You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4842 lines
143 KiB
4842 lines
143 KiB
<HTML>
|
|
<HEAD>
|
|
<!-- Created by texi2html 1.56k from cln.texi on 2 June 2000 -->
|
|
|
|
<TITLE>CLN, a Class Library for Numbers</TITLE>
|
|
</HEAD>
|
|
<BODY>
|
|
<H1>CLN, a Class Library for Numbers</H1>
|
|
<ADDRESS>by Bruno Haible</ADDRESS>
|
|
<P>
|
|
<P><HR><P>
|
|
<H1>Table of Contents</H1>
|
|
<UL>
|
|
<LI><A NAME="TOC1" HREF="cln.html#SEC1">1. Introduction</A>
|
|
<LI><A NAME="TOC2" HREF="cln.html#SEC2">2. Installation</A>
|
|
<UL>
|
|
<LI><A NAME="TOC3" HREF="cln.html#SEC3">2.1 Prerequisites</A>
|
|
<UL>
|
|
<LI><A NAME="TOC4" HREF="cln.html#SEC4">2.1.1 C++ compiler</A>
|
|
<LI><A NAME="TOC5" HREF="cln.html#SEC5">2.1.2 Make utility</A>
|
|
<LI><A NAME="TOC6" HREF="cln.html#SEC6">2.1.3 Sed utility</A>
|
|
</UL>
|
|
<LI><A NAME="TOC7" HREF="cln.html#SEC7">2.2 Building the library</A>
|
|
<UL>
|
|
<LI><A NAME="TOC8" HREF="cln.html#SEC8">2.2.1 Using the GNU MP Library</A>
|
|
</UL>
|
|
<LI><A NAME="TOC9" HREF="cln.html#SEC9">2.3 Installing the library</A>
|
|
<LI><A NAME="TOC10" HREF="cln.html#SEC10">2.4 Cleaning up</A>
|
|
</UL>
|
|
<LI><A NAME="TOC11" HREF="cln.html#SEC11">3. Ordinary number types</A>
|
|
<UL>
|
|
<LI><A NAME="TOC12" HREF="cln.html#SEC12">3.1 Exact numbers</A>
|
|
<LI><A NAME="TOC13" HREF="cln.html#SEC13">3.2 Floating-point numbers</A>
|
|
<LI><A NAME="TOC14" HREF="cln.html#SEC14">3.3 Complex numbers</A>
|
|
<LI><A NAME="TOC15" HREF="cln.html#SEC15">3.4 Conversions</A>
|
|
</UL>
|
|
<LI><A NAME="TOC16" HREF="cln.html#SEC16">4. Functions on numbers</A>
|
|
<UL>
|
|
<LI><A NAME="TOC17" HREF="cln.html#SEC17">4.1 Constructing numbers</A>
|
|
<UL>
|
|
<LI><A NAME="TOC18" HREF="cln.html#SEC18">4.1.1 Constructing integers</A>
|
|
<LI><A NAME="TOC19" HREF="cln.html#SEC19">4.1.2 Constructing rational numbers</A>
|
|
<LI><A NAME="TOC20" HREF="cln.html#SEC20">4.1.3 Constructing floating-point numbers</A>
|
|
<LI><A NAME="TOC21" HREF="cln.html#SEC21">4.1.4 Constructing complex numbers</A>
|
|
</UL>
|
|
<LI><A NAME="TOC22" HREF="cln.html#SEC22">4.2 Elementary functions</A>
|
|
<LI><A NAME="TOC23" HREF="cln.html#SEC23">4.3 Elementary rational functions</A>
|
|
<LI><A NAME="TOC24" HREF="cln.html#SEC24">4.4 Elementary complex functions</A>
|
|
<LI><A NAME="TOC25" HREF="cln.html#SEC25">4.5 Comparisons</A>
|
|
<LI><A NAME="TOC26" HREF="cln.html#SEC26">4.6 Rounding functions</A>
|
|
<LI><A NAME="TOC27" HREF="cln.html#SEC27">4.7 Roots</A>
|
|
<LI><A NAME="TOC28" HREF="cln.html#SEC28">4.8 Transcendental functions</A>
|
|
<UL>
|
|
<LI><A NAME="TOC29" HREF="cln.html#SEC29">4.8.1 Exponential and logarithmic functions</A>
|
|
<LI><A NAME="TOC30" HREF="cln.html#SEC30">4.8.2 Trigonometric functions</A>
|
|
<LI><A NAME="TOC31" HREF="cln.html#SEC31">4.8.3 Hyperbolic functions</A>
|
|
<LI><A NAME="TOC32" HREF="cln.html#SEC32">4.8.4 Euler gamma</A>
|
|
<LI><A NAME="TOC33" HREF="cln.html#SEC33">4.8.5 Riemann zeta</A>
|
|
</UL>
|
|
<LI><A NAME="TOC34" HREF="cln.html#SEC34">4.9 Functions on integers</A>
|
|
<UL>
|
|
<LI><A NAME="TOC35" HREF="cln.html#SEC35">4.9.1 Logical functions</A>
|
|
<LI><A NAME="TOC36" HREF="cln.html#SEC36">4.9.2 Number theoretic functions</A>
|
|
<LI><A NAME="TOC37" HREF="cln.html#SEC37">4.9.3 Combinatorial functions</A>
|
|
</UL>
|
|
<LI><A NAME="TOC38" HREF="cln.html#SEC38">4.10 Functions on floating-point numbers</A>
|
|
<LI><A NAME="TOC39" HREF="cln.html#SEC39">4.11 Conversion functions</A>
|
|
<UL>
|
|
<LI><A NAME="TOC40" HREF="cln.html#SEC40">4.11.1 Conversion to floating-point numbers</A>
|
|
<LI><A NAME="TOC41" HREF="cln.html#SEC41">4.11.2 Conversion to rational numbers</A>
