</CODE>, <CODE>syntax_dfloat</CODE>, <CODE>syntax_lfloat</CODE>. | |
| 
 | |
| <DT><CODE>cl_read_lsyntax_t lsyntax</CODE> | |
| <DD> | |
| Specifies the language-dependent syntax variant for the read operation. | |
| Possible values are | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>lsyntax_standard</CODE> | |
| <DD> | |
| accept standard algebraic notation only, no complex numbers, | |
| <DT><CODE>lsyntax_algebraic</CODE> | |
| <DD> | |
| accept the algebraic notation <CODE><VAR>x</VAR>+<VAR>y</VAR>i</CODE> for complex numbers, | |
| <DT><CODE>lsyntax_commonlisp</CODE> | |
| <DD> | |
| accept the <CODE>#b</CODE>, <CODE>#o</CODE>, <CODE>#x</CODE> syntaxes for binary, octal, | |
| hexadecimal numbers, | |
| <CODE>#<VAR>base</VAR>R</CODE> for rational numbers in a given base, | |
| <CODE>#c(<VAR>realpart</VAR> <VAR>imagpart</VAR>)</CODE> for complex numbers, | |
| <DT><CODE>lsyntax_all</CODE> | |
| <DD> | |
| accept all of these extensions. | |
| </DL> | |
| 
 | |
| <DT><CODE>unsigned int rational_base</CODE> | |
| <DD> | |
| The base in which rational numbers are read. | |
| 
 | |
| <DT><CODE>cl_float_format_t float_flags.default_float_format</CODE> | |
| <DD> | |
| The float format used when reading floats with exponent marker <SAMP>`e'</SAMP>. | |
| 
 | |
| <DT><CODE>cl_float_format_t float_flags.default_lfloat_format</CODE> | |
| <DD> | |
| The float format used when reading floats with exponent marker <SAMP>`l'</SAMP>. | |
| 
 | |
| <DT><CODE>cl_boolean float_flags.mantissa_dependent_float_format</CODE> | |
| <DD> | |
| When this flag is true, floats specified with more digits than corresponding | |
| to the exponent marker they contain, but without <VAR>_nnn</VAR> suffix, will get a | |
| precision corresponding to their number of significant digits. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC47" HREF="cln.html#TOC47">5.3 Output functions</A></H2> | |
| 
 | |
| <P> | |
| Including <CODE><cl_io.h></CODE> defines a type <CODE>cl_ostream</CODE>, which is | |
| the type of the first argument to all output functions. Unless you build | |
| and use CLN with the macro CL_IO_STDIO being defined, <CODE>cl_ostream</CODE> | |
| is the same as <CODE>ostream&</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| The variable | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>cl_ostream cl_stdout</CODE> | |
| </UL> | |
| 
 | |
| <P> | |
| contains the standard output stream. | |
| 
 | |
| 
 | |
| <P> | |
| The variable | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>cl_ostream cl_stderr</CODE> | |
| </UL> | |
| 
 | |
| <P> | |
| contains the standard error output stream. | |
| 
 | |
| 
 | |
| <P> | |
| These are the simple output functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>void fprintchar (cl_ostream stream, char c)</CODE> | |
| <DD> | |
| Prints the character <CODE>x</CODE> literally on the <CODE>stream</CODE>. | |
| 
 | |
| <DT><CODE>void fprint (cl_ostream stream, const char * string)</CODE> | |
| <DD> | |
| Prints the <CODE>string</CODE> literally on the <CODE>stream</CODE>. | |
| 
 | |
| <DT><CODE>void fprintdecimal (cl_ostream stream, int x)</CODE> | |
| <DD> | |
| <DT><CODE>void fprintdecimal (cl_ostream stream, const cl_I& x)</CODE> | |
| <DD> | |
| Prints the integer <CODE>x</CODE> in decimal on the <CODE>stream</CODE>. | |
| 
 | |
| <DT><CODE>void fprintbinary (cl_ostream stream, const cl_I& x)</CODE> | |
| <DD> | |
| Prints the integer <CODE>x</CODE> in binary (base 2, without prefix) | |
| on the <CODE>stream</CODE>. | |
| 
 | |
| <DT><CODE>void fprintoctal (cl_ostream stream, const cl_I& x)</CODE> | |
| <DD> | |
| Prints the integer <CODE>x</CODE> in octal (base 8, without prefix) | |
| on the <CODE>stream</CODE>. | |
| 
 | |
| <DT><CODE>void fprinthexadecimal (cl_ostream stream, const cl_I& x)</CODE> | |
| <DD> | |
| Prints the integer <CODE>x</CODE> in hexadecimal (base 16, without prefix) | |
| on the <CODE>stream</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines, in <CODE><cl_<VAR>type</VAR>_io.h></CODE>, the following output functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>void fprint (cl_ostream stream, const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <DT><CODE>cl_ostream operator<< (cl_ostream stream, const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| Prints the number <CODE>x</CODE> on the <CODE>stream</CODE>. The output may depend | |
| on the global printer settings in the variable <CODE>cl_default_print_flags</CODE>. | |
| The <CODE>ostream</CODE> flags and settings (flags, width and locale) are | |
| ignored. | |
| </DL> | |
| 
 | |
| <P> | |
| The most flexible output function, defined in <CODE><cl_<VAR>type</VAR>_io.h></CODE>, | |
| are the following: | |
| 
 | |
| <PRE> | |
| void print_complex  (cl_ostream stream, const cl_print_flags& flags, | |
|                      const cl_N& z); | |
| void print_real     (cl_ostream stream, const cl_print_flags& flags, | |
|                      const cl_R& z); | |
| void print_float    (cl_ostream stream, const cl_print_flags& flags, | |
|                      const cl_F& z); | |
| void print_rational (cl_ostream stream, const cl_print_flags& flags, | |
|                      const cl_RA& z); | |
| void print_integer  (cl_ostream stream, const cl_print_flags& flags, | |
|                      const cl_I& z); | |
| </PRE> | |
| 
 | |
| <P> | |
| Prints the number <CODE>x</CODE> on the <CODE>stream</CODE>. The <CODE>flags</CODE> are | |
| parameters which affect the output. | |
| 
 | |
| 
 | |
| <P> | |
| The structure type <CODE>cl_print_flags</CODE> contains the following fields: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>unsigned int rational_base</CODE> | |
| <DD> | |
| The base in which rational numbers are printed. Default is <CODE>10</CODE>. | |
| 
 | |
| <DT><CODE>cl_boolean rational_readably</CODE> | |
| <DD> | |
| If this flag is true, rational numbers are printed with radix specifiers in | |
| Common Lisp syntax (<CODE>#<VAR>n</VAR>R</CODE> or <CODE>#b</CODE> or <CODE>#o</CODE> or <CODE>#x</CODE> | |
| prefixes, trailing dot). Default is false. | |
| 
 | |
| <DT><CODE>cl_boolean float_readably</CODE> | |
| <DD> | |
| If this flag is true, type specific exponent markers have precedence over 'E'. | |
| Default is false. | |
| 
 | |
| <DT><CODE>cl_float_format_t default_float_format</CODE> | |
| <DD> | |
| Floating point numbers of this format will be printed using the 'E' exponent | |
| marker. Default is <CODE>cl_float_format_ffloat</CODE>. | |
| 
 | |
| <DT><CODE>cl_boolean complex_readably</CODE> | |
| <DD> | |
| If this flag is true, complex numbers will be printed using the Common Lisp | |
| syntax <CODE>#C(<VAR>realpart</VAR> <VAR>imagpart</VAR>)</CODE>. Default is false. | |
| 
 | |
| <DT><CODE>cl_string univpoly_varname</CODE> | |
| <DD> | |
| Univariate polynomials with no explicit indeterminate name will be printed | |
| using this variable name. Default is <CODE>"x"</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The global variable <CODE>cl_default_print_flags</CODE> contains the default values, | |
| used by the function <CODE>fprint</CODE>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC48" HREF="cln.html#TOC48">6. Rings</A></H1> | |
| 
 | |
| <P> | |
| CLN has a class of abstract rings. | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
|                          Ring | |
|                        cl_ring | |
|                       <cl_ring.h> | |
| </PRE> | |
| 
 | |
| <P> | |
| Rings can be compared for equality: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>bool operator== (const cl_ring&, const cl_ring&)</CODE> | |
| <DD> | |
| <DT><CODE>bool operator!= (const cl_ring&, const cl_ring&)</CODE> | |
| <DD> | |
| These compare two rings for equality. | |
| </DL> | |
| 
 | |
| <P> | |
| Given a ring <CODE>R</CODE>, the following members can be used. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>void R->fprint (cl_ostream stream, const cl_ring_element& x)</CODE> | |
| <DD> | |
| <DT><CODE>cl_boolean R->equal (const cl_ring_element& x, const cl_ring_element& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_ring_element R->zero ()</CODE> | |
| <DD> | |
| <DT><CODE>cl_boolean R->zerop (const cl_ring_element& x)</CODE> | |
| <DD> | |
| <DT><CODE>cl_ring_element R->plus (const cl_ring_element& x, const cl_ring_element& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_ring_element R->minus (const cl_ring_element& x, const cl_ring_element& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_ring_element R->uminus (const cl_ring_element& x)</CODE> | |
| <DD> | |
| <DT><CODE>cl_ring_element R->one ()</CODE> | |
| <DD> | |
| <DT><CODE>cl_ring_element R->canonhom (const cl_I& x)</CODE> | |
| <DD> | |
| <DT><CODE>cl_ring_element R->mul (const cl_ring_element& x, const cl_ring_element& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_ring_element R->square (const cl_ring_element& x)</CODE> | |
| <DD> | |
| <DT><CODE>cl_ring_element R->expt_pos (const cl_ring_element& x, const cl_I& y)</CODE> | |
| <DD> | |
| </DL> | |
| 
 | |
| <P> | |
| The following rings are built-in. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_null_ring cl_0_ring</CODE> | |
| <DD> | |
| The null ring, containing only zero. | |
| 
 | |
| <DT><CODE>cl_complex_ring cl_C_ring</CODE> | |
| <DD> | |
| The ring of complex numbers. This corresponds to the type <CODE>cl_N</CODE>. | |
| 
 | |
| <DT><CODE>cl_real_ring cl_R_ring</CODE> | |
| <DD> | |
| The ring of real numbers. This corresponds to the type <CODE>cl_R</CODE>. | |
| 
 | |
| <DT><CODE>cl_rational_ring cl_RA_ring</CODE> | |
| <DD> | |
| The ring of rational numbers. This corresponds to the type <CODE>cl_RA</CODE>. | |
| 
 | |
| <DT><CODE>cl_integer_ring cl_I_ring</CODE> | |
| <DD> | |
| The ring of integers. This corresponds to the type <CODE>cl_I</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Type tests can be performed for any of <CODE>cl_C_ring</CODE>, <CODE>cl_R_ring</CODE>, | |
| <CODE>cl_RA_ring</CODE>, <CODE>cl_I_ring</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_boolean instanceof (const cl_number& x, const cl_number_ring& R)</CODE> | |
| <DD> | |
| <A NAME="IDX240"></A> | |
| Tests whether the given number is an element of the number ring R. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC49" HREF="cln.html#TOC49">7. Modular integers</A></H1> | |
| <P> | |
| <A NAME="IDX241"></A> | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC50" HREF="cln.html#TOC50">7.1 Modular integer rings</A></H2> | |
| <P> | |
| <A NAME="IDX242"></A> | |
| 
 | |
| 
 | |
| <P> | |
| CLN implements modular integers, i.e. integers modulo a fixed integer N. | |
| The modulus is explicitly part of every modular integer. CLN doesn't | |
| allow you to (accidentally) mix elements of different modular rings, | |
| e.g. <CODE>(3 mod 4) + (2 mod 5)</CODE> will result in a runtime error. | |
| (Ideally one would imagine a generic data type <CODE>cl_MI(N)</CODE>, but C++ | |
| doesn't have generic types. So one has to live with runtime checks.) | |
| 
 | |
| 
 | |
| <P> | |
| The class of modular integer rings is | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
|                          Ring | |
|                        cl_ring | |
|                       <cl_ring.h> | |
|                           | | |
|                           | | |
|                  Modular integer ring | |
|                     cl_modint_ring | |
|                    <cl_modinteger.h> | |
| </PRE> | |
| 
 | |
| <P> | |
| <A NAME="IDX243"></A> | |
| 
 | |
| 
 | |
| <P> | |
| and the class of all modular integers (elements of modular integer rings) is | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
|                     Modular integer | |
|                          cl_MI | |
|                    <cl_modinteger.h> | |
| </PRE> | |
| 
 | |
| <P> | |
| Modular integer rings are constructed using the function | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_modint_ring cl_find_modint_ring (const cl_I& N)</CODE> | |
| <DD> | |
| <A NAME="IDX244"></A> | |
| This function returns the modular ring <SAMP>`Z/NZ'</SAMP>. It takes care | |
| of finding out about special cases of <CODE>N</CODE>, like powers of two | |
| and odd numbers for which Montgomery multiplication will be a win, | |
| <A NAME="IDX245"></A> | |
| and precomputes any necessary auxiliary data for computing modulo <CODE>N</CODE>. | |
| There is a cache table of rings, indexed by <CODE>N</CODE> (or, more precisely, | |
| by <CODE>abs(N)</CODE>). This ensures that the precomputation costs are reduced | |
| to a minimum. | |
| </DL> | |
| 
 | |
| <P> | |
| Modular integer rings can be compared for equality: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>bool operator== (const cl_modint_ring&, const cl_modint_ring&)</CODE> | |
| <DD> | |
| <A NAME="IDX246"></A> | |
| <DT><CODE>bool operator!= (const cl_modint_ring&, const cl_modint_ring&)</CODE> | |
| <DD> | |
| <A NAME="IDX247"></A> | |
| These compare two modular integer rings for equality. Two different calls | |
| to <CODE>cl_find_modint_ring</CODE> with the same argument necessarily return the | |
| same ring because it is memoized in the cache table. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC51" HREF="cln.html#TOC51">7.2 Functions on modular integers</A></H2> | |
| 
 | |
| <P> | |
| Given a modular integer ring <CODE>R</CODE>, the following members can be used. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I R->modulus</CODE> | |
| <DD> | |
| <A NAME="IDX248"></A> | |
| This is the ring's modulus, normalized to be nonnegative: <CODE>abs(N)</CODE>. | |
| 
 | |
| <DT><CODE>cl_MI R->zero()</CODE> | |
| <DD> | |
| <A NAME="IDX249"></A> | |
| This returns <CODE>0 mod N</CODE>. | |
| 
 | |
| <DT><CODE>cl_MI R->one()</CODE> | |
| <DD> | |
| <A NAME="IDX250"></A> | |
| This returns <CODE>1 mod N</CODE>. | |
| 
 | |
| <DT><CODE>cl_MI R->canonhom (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX251"></A> | |
| This returns <CODE>x mod N</CODE>. | |
| 
 | |
| <DT><CODE>cl_I R->retract (const cl_MI& x)</CODE> | |
| <DD> | |
| <A NAME="IDX252"></A> | |
| This is a partial inverse function to <CODE>R->canonhom</CODE>. It returns the | |
| standard representative (<CODE>>=0</CODE>, <CODE><N</CODE>) of <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>cl_MI R->random(cl_random_state& randomstate)</CODE> | |