|
|
</UL>
|
|
<LI><A NAME="TOC42" HREF="cln.html#SEC42">4.12 Random number generators</A>
|
|
<LI><A NAME="TOC43" HREF="cln.html#SEC43">4.13 Obfuscating operators</A>
|
|
</UL>
|
|
<LI><A NAME="TOC44" HREF="cln.html#SEC44">5. Input/Output</A>
|
|
<UL>
|
|
<LI><A NAME="TOC45" HREF="cln.html#SEC45">5.1 Internal and printed representation</A>
|
|
<LI><A NAME="TOC46" HREF="cln.html#SEC46">5.2 Input functions</A>
|
|
<LI><A NAME="TOC47" HREF="cln.html#SEC47">5.3 Output functions</A>
|
|
</UL>
|
|
<LI><A NAME="TOC48" HREF="cln.html#SEC48">6. Rings</A>
|
|
<LI><A NAME="TOC49" HREF="cln.html#SEC49">7. Modular integers</A>
|
|
<UL>
|
|
<LI><A NAME="TOC50" HREF="cln.html#SEC50">7.1 Modular integer rings</A>
|
|
<LI><A NAME="TOC51" HREF="cln.html#SEC51">7.2 Functions on modular integers</A>
|
|
</UL>
|
|
<LI><A NAME="TOC52" HREF="cln.html#SEC52">8. Symbolic data types</A>
|
|
<UL>
|
|
<LI><A NAME="TOC53" HREF="cln.html#SEC53">8.1 Strings</A>
|
|
<LI><A NAME="TOC54" HREF="cln.html#SEC54">8.2 Symbols</A>
|
|
</UL>
|
|
<LI><A NAME="TOC55" HREF="cln.html#SEC55">9. Univariate polynomials</A>
|
|
<UL>
|
|
<LI><A NAME="TOC56" HREF="cln.html#SEC56">9.1 Univariate polynomial rings</A>
|
|
<LI><A NAME="TOC57" HREF="cln.html#SEC57">9.2 Functions on univariate polynomials</A>
|
|
<LI><A NAME="TOC58" HREF="cln.html#SEC58">9.3 Special polynomials</A>
|
|
</UL>
|
|
<LI><A NAME="TOC59" HREF="cln.html#SEC59">10. Internals</A>
|
|
<UL>
|
|
<LI><A NAME="TOC60" HREF="cln.html#SEC60">10.1 Why C++ ?</A>
|
|
<LI><A NAME="TOC61" HREF="cln.html#SEC61">10.2 Memory efficiency</A>
|
|
<LI><A NAME="TOC62" HREF="cln.html#SEC62">10.3 Speed efficiency</A>
|
|
<LI><A NAME="TOC63" HREF="cln.html#SEC63">10.4 Garbage collection</A>
|
|
</UL>
|
|
<LI><A NAME="TOC64" HREF="cln.html#SEC64">11. Using the library</A>
|
|
<UL>
|
|
<LI><A NAME="TOC65" HREF="cln.html#SEC65">11.1 Compiler options</A>
|
|
<LI><A NAME="TOC66" HREF="cln.html#SEC66">11.2 Include files</A>
|
|
<LI><A NAME="TOC67" HREF="cln.html#SEC67">11.3 An Example</A>
|
|
<LI><A NAME="TOC68" HREF="cln.html#SEC68">11.4 Debugging support</A>
|
|
</UL>
|
|
<LI><A NAME="TOC69" HREF="cln.html#SEC69">12. Customizing</A>
|
|
<UL>
|
|
<LI><A NAME="TOC70" HREF="cln.html#SEC70">12.1 Error handling</A>
|
|
<LI><A NAME="TOC71" HREF="cln.html#SEC71">12.2 Floating-point underflow</A>
|
|
<LI><A NAME="TOC72" HREF="cln.html#SEC72">12.3 Customizing I/O</A>
|
|
<LI><A NAME="TOC73" HREF="cln.html#SEC73">12.4 Customizing the memory allocator</A>
|
|
</UL>
|
|
<LI><A NAME="TOC74" HREF="cln.html#SEC74">Index</A>
|
|
</UL>
|
|
<P><HR><P>
|
|
|
|
|
|
<H1><A NAME="SEC1" HREF="cln.html#TOC1">1. Introduction</A></H1>
|
|
|
|
<P>
|
|
CLN is a library for computations with all kinds of numbers.
|
|
It has a rich set of number classes:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
Integers (with unlimited precision),
|
|
|
|
<LI>
|
|
|
|
Rational numbers,
|
|
|
|
<LI>
|
|
|
|
Floating-point numbers:
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
Short float,
|
|
<LI>
|
|
|
|
Single float,
|
|
<LI>
|
|
|
|
Double float,
|
|
<LI>
|
|
|
|
Long float (with unlimited precision),
|
|
</UL>
|
|
|
|
<LI>
|
|
|
|
Complex numbers,
|
|
|
|
<LI>
|
|
|
|
Modular integers (integers modulo a fixed integer),
|
|
|
|
<LI>
|
|
|
|
Univariate polynomials.
|
|
</UL>
|
|
|
|
<P>
|
|
The subtypes of the complex numbers among these are exactly the
|
|
types of numbers known to the Common Lisp language. Therefore
|
|
<CODE>CLN</CODE> can be used for Common Lisp implementations, giving
|
|
<SAMP>`CLN'</SAMP> another meaning: it becomes an abbreviation of
|
|
"Common Lisp Numbers".