| <DD> | |
| <DT><CODE>cl_MI R->random()</CODE> | |
| <DD> | |
| <A NAME="IDX253"></A> | |
| This returns a random integer modulo <CODE>N</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The following operations are defined on modular integers. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_modint_ring x.ring ()</CODE> | |
| <DD> | |
| <A NAME="IDX254"></A> | |
| Returns the ring to which the modular integer <CODE>x</CODE> belongs. | |
| 
 | |
| <DT><CODE>cl_MI operator+ (const cl_MI&, const cl_MI&)</CODE> | |
| <DD> | |
| <A NAME="IDX255"></A> | |
| Returns the sum of two modular integers. One of the arguments may also | |
| be a plain integer. | |
| 
 | |
| <DT><CODE>cl_MI operator- (const cl_MI&, const cl_MI&)</CODE> | |
| <DD> | |
| <A NAME="IDX256"></A> | |
| Returns the difference of two modular integers. One of the arguments may also | |
| be a plain integer. | |
| 
 | |
| <DT><CODE>cl_MI operator- (const cl_MI&)</CODE> | |
| <DD> | |
| Returns the negative of a modular integer. | |
| 
 | |
| <DT><CODE>cl_MI operator* (const cl_MI&, const cl_MI&)</CODE> | |
| <DD> | |
| <A NAME="IDX257"></A> | |
| Returns the product of two modular integers. One of the arguments may also | |
| be a plain integer. | |
| 
 | |
| <DT><CODE>cl_MI square (const cl_MI&)</CODE> | |
| <DD> | |
| <A NAME="IDX258"></A> | |
| Returns the square of a modular integer. | |
| 
 | |
| <DT><CODE>cl_MI recip (const cl_MI& x)</CODE> | |
| <DD> | |
| <A NAME="IDX259"></A> | |
| Returns the reciprocal <CODE>x^-1</CODE> of a modular integer <CODE>x</CODE>. <CODE>x</CODE> | |
| must be coprime to the modulus, otherwise an error message is issued. | |
| 
 | |
| <DT><CODE>cl_MI div (const cl_MI& x, const cl_MI& y)</CODE> | |
| <DD> | |
| <A NAME="IDX260"></A> | |
| Returns the quotient <CODE>x*y^-1</CODE> of two modular integers <CODE>x</CODE>, <CODE>y</CODE>. | |
| <CODE>y</CODE> must be coprime to the modulus, otherwise an error message is issued. | |
| 
 | |
| <DT><CODE>cl_MI expt_pos (const cl_MI& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX261"></A> | |
| <CODE>y</CODE> must be > 0. Returns <CODE>x^y</CODE>. | |
| 
 | |
| <DT><CODE>cl_MI expt (const cl_MI& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX262"></A> | |
| Returns <CODE>x^y</CODE>. If <CODE>y</CODE> is negative, <CODE>x</CODE> must be coprime to the | |
| modulus, else an error message is issued. | |
| 
 | |
| <DT><CODE>cl_MI operator<< (const cl_MI& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX263"></A> | |
| Returns <CODE>x*2^y</CODE>. | |
| 
 | |
| <DT><CODE>cl_MI operator>> (const cl_MI& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX264"></A> | |
| Returns <CODE>x*2^-y</CODE>. When <CODE>y</CODE> is positive, the modulus must be odd, | |
| or an error message is issued. | |
| 
 | |
| <DT><CODE>bool operator== (const cl_MI&, const cl_MI&)</CODE> | |
| <DD> | |
| <A NAME="IDX265"></A> | |
| <DT><CODE>bool operator!= (const cl_MI&, const cl_MI&)</CODE> | |
| <DD> | |
| <A NAME="IDX266"></A> | |
| Compares two modular integers, belonging to the same modular integer ring, | |
| for equality. | |
| 
 | |
| <DT><CODE>cl_boolean zerop (const cl_MI& x)</CODE> | |
| <DD> | |
| <A NAME="IDX267"></A> | |
| Returns true if <CODE>x</CODE> is <CODE>0 mod N</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The following output functions are defined (see also the chapter on | |
| input/output). | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>void fprint (cl_ostream stream, const cl_MI& x)</CODE> | |
| <DD> | |
| <A NAME="IDX268"></A> | |
| <DT><CODE>cl_ostream operator<< (cl_ostream stream, const cl_MI& x)</CODE> | |
| <DD> | |
| <A NAME="IDX269"></A> | |
| Prints the modular integer <CODE>x</CODE> on the <CODE>stream</CODE>. The output may depend | |
| on the global printer settings in the variable <CODE>cl_default_print_flags</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC52" HREF="cln.html#TOC52">8. Symbolic data types</A></H1> | |
| <P> | |
| <A NAME="IDX270"></A> | |
| 
 | |
| 
 | |
| <P> | |
| CLN implements two symbolic (non-numeric) data types: strings and symbols. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC53" HREF="cln.html#TOC53">8.1 Strings</A></H2> | |
| <P> | |
| <A NAME="IDX271"></A> | |
| 
 | |
| 
 | |
| <P> | |
| The class | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
|                       String | |
|                      cl_string | |
|                     <cl_string.h> | |
| </PRE> | |
| 
 | |
| <P> | |
| implements immutable strings. | |
| 
 | |
| 
 | |
| <P> | |
| Strings are constructed through the following constructors: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_string (const char * s)</CODE> | |
| <DD> | |
| <A NAME="IDX272"></A> | |
| Returns an immutable copy of the (zero-terminated) C string <CODE>s</CODE>. | |
| 
 | |
| <DT><CODE>cl_string (const char * ptr, unsigned long len)</CODE> | |
| <DD> | |
| Returns an immutable copy of the <CODE>len</CODE> characters at | |
| <CODE>ptr[0]</CODE>, ..., <CODE>ptr[len-1]</CODE>. NUL characters are allowed. | |
| </DL> | |
| 
 | |
| <P> | |
| The following functions are available on strings: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>operator =</CODE> | |
| <DD> | |
| Assignment from <CODE>cl_string</CODE> and <CODE>const char *</CODE>. | |
| 
 | |
| <DT><CODE>s.length()</CODE> | |
| <DD> | |
| <A NAME="IDX273"></A> | |
| <DT><CODE>strlen(s)</CODE> | |
| <DD> | |
| <A NAME="IDX274"></A> | |
| Returns the length of the string <CODE>s</CODE>. | |
| 
 | |
| <DT><CODE>s[i]</CODE> | |
| <DD> | |
| <A NAME="IDX275"></A> | |
| Returns the <CODE>i</CODE>th character of the string <CODE>s</CODE>. | |
| <CODE>i</CODE> must be in the range <CODE>0 <= i < s.length()</CODE>. | |
| 
 | |
| <DT><CODE>bool equal (const cl_string& s1, const cl_string& s2)</CODE> | |
| <DD> | |
| <A NAME="IDX276"></A> | |
| Compares two strings for equality. One of the arguments may also be a | |
| plain <CODE>const char *</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC54" HREF="cln.html#TOC54">8.2 Symbols</A></H2> | |
| <P> | |
| <A NAME="IDX277"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Symbols are uniquified strings: all symbols with the same name are shared. | |
| This means that comparison of two symbols is fast (effectively just a pointer | |
| comparison), whereas comparison of two strings must in the worst case walk | |
| both strings until their end. | |
| Symbols are used, for example, as tags for properties, as names of variables | |
| in polynomial rings, etc. | |
| 
 | |
| 
 | |
| <P> | |
| Symbols are constructed through the following constructor: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_symbol (const cl_string& s)</CODE> | |
| <DD> | |
| <A NAME="IDX278"></A> | |
| Looks up or creates a new symbol with a given name. | |
| </DL> | |
| 
 | |
| <P> | |
| The following operations are available on symbols: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_string (const cl_symbol& sym)</CODE> | |
| <DD> | |
| Conversion to <CODE>cl_string</CODE>: Returns the string which names the symbol | |
| <CODE>sym</CODE>. | |
| 
 | |
| <DT><CODE>bool equal (const cl_symbol& sym1, const cl_symbol& sym2)</CODE> | |
| <DD> | |
| <A NAME="IDX279"></A> | |
| Compares two symbols for equality. This is very fast. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC55" HREF="cln.html#TOC55">9. Univariate polynomials</A></H1> | |
| <P> | |
| <A NAME="IDX280"></A> | |
| <A NAME="IDX281"></A> | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC56" HREF="cln.html#TOC56">9.1 Univariate polynomial rings</A></H2> | |
| 
 | |
| <P> | |
| CLN implements univariate polynomials (polynomials in one variable) over an | |
| arbitrary ring. The indeterminate variable may be either unnamed (and will be | |
| printed according to <CODE>cl_default_print_flags.univpoly_varname</CODE>, which | |
| defaults to <SAMP>`x'</SAMP>) or carry a given name. The base ring and the | |
| indeterminate are explicitly part of every polynomial. CLN doesn't allow you to | |
| (accidentally) mix elements of different polynomial rings, e.g. | |
| <CODE>(a^2+1) * (b^3-1)</CODE> will result in a runtime error. (Ideally this should | |
| return a multivariate polynomial, but they are not yet implemented in CLN.) | |
| 
 | |
| 
 | |
| <P> | |
| The classes of univariate polynomial rings are | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
|                            Ring | |
|                          cl_ring | |
|                         <cl_ring.h> | |
|                             | | |
|                             | | |
|                  Univariate polynomial ring | |
|                       cl_univpoly_ring | |
|                       <cl_univpoly.h> | |
|                             | | |
|            +----------------+-------------------+ | |
|            |                |                   | | |
|  Complex polynomial ring    |    Modular integer polynomial ring | |
|  cl_univpoly_complex_ring   |        cl_univpoly_modint_ring | |
|   <cl_univpoly_complex.h>   |        <cl_univpoly_modint.h> | |
|                             | | |
|            +----------------+ | |
|            |                | | |
|    Real polynomial ring     | | |
|    cl_univpoly_real_ring    | | |
|     <cl_univpoly_real.h>    | | |
|                             | | |
|            +----------------+ | |
|            |                | | |
|  Rational polynomial ring   | | |
|  cl_univpoly_rational_ring  | | |
|   <cl_univpoly_rational.h>  | | |
|                             | | |
|            +----------------+ | |
|            | | |
|  Integer polynomial ring | |
|  cl_univpoly_integer_ring | |
|   <cl_univpoly_integer.h> | |
| </PRE> | |
| 
 | |
| <P> | |
| and the corresponding classes of univariate polynomials are | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
|                    Univariate polynomial | |
|                           cl_UP | |
|                       <cl_univpoly.h> | |
|                             | | |
|            +----------------+-------------------+ | |
|            |                |                   | | |
|    Complex polynomial       |      Modular integer polynomial | |
|         cl_UP_N             |                cl_UP_MI | |
|   <cl_univpoly_complex.h>   |        <cl_univpoly_modint.h> | |
|                             | | |
|            +----------------+ | |
|            |                | | |
|      Real polynomial        | | |
|         cl_UP_R             | | |
|     <cl_univpoly_real.h>    | | |
|                             | | |
|            +----------------+ | |
|            |                | | |
|    Rational polynomial      | | |
|         cl_UP_RA            | | |
|   <cl_univpoly_rational.h>  | | |
|                             | | |
|            +----------------+ | |
|            | | |
|    Integer polynomial | |
|         cl_UP_I | |
|   <cl_univpoly_integer.h> | |
| </PRE> | |
| 
 | |
| <P> | |
| Univariate polynomial rings are constructed using the functions | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_univpoly_ring cl_find_univpoly_ring (const cl_ring& R)</CODE> | |
| <DD> | |
| <DT><CODE>cl_univpoly_ring cl_find_univpoly_ring (const cl_ring& R, const cl_symbol& varname)</CODE> | |
| <DD> | |
| This function returns the polynomial ring <SAMP>`R[X]'</SAMP>, unnamed or named. | |
| <CODE>R</CODE> may be an arbitrary ring. This function takes care of finding out | |
| about special cases of <CODE>R</CODE>, such as the rings of complex numbers, | |
| real numbers, rational numbers, integers, or modular integer rings. | |
| There is a cache table of rings, indexed by <CODE>R</CODE> and <CODE>varname</CODE>. | |
| This ensures that two calls of this function with the same arguments will | |
| return the same polynomial ring. | |
| 
 | |
| <DT><CODE>cl_univpoly_complex_ring cl_find_univpoly_ring (const cl_complex_ring& R)</CODE> | |
| <DD> | |
| <A NAME="IDX282"></A> | |
| <DT><CODE>cl_univpoly_complex_ring cl_find_univpoly_ring (const cl_complex_ring& R, const cl_symbol& varname)</CODE> | |
| <DD> | |
| <DT><CODE>cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& R)</CODE> | |
| <DD> | |
| <DT><CODE>cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& R, const cl_symbol& varname)</CODE> | |
| <DD> | |
| <DT><CODE>cl_univpoly_rational_ring cl_find_univpoly_ring (const cl_rational_ring& R)</CODE> | |
| <DD> | |
| <DT><CODE>cl_univpoly_rational_ring cl_find_univpoly_ring (const cl_rational_ring& R, const cl_symbol& varname)</CODE> | |
| <DD> | |
| <DT><CODE>cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& R)</CODE> | |
| <DD> | |
| <DT><CODE>cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& R, const cl_symbol& varname)</CODE> | |
| <DD> | |
| <DT><CODE>cl_univpoly_modint_ring cl_find_univpoly_ring (const cl_modint_ring& R)</CODE> | |
| <DD> | |
| <DT><CODE>cl_univpoly_modint_ring cl_find_univpoly_ring (const cl_modint_ring& R, const cl_symbol& varname)</CODE> | |
| <DD> | |
| These functions are equivalent to the general <CODE>cl_find_univpoly_ring</CODE>, | |
| only the return type is more specific, according to the base ring's type. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC57" HREF="cln.html#TOC57">9.2 Functions on univariate polynomials</A></H2> | |
| 
 | |
| <P> | |
| Given a univariate polynomial ring <CODE>R</CODE>, the following members can be used. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_ring R->basering()</CODE> | |
| <DD> | |
| <A NAME="IDX283"></A> | |
| This returns the base ring, as passed to <SAMP>`cl_find_univpoly_ring'</SAMP>. | |
| 
 | |
| <DT><CODE>cl_UP R->zero()</CODE> | |
| <DD> | |
| <A NAME="IDX284"></A> | |
| This returns <CODE>0 in R</CODE>, a polynomial of degree -1. | |
| 
 | |
| <DT><CODE>cl_UP R->one()</CODE> | |
| <DD> | |
| <A NAME="IDX285"></A> | |
| This returns <CODE>1 in R</CODE>, a polynomial of degree <= 0. | |
| 
 | |
| <DT><CODE>cl_UP R->canonhom (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX286"></A> | |
| This returns <CODE>x in R</CODE>, a polynomial of degree <= 0. | |
| 
 | |
| <DT><CODE>cl_UP R->monomial (const cl_ring_element& x, uintL e)</CODE> | |
| <DD> | |
| <A NAME="IDX287"></A> | |
| This returns a sparse polynomial: <CODE>x * X^e</CODE>, where <CODE>X</CODE> is the | |