|
|
|
|
|
|
<P>
|
|
The CLN package implements
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
Elementary functions (<CODE>+</CODE>, <CODE>-</CODE>, <CODE>*</CODE>, <CODE>/</CODE>, <CODE>sqrt</CODE>,
|
|
comparisons, ...),
|
|
|
|
<LI>
|
|
|
|
Logical functions (logical <CODE>and</CODE>, <CODE>or</CODE>, <CODE>not</CODE>, ...),
|
|
|
|
<LI>
|
|
|
|
Transcendental functions (exponential, logarithmic, trigonometric, hyperbolic
|
|
functions and their inverse functions).
|
|
</UL>
|
|
|
|
<P>
|
|
CLN is a C++ library. Using C++ as an implementation language provides
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
efficiency: it compiles to machine code,
|
|
<LI>
|
|
|
|
type safety: the C++ compiler knows about the number types and complains
|
|
if, for example, you try to assign a float to an integer variable.
|
|
<LI>
|
|
|
|
algebraic syntax: You can use the <CODE>+</CODE>, <CODE>-</CODE>, <CODE>*</CODE>, <CODE>=</CODE>,
|
|
<CODE>==</CODE>, ... operators as in C or C++.
|
|
</UL>
|
|
|
|
<P>
|
|
CLN is memory efficient:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
Small integers and short floats are immediate, not heap allocated.
|
|
<LI>
|
|
|
|
Heap-allocated memory is reclaimed through an automatic, non-interruptive
|
|
garbage collection.
|
|
</UL>
|
|
|
|
<P>
|
|
CLN is speed efficient:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
The kernel of CLN has been written in assembly language for some CPUs
|
|
(<CODE>i386</CODE>, <CODE>m68k</CODE>, <CODE>sparc</CODE>, <CODE>mips</CODE>, <CODE>arm</CODE>).
|
|
<LI>
|
|
|
|
<A NAME="IDX1"></A>
|
|
On all CPUs, CLN may be configured to use the superefficient low-level
|
|
routines from GNU GMP version 3.
|
|
<LI>
|
|
|
|
It uses Karatsuba multiplication, which is significantly faster
|
|
for large numbers than the standard multiplication algorithm.
|
|
<LI>
|
|
|
|
For very large numbers (more than 12000 decimal digits), it uses
|
|
Schönhage-Strassen
|
|
<A NAME="IDX2"></A>
|
|
multiplication, which is an asymptotically optimal multiplication
|
|
algorithm, for multiplication, division and radix conversion.
|
|
</UL>
|
|
|
|
<P>
|
|
CLN aims at being easily integrated into larger software packages:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
The garbage collection imposes no burden on the main application.
|
|
<LI>
|
|
|
|
The library provides hooks for memory allocation and exceptions.
|
|
</UL>
|
|
|
|
|
|
|
|
<H1><A NAME="SEC2" HREF="cln.html#TOC2">2. Installation</A></H1>
|
|
|
|
<P>
|
|
This section describes how to install the CLN package on your system.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC3" HREF="cln.html#TOC3">2.1 Prerequisites</A></H2>
|
|
|
|
|
|
|
|
<H3><A NAME="SEC4" HREF="cln.html#TOC4">2.1.1 C++ compiler</A></H3>
|
|
|
|
<P>
|
|
To build CLN, you need a C++ compiler.
|
|
Actually, you need GNU <CODE>g++ 2.7.0</CODE> or newer.
|
|
On HPPA, you need GNU <CODE>g++ 2.8.0</CODE> or newer.
|
|
I recommend GNU <CODE>g++ 2.95</CODE> or newer.
|
|
|
|
|
|
<P>
|
|
The following C++ features are used:
|
|
classes, member functions,
|
|
overloading of functions and operators,
|
|
constructors and destructors, inline, const,
|
|
multiple inheritance, templates.
|
|
|
|
|
|
<P>
|
|
The following C++ features are not used:
|
|
<CODE>new</CODE>, <CODE>delete</CODE>, virtual inheritance,
|
|
exceptions.
|
|
|
|
|
|
<P>
|
|
CLN relies on semi-automatic ordering of initializations
|
|
of static and global variables, a feature which I could
|
|
implement for GNU g++ only.
|
|
|
|
|
|
|
|
|
|
<H3><A NAME="SEC5" HREF="cln.html#TOC5">2.1.2 Make utility</A></H3>
|
|
<P>
|
|
<A NAME="IDX3"></A>
|
|
|
|
|
|
<P>
|
|
To build CLN, you also need to have GNU <CODE>make</CODE> installed.
|
|
|
|
|
|
|
|
|
|
<H3><A NAME="SEC6" HREF="cln.html#TOC6">2.1.3 Sed utility</A></H3>
|
|
<P>
|
|
<A NAME="IDX4"></A>
|
|
|
|
|
|
<P>
|
|
To build CLN on HP-UX, you also need to have GNU <CODE>sed</CODE> installed.
|
|
This is because the libtool script, which creates the CLN library, relies
|
|
on <CODE>sed</CODE>, and the vendor's <CODE>sed</CODE> utility on these systems is too
|
|
limited.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC7" HREF="cln.html#TOC7">2.2 Building the library</A></H2>
|
|
|
|
<P>
|
|
As with any autoconfiguring GNU software, installation is as easy as this:
|
|
|
|
|
|
|
|
<PRE>
|
|
$ ./configure
|
|
$ make
|
|
$ make check
|
|
</PRE>
|
|
|
|
<P>
|
|
If on your system, <SAMP>`make'</SAMP> is not GNU <CODE>make</CODE>, you have to use
|
|
<SAMP>`gmake'</SAMP> instead of <SAMP>`make'</SAMP> above.
|
|
|
|
|
|
<P>
|
|
The <CODE>configure</CODE> command checks out some features of your system and
|
|
C++ compiler and builds the <CODE>Makefile</CODE>s. The <CODE>make</CODE> command
|
|
builds the library. This step may take 4 hours on an average workstation.
|
|
The <CODE>make check</CODE> runs some test to check that no important subroutine
|
|
has been miscompiled.