| indeterminate. | |
| 
 | |
| <DT><CODE>cl_UP R->create (sintL degree)</CODE> | |
| <DD> | |
| <A NAME="IDX288"></A> | |
| Creates a new polynomial with a given degree. The zero polynomial has degree | |
| <CODE>-1</CODE>. After creating the polynomial, you should put in the coefficients, | |
| using the <CODE>set_coeff</CODE> member function, and then call the <CODE>finalize</CODE> | |
| member function. | |
| </DL> | |
| 
 | |
| <P> | |
| The following are the only destructive operations on univariate polynomials. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y)</CODE> | |
| <DD> | |
| <A NAME="IDX289"></A> | |
| This changes the coefficient of <CODE>X^index</CODE> in <CODE>x</CODE> to be <CODE>y</CODE>. | |
| After changing a polynomial and before applying any "normal" operation on it, | |
| you should call its <CODE>finalize</CODE> member function. | |
| 
 | |
| <DT><CODE>void finalize (cl_UP& x)</CODE> | |
| <DD> | |
| <A NAME="IDX290"></A> | |
| This function marks the endpoint of destructive modifications of a polynomial. | |
| It normalizes the internal representation so that subsequent computations have | |
| less overhead. Doing normal computations on unnormalized polynomials may | |
| produce wrong results or crash the program. | |
| </DL> | |
| 
 | |
| <P> | |
| The following operations are defined on univariate polynomials. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_univpoly_ring x.ring ()</CODE> | |
| <DD> | |
| <A NAME="IDX291"></A> | |
| Returns the ring to which the univariate polynomial <CODE>x</CODE> belongs. | |
| 
 | |
| <DT><CODE>cl_UP operator+ (const cl_UP&, const cl_UP&)</CODE> | |
| <DD> | |
| <A NAME="IDX292"></A> | |
| Returns the sum of two univariate polynomials. | |
| 
 | |
| <DT><CODE>cl_UP operator- (const cl_UP&, const cl_UP&)</CODE> | |
| <DD> | |
| <A NAME="IDX293"></A> | |
| Returns the difference of two univariate polynomials. | |
| 
 | |
| <DT><CODE>cl_UP operator- (const cl_UP&)</CODE> | |
| <DD> | |
| Returns the negative of a univariate polynomial. | |
| 
 | |
| <DT><CODE>cl_UP operator* (const cl_UP&, const cl_UP&)</CODE> | |
| <DD> | |
| <A NAME="IDX294"></A> | |
| Returns the product of two univariate polynomials. One of the arguments may | |
| also be a plain integer or an element of the base ring. | |
| 
 | |
| <DT><CODE>cl_UP square (const cl_UP&)</CODE> | |
| <DD> | |
| <A NAME="IDX295"></A> | |
| Returns the square of a univariate polynomial. | |
| 
 | |
| <DT><CODE>cl_UP expt_pos (const cl_UP& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX296"></A> | |
| <CODE>y</CODE> must be > 0. Returns <CODE>x^y</CODE>. | |
| 
 | |
| <DT><CODE>bool operator== (const cl_UP&, const cl_UP&)</CODE> | |
| <DD> | |
| <A NAME="IDX297"></A> | |
| <DT><CODE>bool operator!= (const cl_UP&, const cl_UP&)</CODE> | |
| <DD> | |
| <A NAME="IDX298"></A> | |
| Compares two univariate polynomials, belonging to the same univariate | |
| polynomial ring, for equality. | |
| 
 | |
| <DT><CODE>cl_boolean zerop (const cl_UP& x)</CODE> | |
| <DD> | |
| <A NAME="IDX299"></A> | |
| Returns true if <CODE>x</CODE> is <CODE>0 in R</CODE>. | |
| 
 | |
| <DT><CODE>sintL degree (const cl_UP& x)</CODE> | |
| <DD> | |
| <A NAME="IDX300"></A> | |
| Returns the degree of the polynomial. The zero polynomial has degree <CODE>-1</CODE>. | |
| 
 | |
| <DT><CODE>cl_ring_element coeff (const cl_UP& x, uintL index)</CODE> | |
| <DD> | |
| <A NAME="IDX301"></A> | |
| Returns the coefficient of <CODE>X^index</CODE> in the polynomial <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>cl_ring_element x (const cl_ring_element& y)</CODE> | |
| <DD> | |
| <A NAME="IDX302"></A> | |
| Evaluation: If <CODE>x</CODE> is a polynomial and <CODE>y</CODE> belongs to the base ring, | |
| then <SAMP>`x(y)'</SAMP> returns the value of the substitution of <CODE>y</CODE> into | |
| <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>cl_UP deriv (const cl_UP& x)</CODE> | |
| <DD> | |
| <A NAME="IDX303"></A> | |
| Returns the derivative of the polynomial <CODE>x</CODE> with respect to the | |
| indeterminate <CODE>X</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The following output functions are defined (see also the chapter on | |
| input/output). | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>void fprint (cl_ostream stream, const cl_UP& x)</CODE> | |
| <DD> | |
| <A NAME="IDX304"></A> | |
| <DT><CODE>cl_ostream operator<< (cl_ostream stream, const cl_UP& x)</CODE> | |
| <DD> | |
| <A NAME="IDX305"></A> | |
| Prints the univariate polynomial <CODE>x</CODE> on the <CODE>stream</CODE>. The output may | |
| depend on the global printer settings in the variable | |
| <CODE>cl_default_print_flags</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC58" HREF="cln.html#TOC58">9.3 Special polynomials</A></H2> | |
| 
 | |
| <P> | |
| The following functions return special polynomials. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_UP_I cl_tschebychev (sintL n)</CODE> | |
| <DD> | |
| <A NAME="IDX306"></A> | |
| <A NAME="IDX307"></A> | |
| Returns the n-th Tchebychev polynomial (n >= 0). | |
| 
 | |
| <DT><CODE>cl_UP_I cl_hermite (sintL n)</CODE> | |
| <DD> | |
| <A NAME="IDX308"></A> | |
| <A NAME="IDX309"></A> | |
| Returns the n-th Hermite polynomial (n >= 0). | |
| 
 | |
| <DT><CODE>cl_UP_RA cl_legendre (sintL n)</CODE> | |
| <DD> | |
| <A NAME="IDX310"></A> | |
| <A NAME="IDX311"></A> | |
| Returns the n-th Legendre polynomial (n >= 0). | |
| 
 | |
| <DT><CODE>cl_UP_I cl_laguerre (sintL n)</CODE> | |
| <DD> | |
| <A NAME="IDX312"></A> | |
| <A NAME="IDX313"></A> | |
| Returns the n-th Laguerre polynomial (n >= 0). | |
| </DL> | |
| 
 | |
| <P> | |
| Information how to derive the differential equation satisfied by each | |
| of these polynomials from their definition can be found in the | |
| <CODE>doc/polynomial/</CODE> directory. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC59" HREF="cln.html#TOC59">10. Internals</A></H1> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC60" HREF="cln.html#TOC60">10.1 Why C++ ?</A></H2> | |
| <P> | |
| <A NAME="IDX314"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Using C++ as an implementation language provides | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| Efficiency: It compiles to machine code. | |
| 
 | |
| <LI> | |
| 
 | |
| <A NAME="IDX315"></A> | |
| Portability: It runs on all platforms supporting a C++ compiler. Because | |
| of the availability of GNU C++, this includes all currently used 32-bit and | |
| 64-bit platforms, independently of the quality of the vendor's C++ compiler. | |
| 
 | |
| <LI> | |
| 
 | |
| Type safety: The C++ compilers knows about the number types and complains if, | |
| for example, you try to assign a float to an integer variable. However, | |
| a drawback is that C++ doesn't know about generic types, hence a restriction | |
| like that <CODE>operator+ (const cl_MI&, const cl_MI&)</CODE> requires that both | |
| arguments belong to the same modular ring cannot be expressed as a compile-time | |
| information. | |
| 
 | |
| <LI> | |
| 
 | |
| Algebraic syntax: The elementary operations <CODE>+</CODE>, <CODE>-</CODE>, <CODE>*</CODE>, | |