|
|
|
|
|
|
<P>
|
|
The <CODE>configure</CODE> command accepts options. To get a summary of them, try
|
|
|
|
|
|
|
|
<PRE>
|
|
$ ./configure --help
|
|
</PRE>
|
|
|
|
<P>
|
|
Some of the options are explained in detail in the <SAMP>`INSTALL.generic'</SAMP> file.
|
|
|
|
|
|
<P>
|
|
You can specify the C compiler, the C++ compiler and their options through
|
|
the following environment variables when running <CODE>configure</CODE>:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>CC</CODE>
|
|
<DD>
|
|
Specifies the C compiler.
|
|
|
|
<DT><CODE>CFLAGS</CODE>
|
|
<DD>
|
|
Flags to be given to the C compiler when compiling programs (not when linking).
|
|
|
|
<DT><CODE>CXX</CODE>
|
|
<DD>
|
|
Specifies the C++ compiler.
|
|
|
|
<DT><CODE>CXXFLAGS</CODE>
|
|
<DD>
|
|
Flags to be given to the C++ compiler when compiling programs (not when linking).
|
|
</DL>
|
|
|
|
<P>
|
|
Examples:
|
|
|
|
|
|
|
|
<PRE>
|
|
$ CC="gcc" CFLAGS="-O" CXX="g++" CXXFLAGS="-O" ./configure
|
|
$ CC="gcc -V 2.7.2" CFLAGS="-O -g" \
|
|
CXX="g++ -V 2.7.2" CXXFLAGS="-O -g" ./configure
|
|
$ CC="gcc -V 2.8.1" CFLAGS="-O -fno-exceptions" \
|
|
CXX="g++ -V 2.8.1" CXXFLAGS="-O -fno-exceptions" ./configure
|
|
$ CC="gcc -V egcs-2.91.60" CFLAGS="-O2 -fno-exceptions" \
|
|
CXX="g++ -V egcs-2.91.60" CFLAGS="-O2 -fno-exceptions" ./configure
|
|
</PRE>
|
|
|
|
<P>
|
|
Note that for these environment variables to take effect, you have to set
|
|
them (assuming a Bourne-compatible shell) on the same line as the
|
|
<CODE>configure</CODE> command. If you made the settings in earlier shell
|
|
commands, you have to <CODE>export</CODE> the environment variables before
|
|
calling <CODE>configure</CODE>. In a <CODE>csh</CODE> shell, you have to use the
|
|
<SAMP>`setenv'</SAMP> command for setting each of the environment variables.
|
|
|
|
|
|
<P>
|
|
On Linux, <CODE>g++</CODE> needs 15 MB to compile the tests. So you should better
|
|
have 17 MB swap space and 1 MB room in $TMPDIR.
|
|
|
|
|
|
<P>
|
|
If you use <CODE>g++</CODE> version 2.7.x, don't add <SAMP>`-O2'</SAMP> to the CXXFLAGS,
|
|
because <SAMP>`g++ -O'</SAMP> generates better code for CLN than <SAMP>`g++ -O2'</SAMP>.
|
|
|
|
|
|
<P>
|
|
If you use <CODE>g++</CODE> version 2.8.x or egcs-2.91.x (a.k.a. egcs-1.1) or
|
|
gcc-2.95.x, I recommend adding <SAMP>`-fno-exceptions'</SAMP> to the CXXFLAGS.
|
|
This will likely generate better code.
|
|
|
|
|
|
<P>
|
|
If you use <CODE>g++</CODE> version egcs-2.91.x (egcs-1.1) or gcc-2.95.x on Sparc,
|
|
add either <SAMP>`-O'</SAMP>, <SAMP>`-O1'</SAMP> or <SAMP>`-O2 -fno-schedule-insns'</SAMP> to the
|
|
CXXFLAGS. With full <SAMP>`-O2'</SAMP>, <CODE>g++</CODE> miscompiles the division routines.
|
|
Also, if you have <CODE>g++</CODE> version egcs-1.1.1 or older on Sparc, you must
|
|
specify <SAMP>`--disable-shared'</SAMP> because <CODE>g++</CODE> would miscompile parts of
|
|
the library.
|
|
|
|
|
|
<P>
|
|
By default, both a shared and a static library are built. You can build
|
|
CLN as a static (or shared) library only, by calling <CODE>configure</CODE> with
|
|
the option <SAMP>`--disable-shared'</SAMP> (or <SAMP>`--disable-static'</SAMP>). While
|
|
shared libraries are usually more convenient to use, they may not work
|
|
on all architectures. Try disabling them if you run into linker
|
|
problems. Also, they are generally somewhat slower than static
|
|
libraries so runtime-critical applications should be linked statically.
|
|
|
|
|
|
|
|
|
|
<H3><A NAME="SEC8" HREF="cln.html#TOC8">2.2.1 Using the GNU MP Library</A></H3>
|
|
<P>
|
|
<A NAME="IDX5"></A>
|
|
|
|
|
|
<P>
|
|
Starting with version 1.1, CLN may be configured to make use of a
|
|
preinstalled <CODE>gmp</CODE> library. Please make sure that you have at
|
|
least <CODE>gmp</CODE> version 3.0 installed since earlier versions are
|
|
unsupported and likely not to work. Enabling this feature by calling
|
|
<CODE>configure</CODE> with the option <SAMP>`--with-gmp'</SAMP> is known to be quite
|
|
a boost for CLN's performance.