| <CODE>=</CODE>, <CODE>==</CODE>, ... can be used in infix notation, which is more | |
| convenient than Lisp notation <SAMP>`(+ x y)'</SAMP> or C notation <SAMP>`add(x,y,&z)'</SAMP>. | |
| </UL> | |
| 
 | |
| <P> | |
| With these language features, there is no need for two separate languages, | |
| one for the implementation of the library and one in which the library's users | |
| can program. This means that a prototype implementation of an algorithm | |
| can be integrated into the library immediately after it has been tested and | |
| debugged. No need to rewrite it in a low-level language after having prototyped | |
| in a high-level language. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC61" HREF="cln.html#TOC61">10.2 Memory efficiency</A></H2> | |
| 
 | |
| <P> | |
| In order to save memory allocations, CLN implements: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| Object sharing: An operation like <CODE>x+0</CODE> returns <CODE>x</CODE> without copying | |
| it. | |
| <LI> | |
| 
 | |
| <A NAME="IDX316"></A> | |
| <A NAME="IDX317"></A> | |
| Garbage collection: A reference counting mechanism makes sure that any | |
| number object's storage is freed immediately when the last reference to the | |
| object is gone. | |
| <LI> | |
| 
 | |
| Small integers are represented as immediate values instead of pointers | |
| to heap allocated storage. This means that integers <CODE>> -2^29</CODE>, | |
| <CODE>< 2^29</CODE> don't consume heap memory, unless they were explicitly allocated | |
| on the heap. | |
| </UL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC62" HREF="cln.html#TOC62">10.3 Speed efficiency</A></H2> | |
| 
 | |
| <P> | |
| Speed efficiency is obtained by the combination of the following tricks | |
| and algorithms: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| Small integers, being represented as immediate values, don't require | |
| memory access, just a couple of instructions for each elementary operation. | |
| <LI> | |
| 
 | |
| The kernel of CLN has been written in assembly language for some CPUs | |
| (<CODE>i386</CODE>, <CODE>m68k</CODE>, <CODE>sparc</CODE>, <CODE>mips</CODE>, <CODE>arm</CODE>). | |
| <LI> | |
| 
 | |
| On all CPUs, CLN may be configured to use the superefficient low-level | |
| routines from GNU GMP version 3. | |
| <LI> | |
| 
 | |
| For large numbers, CLN uses, instead of the standard <CODE>O(N^2)</CODE> | |
| algorithm, the Karatsuba multiplication, which is an | |
| <CODE>O(N^1.6)</CODE> | |
| algorithm. | |
| <LI> | |
| 
 | |
| For very large numbers (more than 12000 decimal digits), CLN uses | |
| Schönhage-Strassen | |
| <A NAME="IDX318"></A> | |
| multiplication, which is an asymptotically optimal multiplication  | |
| algorithm. | |
| <LI> | |
| 
 | |
| These fast multiplication algorithms also give improvements in the speed | |
| of division and radix conversion. | |
| </UL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC63" HREF="cln.html#TOC63">10.4 Garbage collection</A></H2> | |
| <P> | |
| <A NAME="IDX319"></A> | |
| 
 | |
| 
 | |
| <P> | |
| All the number classes are reference count classes: They only contain a pointer | |
| to an object in the heap. Upon construction, assignment and destruction of | |
| number objects, only the objects' reference count are manipulated. | |
| 
 | |
| 
 | |
| <P> | |
| Memory occupied by number objects are automatically reclaimed as soon as | |
| their reference count drops to zero. | |
| 
 | |
| 
 | |
| <P> | |
| For number rings, another strategy is implemented: There is a cache of, | |
| for example, the modular integer rings. A modular integer ring is destroyed | |
| only if its reference count dropped to zero and the cache is about to be | |
| resized. The effect of this strategy is that recently used rings remain | |
| cached, whereas undue memory consumption through cached rings is avoided. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC64" HREF="cln.html#TOC64">11. Using the library</A></H1> | |
| 
 | |
| <P> | |
| For the following discussion, we will assume that you have installed | |
| the CLN source in <CODE>$CLN_DIR</CODE> and built it in <CODE>$CLN_TARGETDIR</CODE>. | |
| For example, for me it's <CODE>CLN_DIR="$HOME/cln"</CODE> and | |
| <CODE>CLN_TARGETDIR="$HOME/cln/linuxelf"</CODE>. You might define these as | |
| environment variables, or directly substitute the appropriate values. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC65" HREF="cln.html#TOC65">11.1 Compiler options</A></H2> | |
| <P> | |
| <A NAME="IDX320"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Until you have installed CLN in a public place, the following options are | |
| needed: | |
| 
 | |
| 
 | |
| <P> | |
| When you compile CLN application code, add the flags | |
| 
 | |
| <PRE> | |
|    -I$CLN_DIR/include -I$CLN_TARGETDIR/include | |
| </PRE> | |
| 
 | |
| <P> | |
| to the C++ compiler's command line (<CODE>make</CODE> variable CFLAGS or CXXFLAGS). | |
| When you link CLN application code to form an executable, add the flags | |
| 
 | |
| <PRE> | |
|    $CLN_TARGETDIR/src/libcln.a | |
| </PRE> | |
| 
 | |
| <P> | |
| to the C/C++ compiler's command line (<CODE>make</CODE> variable LIBS). | |
| 
 | |
| 
 | |
| <P> | |
| If you did a <CODE>make install</CODE>, the include files are installed in a | |
| public directory (normally <CODE>/usr/local/include</CODE>), hence you don't | |
| need special flags for compiling. The library has been installed to a | |
| public directory as well (normally <CODE>/usr/local/lib</CODE>), hence when | |
| linking a CLN application it is sufficient to give the flag <CODE>-lcln</CODE>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC66" HREF="cln.html#TOC66">11.2 Include files</A></H2> | |
| <P> | |
| <A NAME="IDX321"></A> | |
| <A NAME="IDX322"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Here is a summary of the include files and their contents. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><cl_object.h></CODE> | |
| <DD> | |
| General definitions, reference counting, garbage collection. | |
| <DT><CODE><cl_number.h></CODE> | |
| <DD> | |
| The class cl_number. | |
| <DT><CODE><cl_complex.h></CODE> | |
| <DD> | |
| Functions for class cl_N, the complex numbers. | |
| <DT><CODE><cl_real.h></CODE> | |
| <DD> | |
| Functions for class cl_R, the real numbers. | |
| <DT><CODE><cl_float.h></CODE> | |
| <DD> | |
| Functions for class cl_F, the floats. | |
| <DT><CODE><cl_sfloat.h></CODE> | |
| <DD> | |
| Functions for class cl_SF, the short-floats. | |
| <DT><CODE><cl_ffloat.h></CODE> | |
| <DD> | |
| Functions for class cl_FF, the single-floats. | |
| <DT><CODE><cl_dfloat.h></CODE> | |
| <DD> | |
| Functions for class cl_DF, the double-floats. | |
| <DT><CODE><cl_lfloat.h></CODE> | |
| <DD> | |
| Functions for class cl_LF, the long-floats. | |
| <DT><CODE><cl_rational.h></CODE> | |
| <DD> | |
| Functions for class cl_RA, the rational numbers. | |
| <DT><CODE><cl_integer.h></CODE> | |
| <DD> | |
| Functions for class cl_I, the integers. | |
| <DT><CODE><cl_io.h></CODE> | |
| <DD> | |
| Input/Output. | |
| <DT><CODE><cl_complex_io.h></CODE> | |
| <DD> | |
| Input/Output for class cl_N, the complex numbers. | |