|
|
|
|
|
|
<P>
|
|
If you have installed the <CODE>gmp</CODE> library and its header file in
|
|
some place where your compiler cannot find it by default, you must help
|
|
<CODE>configure</CODE> by setting <CODE>CPPFLAGS</CODE> and <CODE>LDFLAGS</CODE>. Here is
|
|
an example:
|
|
|
|
|
|
|
|
<PRE>
|
|
$ CC="gcc" CFLAGS="-O2" CXX="g++" CXXFLAGS="-O2 -fno-exceptions" \
|
|
CPPFLAGS="-I/opt/gmp/include" LDFLAGS="-L/opt/gmp/lib" ./configure --with-gmp
|
|
</PRE>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC9" HREF="cln.html#TOC9">2.3 Installing the library</A></H2>
|
|
<P>
|
|
<A NAME="IDX6"></A>
|
|
|
|
|
|
<P>
|
|
As with any autoconfiguring GNU software, installation is as easy as this:
|
|
|
|
|
|
|
|
<PRE>
|
|
$ make install
|
|
</PRE>
|
|
|
|
<P>
|
|
The <SAMP>`make install'</SAMP> command installs the library and the include files
|
|
into public places (<TT>`/usr/local/lib/'</TT> and <TT>`/usr/local/include/'</TT>,
|
|
if you haven't specified a <CODE>--prefix</CODE> option to <CODE>configure</CODE>).
|
|
This step may require superuser privileges.
|
|
|
|
|
|
<P>
|
|
If you have already built the library and wish to install it, but didn't
|
|
specify <CODE>--prefix=...</CODE> at configure time, just re-run
|
|
<CODE>configure</CODE>, giving it the same options as the first time, plus
|
|
the <CODE>--prefix=...</CODE> option.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC10" HREF="cln.html#TOC10">2.4 Cleaning up</A></H2>
|
|
|
|
<P>
|
|
You can remove system-dependent files generated by <CODE>make</CODE> through
|
|
|
|
|
|
|
|
<PRE>
|
|
$ make clean
|
|
</PRE>
|
|
|
|
<P>
|
|
You can remove all files generated by <CODE>make</CODE>, thus reverting to a
|
|
virgin distribution of CLN, through
|
|
|
|
|
|
|
|
<PRE>
|
|
$ make distclean
|
|
</PRE>
|
|
|
|
|
|
|
|
<H1><A NAME="SEC11" HREF="cln.html#TOC11">3. Ordinary number types</A></H1>
|
|
|
|
<P>
|
|
CLN implements the following class hierarchy:
|
|
|
|
|
|
|
|
<PRE>
|
|
Number
|
|
cl_number
|
|
<cl_number.h>
|
|
|
|
|
|
|
|
Real or complex number
|
|
cl_N
|
|
<cl_complex.h>
|
|
|
|
|
|
|
|
Real number
|
|
cl_R
|
|
<cl_real.h>
|
|
|
|
|
+-------------------+-------------------+
|
|
| |
|
|
Rational number Floating-point number
|
|
cl_RA cl_F
|
|
<cl_rational.h> <cl_float.h>
|
|
| |
|
|
| +-------------+-------------+-------------+
|
|
Integer | | | |
|
|
cl_I Short-Float Single-Float Double-Float Long-Float
|
|
<cl_integer.h> cl_SF cl_FF cl_DF cl_LF
|
|
<cl_sfloat.h> <cl_ffloat.h> <cl_dfloat.h> <cl_lfloat.h>
|
|
</PRE>
|
|
|
|
<P>
|
|
<A NAME="IDX7"></A>
|
|
<A NAME="IDX8"></A>
|
|
The base class <CODE>cl_number</CODE> is an abstract base class.
|
|
It is not useful to declare a variable of this type except if you want
|
|
to completely disable compile-time type checking and use run-time type
|
|
checking instead.
|
|
|
|
|
|
<P>
|
|
<A NAME="IDX9"></A>
|
|
<A NAME="IDX10"></A>
|
|
<A NAME="IDX11"></A>
|
|
The class <CODE>cl_N</CODE> comprises real and complex numbers. There is
|
|
no special class for complex numbers since complex numbers with imaginary
|
|
part <CODE>0</CODE> are automatically converted to real numbers.
|
|
|
|
|
|
<P>
|
|
<A NAME="IDX12"></A>
|
|
The class <CODE>cl_R</CODE> comprises real numbers of different kinds. It is an
|
|
abstract class.
|
|
|
|
|
|
<P>
|
|
<A NAME="IDX13"></A>
|
|
<A NAME="IDX14"></A>
|
|
<A NAME="IDX15"></A>
|
|
The class <CODE>cl_RA</CODE> comprises exact real numbers: rational numbers, including
|
|
integers. There is no special class for non-integral rational numbers
|
|
since rational numbers with denominator <CODE>1</CODE> are automatically converted
|
|
to integers.
|
|
|
|
|
|
<P>
|
|
<A NAME="IDX16"></A>
|
|
The class <CODE>cl_F</CODE> implements floating-point approximations to real numbers.
|
|
It is an abstract class.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC12" HREF="cln.html#TOC12">3.1 Exact numbers</A></H2>
|
|
<P>
|
|
<A NAME="IDX17"></A>
|
|
|
|
|
|
<P>
|
|
Some numbers are represented as exact numbers: there is no loss of information
|
|
when such a number is converted from its mathematical value to its internal
|
|
representation. On exact numbers, the elementary operations (<CODE>+</CODE>,
|
|
<CODE>-</CODE>, <CODE>*</CODE>, <CODE>/</CODE>, comparisons, ...) compute the completely
|
|
correct result.
|
|
|
|
|
|
<P>
|
|
In CLN, the exact numbers are:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
rational numbers (including integers),
|
|
<LI>
|
|
|
|
complex numbers whose real and imaginary parts are both rational numbers.
|
|
</UL>
|
|
|
|
<P>
|
|
Rational numbers are always normalized to the form
|
|
<CODE><VAR>numerator</VAR>/<VAR>denominator</VAR></CODE> where the numerator and denominator
|
|
are coprime integers and the denominator is positive. If the resulting
|
|
denominator is <CODE>1</CODE>, the rational number is converted to an integer.
|
|
|
|
|
|
<P>
|
|
Small integers (typically in the range <CODE>-2^30</CODE>...<CODE>2^30-1</CODE>,
|
|
for 32-bit machines) are especially efficient, because they consume no heap
|
|
allocation. Otherwise the distinction between these immediate integers
|
|
(called "fixnums") and heap allocated integers (called "bignums")
|
|
is completely transparent.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC13" HREF="cln.html#TOC13">3.2 Floating-point numbers</A></H2>
|
|
<P>
|
|
<A NAME="IDX18"></A>
|
|
|
|
|
|
<P>
|
|
Not all real numbers can be represented exactly. (There is an easy mathematical
|
|
proof for this: Only a countable set of numbers can be stored exactly in
|
|
a computer, even if one assumes that it has unlimited storage. But there
|
|
are uncountably many real numbers.) So some approximation is needed.
|
|
CLN implements ordinary floating-point numbers, with mantissa and exponent.
|
|
|
|
|
|
<P>
|
|
<A NAME="IDX19"></A>
|
|
The elementary operations (<CODE>+</CODE>, <CODE>-</CODE>, <CODE>*</CODE>, <CODE>/</CODE>, ...)
|
|
only return approximate results. For example, the value of the expression
|
|
<CODE>(cl_F) 0.3 + (cl_F) 0.4</CODE> prints as <SAMP>`0.70000005'</SAMP>, not as
|
|
<SAMP>`0.7'</SAMP>. Rounding errors like this one are inevitable when computing
|
|
with floating-point numbers.
|
|
|
|
|
|
<P>
|
|
Nevertheless, CLN rounds the floating-point results of the operations <CODE>+</CODE>,
|
|
<CODE>-</CODE>, <CODE>*</CODE>, <CODE>/</CODE>, <CODE>sqrt</CODE> according to the "round-to-even"
|
|
rule: It first computes the exact mathematical result and then returns the
|
|
floating-point number which is nearest to this. If two floating-point numbers
|
|
are equally distant from the ideal result, the one with a <CODE>0</CODE> in its least
|
|
significant mantissa bit is chosen.
|
|
|
|
|
|
<P>
|
|
Similarly, testing floating point numbers for equality <SAMP>`x == y'</SAMP>
|
|
is gambling with random errors. Better check for <SAMP>`abs(x - y) < epsilon'</SAMP>
|
|
for some well-chosen <CODE>epsilon</CODE>.
|
|
|
|
|
|
<P>
|
|
Floating point numbers come in four flavors:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
<A NAME="IDX20"></A>
|
|
Short floats, type <CODE>cl_SF</CODE>.
|
|
They have 1 sign bit, 8 exponent bits (including the exponent's sign),
|
|
and 17 mantissa bits (including the "hidden" bit).
|
|
They don't consume heap allocation.
|
|
|
|
<LI>
|
|
|
|
<A NAME="IDX21"></A>
|
|
Single floats, type <CODE>cl_FF</CODE>.
|
|
They have 1 sign bit, 8 exponent bits (including the exponent's sign),
|
|
and 24 mantissa bits (including the "hidden" bit).
|
|
In CLN, they are represented as IEEE single-precision floating point numbers.
|
|
This corresponds closely to the C/C++ type <SAMP>`float'</SAMP>.
|
|
|
|
<LI>
|
|
|
|
<A NAME="IDX22"></A>
|
|
Double floats, type <CODE>cl_DF</CODE>.
|
|
They have 1 sign bit, 11 exponent bits (including the exponent's sign),
|
|
and 53 mantissa bits (including the "hidden" bit).
|
|
In CLN, they are represented as IEEE double-precision floating point numbers.
|
|
This corresponds closely to the C/C++ type <SAMP>`double'</SAMP>.
|
|
|
|
<LI>
|
|
|
|
<A NAME="IDX23"></A>
|
|
Long floats, type <CODE>cl_LF</CODE>.
|
|
They have 1 sign bit, 32 exponent bits (including the exponent's sign),
|
|
and n mantissa bits (including the "hidden" bit), where n >= 64.
|
|
The precision of a long float is unlimited, but once created, a long float
|
|
has a fixed precision. (No "lazy recomputation".)
|
|
</UL>
|
|
|
|
<P>
|
|
Of course, computations with long floats are more expensive than those
|
|
with smaller floating-point formats.
|
|
|
|
|
|
<P>
|
|
CLN does not implement features like NaNs, denormalized numbers and
|
|
gradual underflow. If the exponent range of some floating-point type
|
|
is too limited for your application, choose another floating-point type
|
|
with larger exponent range.
|
|
|
|
|
|
<P>
|
|
<A NAME="IDX24"></A>
|
|
As a user of CLN, you can forget about the differences between the
|
|
four floating-point types and just declare all your floating-point
|
|
variables as being of type <CODE>cl_F</CODE>. This has the advantage that
|
|
when you change the precision of some computation (say, from <CODE>cl_DF</CODE>
|
|
to <CODE>cl_LF</CODE>), you don't have to change the code, only the precision
|
|
of the initial values. Also, many transcendental functions have been
|
|
declared as returning a <CODE>cl_F</CODE> when the argument is a <CODE>cl_F</CODE>,
|
|
but such declarations are missing for the types <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>,
|
|
<CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>. (Such declarations would be wrong if
|
|
the floating point contagion rule happened to change in the future.)