| <DT><CODE><cl_real_io.h></CODE> | |
| <DD> | |
| Input/Output for class cl_R, the real numbers. | |
| <DT><CODE><cl_float_io.h></CODE> | |
| <DD> | |
| Input/Output for class cl_F, the floats. | |
| <DT><CODE><cl_sfloat_io.h></CODE> | |
| <DD> | |
| Input/Output for class cl_SF, the short-floats. | |
| <DT><CODE><cl_ffloat_io.h></CODE> | |
| <DD> | |
| Input/Output for class cl_FF, the single-floats. | |
| <DT><CODE><cl_dfloat_io.h></CODE> | |
| <DD> | |
| Input/Output for class cl_DF, the double-floats. | |
| <DT><CODE><cl_lfloat_io.h></CODE> | |
| <DD> | |
| Input/Output for class cl_LF, the long-floats. | |
| <DT><CODE><cl_rational_io.h></CODE> | |
| <DD> | |
| Input/Output for class cl_RA, the rational numbers. | |
| <DT><CODE><cl_integer_io.h></CODE> | |
| <DD> | |
| Input/Output for class cl_I, the integers. | |
| <DT><CODE><cl_input.h></CODE> | |
| <DD> | |
| Flags for customizing input operations. | |
| <DT><CODE><cl_output.h></CODE> | |
| <DD> | |
| Flags for customizing output operations. | |
| <DT><CODE><cl_malloc.h></CODE> | |
| <DD> | |
| <CODE>cl_malloc_hook</CODE>, <CODE>cl_free_hook</CODE>. | |
| <DT><CODE><cl_abort.h></CODE> | |
| <DD> | |
| <CODE>cl_abort</CODE>. | |
| <DT><CODE><cl_condition.h></CODE> | |
| <DD> | |
| Conditions/exceptions. | |
| <DT><CODE><cl_string.h></CODE> | |
| <DD> | |
| Strings. | |
| <DT><CODE><cl_symbol.h></CODE> | |
| <DD> | |
| Symbols. | |
| <DT><CODE><cl_proplist.h></CODE> | |
| <DD> | |
| Property lists. | |
| <DT><CODE><cl_ring.h></CODE> | |
| <DD> | |
| General rings. | |
| <DT><CODE><cl_null_ring.h></CODE> | |
| <DD> | |
| The null ring. | |
| <DT><CODE><cl_complex_ring.h></CODE> | |
| <DD> | |
| The ring of complex numbers. | |
| <DT><CODE><cl_real_ring.h></CODE> | |
| <DD> | |
| The ring of real numbers. | |
| <DT><CODE><cl_rational_ring.h></CODE> | |
| <DD> | |
| The ring of rational numbers. | |
| <DT><CODE><cl_integer_ring.h></CODE> | |
| <DD> | |
| The ring of integers. | |
| <DT><CODE><cl_numtheory.h></CODE> | |
| <DD> | |
| Number threory functions. | |
| <DT><CODE><cl_modinteger.h></CODE> | |
| <DD> | |
| Modular integers. | |
| <DT><CODE><cl_V.h></CODE> | |
| <DD> | |
| Vectors. | |
| <DT><CODE><cl_GV.h></CODE> | |
| <DD> | |
| General vectors. | |
| <DT><CODE><cl_GV_number.h></CODE> | |
| <DD> | |
| General vectors over cl_number. | |
| <DT><CODE><cl_GV_complex.h></CODE> | |
| <DD> | |
| General vectors over cl_N. | |
| <DT><CODE><cl_GV_real.h></CODE> | |
| <DD> | |
| General vectors over cl_R. | |
| <DT><CODE><cl_GV_rational.h></CODE> | |
| <DD> | |
| General vectors over cl_RA. | |
| <DT><CODE><cl_GV_integer.h></CODE> | |
| <DD> | |
| General vectors over cl_I. | |
| <DT><CODE><cl_GV_modinteger.h></CODE> | |
| <DD> | |
| General vectors of modular integers. | |
| <DT><CODE><cl_SV.h></CODE> | |
| <DD> | |
| Simple vectors. | |
| <DT><CODE><cl_SV_number.h></CODE> | |
| <DD> | |
| Simple vectors over cl_number. | |
| <DT><CODE><cl_SV_complex.h></CODE> | |
| <DD> | |
| Simple vectors over cl_N. | |
| <DT><CODE><cl_SV_real.h></CODE> | |
| <DD> | |
| Simple vectors over cl_R. | |
| <DT><CODE><cl_SV_rational.h></CODE> | |
| <DD> | |
| Simple vectors over cl_RA. | |
| <DT><CODE><cl_SV_integer.h></CODE> | |
| <DD> | |
| Simple vectors over cl_I. | |
| <DT><CODE><cl_SV_ringelt.h></CODE> | |
| <DD> | |
| Simple vectors of general ring elements. | |
| <DT><CODE><cl_univpoly.h></CODE> | |
| <DD> | |
| Univariate polynomials. | |
| <DT><CODE><cl_univpoly_integer.h></CODE> | |
| <DD> | |
| Univariate polynomials over the integers. | |
| <DT><CODE><cl_univpoly_rational.h></CODE> | |
| <DD> | |
| Univariate polynomials over the rational numbers. | |
| <DT><CODE><cl_univpoly_real.h></CODE> | |
| <DD> | |
| Univariate polynomials over the real numbers. | |
| <DT><CODE><cl_univpoly_complex.h></CODE> | |
| <DD> | |
| Univariate polynomials over the complex numbers. | |
| <DT><CODE><cl_univpoly_modint.h></CODE> | |
| <DD> | |
| Univariate polynomials over modular integer rings. | |
| <DT><CODE><cl_timing.h></CODE> | |
| <DD> | |
| Timing facilities. | |
| <DT><CODE><cln.h></CODE> | |
| <DD> | |
| Includes all of the above. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC67" HREF="cln.html#TOC67">11.3 An Example</A></H2> | |
| 
 | |
| <P> | |
| A function which computes the nth Fibonacci number can be written as follows. | |
| <A NAME="IDX323"></A> | |
| 
 | |
| 
 | |
| 
 | |
| <PRE> | |
| #include <cl_integer.h> | |
| #include <cl_real.h> | |
| 
 | |
| // Returns F_n, computed as the nearest integer to | |
| // ((1+sqrt(5))/2)^n/sqrt(5). Assume n>=0. | |
| const cl_I fibonacci (int n) | |
| { | |
|         // Need a precision of ((1+sqrt(5))/2)^-n. | |
|         cl_float_format_t prec = cl_float_format((int)(0.208987641*n+5)); | |
|         cl_R sqrt5 = sqrt(cl_float(5,prec)); | |
|         cl_R phi = (1+sqrt5)/2; | |
|         return round1( expt(phi,n)/sqrt5 ); | |
| } | |
| </PRE> | |
| 
 | |
| <P> | |
| Let's explain what is going on in detail. | |
| 
 | |
| 
 | |
| <P> | |
| The include file <CODE><cl_integer.h></CODE> is necessary because the type | |
| <CODE>cl_I</CODE> is used in the function, and the include file <CODE><cl_real.h></CODE> | |
| is needed for the type <CODE>cl_R</CODE> and the floating point number functions. | |
| The order of the include files does not matter. | |
| 
 | |
| 
 | |
| <P> | |
| Then comes the function declaration. The argument is an <CODE>int</CODE>, the | |
| result an integer. The return type is defined as <SAMP>`const cl_I'</SAMP>, not | |
| simply <SAMP>`cl_I'</SAMP>, because that allows the compiler to detect typos like | |
| <SAMP>`fibonacci(n) = 100'</SAMP>. It would be possible to declare the return | |
| type as <CODE>const cl_R</CODE> (real number) or even <CODE>const cl_N</CODE> (complex | |
| number). We use the most specialized possible return type because functions | |
| which call <SAMP>`fibonacci'</SAMP> will be able to profit from the compiler's type | |
| analysis: Adding two integers is slightly more efficient than adding the | |
| same objects declared as complex numbers, because it needs less type | |
| dispatch. Also, when linking to CLN as a non-shared library, this minimizes | |
| the size of the resulting executable program. | |
| 
 | |
| 
 | |
| <P> | |
| The result will be computed as expt(phi,n)/sqrt(5), rounded to the nearest | |
| integer. In order to get a correct result, the absolute error should be less | |
| than 1/2, i.e. the relative error should be less than sqrt(5)/(2*expt(phi,n)). | |
| To this end, the first line computes a floating point precision for sqrt(5) | |
| and phi. | |
| 
 | |
| 
 | |
| <P> | |
| Then sqrt(5) is computed by first converting the integer 5 to a floating point | |
| number and than taking the square root. The converse, first taking the square | |
| root of 5, and then converting to the desired precision, would not work in | |
| CLN: The square root would be computed to a default precision (normally | |
| single-float precision), and the following conversion could not help about | |
| the lacking accuracy. This is because CLN is not a symbolic computer algebra | |
| system and does not represent sqrt(5) in a non-numeric way. | |