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC14" HREF="cln.html#TOC14">3.3 Complex numbers</A></H2>
|
|
<P>
|
|
<A NAME="IDX25"></A>
|
|
|
|
|
|
<P>
|
|
Complex numbers, as implemented by the class <CODE>cl_N</CODE>, have a real
|
|
part and an imaginary part, both real numbers. A complex number whose
|
|
imaginary part is the exact number <CODE>0</CODE> is automatically converted
|
|
to a real number.
|
|
|
|
|
|
<P>
|
|
Complex numbers can arise from real numbers alone, for example
|
|
through application of <CODE>sqrt</CODE> or transcendental functions.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC15" HREF="cln.html#TOC15">3.4 Conversions</A></H2>
|
|
<P>
|
|
<A NAME="IDX26"></A>
|
|
|
|
|
|
<P>
|
|
Conversions from any class to any its superclasses ("base classes" in
|
|
C++ terminology) is done automatically.
|
|
|
|
|
|
<P>
|
|
Conversions from the C built-in types <SAMP>`long'</SAMP> and <SAMP>`unsigned long'</SAMP>
|
|
are provided for the classes <CODE>cl_I</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_R</CODE>,
|
|
<CODE>cl_N</CODE> and <CODE>cl_number</CODE>.
|
|
|
|
|
|
<P>
|
|
Conversions from the C built-in types <SAMP>`int'</SAMP> and <SAMP>`unsigned int'</SAMP>
|
|
are provided for the classes <CODE>cl_I</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_R</CODE>,
|
|
<CODE>cl_N</CODE> and <CODE>cl_number</CODE>. However, these conversions emphasize
|
|
efficiency. Their range is therefore limited:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
The conversion from <SAMP>`int'</SAMP> works only if the argument is < 2^29 and > -2^29.
|
|
<LI>
|
|
|
|
The conversion from <SAMP>`unsigned int'</SAMP> works only if the argument is < 2^29.
|
|
</UL>
|
|
|
|
<P>
|
|
In a declaration like <SAMP>`cl_I x = 10;'</SAMP> the C++ compiler is able to
|
|
do the conversion of <CODE>10</CODE> from <SAMP>`int'</SAMP> to <SAMP>`cl_I'</SAMP> at compile time
|
|
already. On the other hand, code like <SAMP>`cl_I x = 1000000000;'</SAMP> is
|
|
in error.
|
|
So, if you want to be sure that an <SAMP>`int'</SAMP> whose magnitude is not guaranteed
|
|
to be < 2^29 is correctly converted to a <SAMP>`cl_I'</SAMP>, first convert it to a
|
|
<SAMP>`long'</SAMP>. Similarly, if a large <SAMP>`unsigned int'</SAMP> is to be converted to a
|
|
<SAMP>`cl_I'</SAMP>, first convert it to an <SAMP>`unsigned long'</SAMP>.
|
|
|
|
|
|
<P>
|
|
Conversions from the C built-in type <SAMP>`float'</SAMP> are provided for the classes
|
|
<CODE>cl_FF</CODE>, <CODE>cl_F</CODE>, <CODE>cl_R</CODE>, <CODE>cl_N</CODE> and <CODE>cl_number</CODE>.
|
|
|
|
|
|
<P>
|
|
Conversions from the C built-in type <SAMP>`double'</SAMP> are provided for the classes
|
|
<CODE>cl_DF</CODE>, <CODE>cl_F</CODE>, <CODE>cl_R</CODE>, <CODE>cl_N</CODE> and <CODE>cl_number</CODE>.
|
|
|
|
|
|
<P>
|
|
Conversions from <SAMP>`const char *'</SAMP> are provided for the classes
|
|
<CODE>cl_I</CODE>, <CODE>cl_RA</CODE>,
|
|
<CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>, <CODE>cl_F</CODE>,
|
|
<CODE>cl_R</CODE>, <CODE>cl_N</CODE>.
|
|
The easiest way to specify a value which is outside of the range of the
|
|
C++ built-in types is therefore to specify it as a string, like this:
|
|
<A NAME="IDX27"></A>
|
|
|
|
<PRE>
|
|
cl_I order_of_rubiks_cube_group = "43252003274489856000";
|
|
</PRE>
|
|
|
|
<P>
|
|
Note that this conversion is done at runtime, not at compile-time.
|
|
|
|
|
|
<P>
|
|
Conversions from <CODE>cl_I</CODE> to the C built-in types <SAMP>`int'</SAMP>,
|
|
<SAMP>`unsigned int'</SAMP>, <SAMP>`long'</SAMP>, <SAMP>`unsigned long'</SAMP> are provided through
|
|
the functions
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>int cl_I_to_int (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX28"></A>
|
|
<DT><CODE>unsigned int cl_I_to_uint (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX29"></A>
|
|
<DT><CODE>long cl_I_to_long (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX30"></A>
|
|
<DT><CODE>unsigned long cl_I_to_ulong (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX31"></A>
|
|
Returns <CODE>x</CODE> as element of the C type <VAR>ctype</VAR>. If <CODE>x</CODE> is not
|
|
representable in the range of <VAR>ctype</VAR>, a runtime error occurs.
|
|
</DL>
|
|
|
|
<P>
|
|
Conversions from the classes <CODE>cl_I</CODE>, <CODE>cl_RA</CODE>,
|
|
<CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>, <CODE>cl_F</CODE> and
|
|
<CODE>cl_R</CODE>
|
|
to the C built-in types <SAMP>`float'</SAMP> and <SAMP>`double'</SAMP> are provided through
|
|
the functions
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>float cl_float_approx (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX32"></A>
|
|
<DT><CODE>double cl_double_approx (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX33"></A>
|
|
Returns an approximation of <CODE>x</CODE> of C type <VAR>ctype</VAR>.
|
|
If <CODE>abs(x)</CODE> is too close to 0 (underflow), 0 is returned.
|
|
If <CODE>abs(x)</CODE> is too large (overflow), an IEEE infinity is returned.