| 
 | |
| 
 | |
| <P> | |
| The type <CODE>cl_R</CODE> for sqrt5 and, in the following line, phi is the only | |
| possible choice. You cannot write <CODE>cl_F</CODE> because the C++ compiler can | |
| only infer that <CODE>cl_float(5,prec)</CODE> is a real number. You cannot write | |
| <CODE>cl_N</CODE> because a <SAMP>`round1'</SAMP> does not exist for general complex | |
| numbers. | |
| 
 | |
| 
 | |
| <P> | |
| When the function returns, all the local variables in the function are | |
| automatically reclaimed (garbage collected). Only the result survives and | |
| gets passed to the caller. | |
| 
 | |
| 
 | |
| <P> | |
| The file <CODE>fibonacci.cc</CODE> in the subdirectory <CODE>examples</CODE> | |
| contains this implementation together with an even faster algorithm. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC68" HREF="cln.html#TOC68">11.4 Debugging support</A></H2> | |
| <P> | |
| <A NAME="IDX324"></A> | |
| 
 | |
| 
 | |
| <P> | |
| When debugging a CLN application with GNU <CODE>gdb</CODE>, two facilities are | |
| available from the library: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI>The library does type checks, range checks, consistency checks at | |
| 
 | |
| many places. When one of these fails, the function <CODE>cl_abort()</CODE> is | |
| called. Its default implementation is to perform an <CODE>exit(1)</CODE>, so | |
| you won't have a core dump. But for debugging, it is best to set a | |
| breakpoint at this function: | |
| 
 | |
| <PRE> | |
| (gdb) break cl_abort | |
| </PRE> | |
| 
 | |
| When this breakpoint is hit, look at the stack's backtrace: | |
| 
 | |
| <PRE> | |
| (gdb) where | |
| </PRE> | |
| 
 | |
| <LI>The debugger's normal <CODE>print</CODE> command doesn't know about | |
| 
 | |
| CLN's types and therefore prints mostly useless hexadecimal addresses. | |
| CLN offers a function <CODE>cl_print</CODE>, callable from the debugger, | |
| for printing number objects. In order to get this function, you have | |
| to define the macro <SAMP>`CL_DEBUG'</SAMP> and then include all the header files | |
| for which you want <CODE>cl_print</CODE> debugging support. For example: | |
| <A NAME="IDX325"></A> | |
| 
 | |
| <PRE> | |
| #define CL_DEBUG | |
| #include <cl_string.h> | |
| </PRE> | |
| 
 | |
| Now, if you have in your program a variable <CODE>cl_string s</CODE>, and | |
| inspect it under <CODE>gdb</CODE>, the output may look like this: | |
| 
 | |
| <PRE> | |
| (gdb) print s | |
| $7 = {<cl_gcpointer> = { = {pointer = 0x8055b60, heappointer = 0x8055b60, | |
|   word = 134568800}}, } | |
| (gdb) call cl_print(s) | |
| (cl_string) "" | |
| $8 = 134568800 | |
| </PRE> | |
| 
 | |
| Note that the output of <CODE>cl_print</CODE> goes to the program's error output, | |
| not to gdb's standard output. | |
| 
 | |
| Note, however, that the above facility does not work with all CLN types, | |
| only with number objects and similar. Therefore CLN offers a member function | |
| <CODE>debug_print()</CODE> on all CLN types. The same macro <SAMP>`CL_DEBUG'</SAMP> | |
| is needed for this member function to be implemented. Under <CODE>gdb</CODE>, | |
| you call it like this: | |
| <A NAME="IDX326"></A> | |
| 
 | |
| <PRE> | |
| (gdb) print s | |
| $7 = {<cl_gcpointer> = { = {pointer = 0x8055b60, heappointer = 0x8055b60, | |
|   word = 134568800}}, } | |
| (gdb) call s.debug_print() | |
| (cl_string) "" | |
| (gdb) define cprint | |
| >call ($1).debug_print() | |
| >end | |
| (gdb) cprint s | |
| (cl_string) "" | |
| </PRE> | |
| 
 | |
| Unfortunately, this feature does not seem to work under all circumstances. | |
| </UL> | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC69" HREF="cln.html#TOC69">12. Customizing</A></H1> | |
| <P> | |
| <A NAME="IDX327"></A> | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC70" HREF="cln.html#TOC70">12.1 Error handling</A></H2> | |
| 
 | |
| <P> | |
| When a fatal error occurs, an error message is output to the standard error | |
| output stream, and the function <CODE>cl_abort</CODE> is called. The default | |
| version of this function (provided in the library) terminates the application. | |
| To catch such a fatal error, you need to define the function <CODE>cl_abort</CODE> | |
| yourself, with the prototype | |
| 
 | |
| <PRE> | |
| #include <cl_abort.h> | |
| void cl_abort (void); | |
| </PRE> | |
| 
 | |
| <P> | |
| <A NAME="IDX328"></A> | |
| This function must not return control to its caller. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC71" HREF="cln.html#TOC71">12.2 Floating-point underflow</A></H2> | |
| <P> | |
| <A NAME="IDX329"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Floating point underflow denotes the situation when a floating-point number | |
| is to be created which is so close to <CODE>0</CODE> that its exponent is too | |
| low to be represented internally. By default, this causes a fatal error. | |
| If you set the global variable | |
| 
 | |
| <PRE> | |
| cl_boolean cl_inhibit_floating_point_underflow | |
| </PRE> | |
| 
 | |
| <P> | |
| to <CODE>cl_true</CODE>, the error will be inhibited, and a floating-point zero | |
| will be generated instead.  The default value of  | |
| <CODE>cl_inhibit_floating_point_underflow</CODE> is <CODE>cl_false</CODE>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC72" HREF="cln.html#TOC72">12.3 Customizing I/O</A></H2> | |
| 
 | |
| <P> | |
| The output of the function <CODE>fprint</CODE> may be customized by changing the | |
| value of the global variable <CODE>cl_default_print_flags</CODE>. | |
| <A NAME="IDX330"></A> | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC73" HREF="cln.html#TOC73">12.4 Customizing the memory allocator</A></H2> | |
| 
 | |
| <P> | |
| Every memory allocation of CLN is done through the function pointer | |
| <CODE>cl_malloc_hook</CODE>. Freeing of this memory is done through the function | |
| pointer <CODE>cl_free_hook</CODE>. The default versions of these functions, | |
| provided in the library, call <CODE>malloc</CODE> and <CODE>free</CODE> and check | |
| the <CODE>malloc</CODE> result against <CODE>NULL</CODE>. | |
| If you want to provide another memory allocator, you need to define | |
| the variables <CODE>cl_malloc_hook</CODE> and <CODE>cl_free_hook</CODE> yourself, | |
| like this: | |
| 
 | |
| <PRE> | |
| #include <cl_malloc.h> | |
| void* (*cl_malloc_hook) (size_t size) = ...; | |
| void (*cl_free_hook) (void* ptr)      = ...; | |
| </PRE> | |
| 
 | |
| <P> | |
| <A NAME="IDX331"></A> | |
| <A NAME="IDX332"></A> | |
| The <CODE>cl_malloc_hook</CODE> function must not return a <CODE>NULL</CODE> pointer. | |
| 
 | |
| 
 | |
| <P> | |
| It is not possible to change the memory allocator at runtime, because | |
| it is already called at program startup by the constructors of some | |
| global variables. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC74" HREF="cln.html#TOC74">Index</A></H1> | |
| 
 | |
| <P> | |
| Jump to: | |
| <P> | |
| 
 | |
| 
 | |
| <P><HR><P> | |
| This document was generated on 19 May 2000 using | |
| <A HREF="http://wwwinfo.cern.ch/dis/texi2html/">texi2html</A> 1.56k. | |
| </BODY> | |
| </HTML>
 |