|
|
</DL>
|
|
|
|
<P>
|
|
Conversions from any class to any of its subclasses ("derived classes" in
|
|
C++ terminology) are not provided. Instead, you can assert and check
|
|
that a value belongs to a certain subclass, and return it as element of that
|
|
class, using the <SAMP>`As'</SAMP> and <SAMP>`The'</SAMP> macros.
|
|
<A NAME="IDX34"></A>
|
|
<CODE>As(<VAR>type</VAR>)(<VAR>value</VAR>)</CODE> checks that <VAR>value</VAR> belongs to
|
|
<VAR>type</VAR> and returns it as such.
|
|
<A NAME="IDX35"></A>
|
|
<CODE>The(<VAR>type</VAR>)(<VAR>value</VAR>)</CODE> assumes that <VAR>value</VAR> belongs to
|
|
<VAR>type</VAR> and returns it as such. It is your responsibility to ensure
|
|
that this assumption is valid.
|
|
Example:
|
|
|
|
|
|
|
|
<PRE>
|
|
cl_I x = ...;
|
|
if (!(x >= 0)) abort();
|
|
cl_I ten_x = The(cl_I)(expt(10,x)); // If x >= 0, 10^x is an integer.
|
|
// In general, it would be a rational number.
|
|
</PRE>
|
|
|
|
|
|
|
|
<H1><A NAME="SEC16" HREF="cln.html#TOC16">4. Functions on numbers</A></H1>
|
|
|
|
<P>
|
|
Each of the number classes declares its mathematical operations in the
|
|
corresponding include file. For example, if your code operates with
|
|
objects of type <CODE>cl_I</CODE>, it should <CODE>#include <cl_integer.h></CODE>.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC17" HREF="cln.html#TOC17">4.1 Constructing numbers</A></H2>
|
|
|
|
<P>
|
|
Here is how to create number objects "from nothing".
|
|
|
|
|
|
|
|
|
|
<H3><A NAME="SEC18" HREF="cln.html#TOC18">4.1.1 Constructing integers</A></H3>
|
|
|
|
<P>
|
|
<CODE>cl_I</CODE> objects are most easily constructed from C integers and from
|
|
strings. See section <A HREF="cln.html#SEC15">3.4 Conversions</A>.
|
|
|
|
|
|
|
|
|
|
<H3><A NAME="SEC19" HREF="cln.html#TOC19">4.1.2 Constructing rational numbers</A></H3>
|
|
|
|
<P>
|
|
<CODE>cl_RA</CODE> objects can be constructed from strings. The syntax
|
|
for rational numbers is described in section <A HREF="cln.html#SEC45">5.1 Internal and printed representation</A>.
|
|
Another standard way to produce a rational number is through application
|
|
of <SAMP>`operator /'</SAMP> or <SAMP>`recip'</SAMP> on integers.
|
|
|
|
|
|
|
|
|
|
<H3><A NAME="SEC20" HREF="cln.html#TOC20">4.1.3 Constructing floating-point numbers</A></H3>
|
|
|
|
<P>
|
|
<CODE>cl_F</CODE> objects with low precision are most easily constructed from
|
|
C <SAMP>`float'</SAMP> and <SAMP>`double'</SAMP>. See section <A HREF="cln.html#SEC15">3.4 Conversions</A>.
|
|
|
|
|
|
<P>
|
|
To construct a <CODE>cl_F</CODE> with high precision, you can use the conversion
|
|
from <SAMP>`const char *'</SAMP>, but you have to specify the desired precision
|
|
within the string. (See section <A HREF="cln.html#SEC45">5.1 Internal and printed representation</A>.)
|
|
Example:
|
|
|
|
<PRE>
|
|
cl_F e = "0.271828182845904523536028747135266249775724709369996e+1_40";
|
|
</PRE>
|
|
|
|
<P>
|
|
will set <SAMP>`e'</SAMP> to the given value, with a precision of 40 decimal digits.
|
|
|
|
|
|
<P>
|
|
The programmatic way to construct a <CODE>cl_F</CODE> with high precision is
|
|
through the <CODE>cl_float</CODE> conversion function, see
|
|
section <A HREF="cln.html#SEC40">4.11.1 Conversion to floating-point numbers</A>. For example, to compute
|
|
<CODE>e</CODE> to 40 decimal places, first construct 1.0 to 40 decimal places
|
|
and then apply the exponential function:
|
|
|
|
<PRE>
|
|
cl_float_format_t precision = cl_float_format(40);
|
|
cl_F e = exp(cl_float(1,precision));
|
|
</PRE>
|
|
|
|
|
|
|
|
<H3><A NAME="SEC21" HREF="cln.html#TOC21">4.1.4 Constructing complex numbers</A></H3>
|
|
|
|
<P>
|
|
Non-real <CODE>cl_N</CODE> objects are normally constructed through the function
|
|
|
|
<PRE>
|
|
cl_N complex (const cl_R& realpart, const cl_R& imagpart)
|
|
</PRE>
|
|
|
|
<P>
|
|
See section <A HREF="cln.html#SEC24">4.4 Elementary complex functions</A>.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC22" HREF="cln.html#TOC22">4.2 Elementary functions</A></H2>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><VAR>type</VAR> operator + (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX36"></A>
|
|
Addition.
|
|
|
|
<DT><CODE><VAR>type</VAR> operator - (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX37"></A>
|
|
Subtraction.
|
|
|
|
<DT><CODE><VAR>type</VAR> operator - (const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
Returns the negative of the argument.
|
|
|
|
<DT><CODE><VAR>type</VAR> plus1 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX38"></A>
|
|
Returns <CODE>x + 1</CODE>.
|
|
|
|
<DT><CODE><VAR>type</VAR> minus1 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX39"></A>
|
|
Returns <CODE>x - 1</CODE>.
|
|
|
|
<DT><CODE><VAR>type</VAR> operator * (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX40"></A>
|
|
Multiplication.
|
|
|
|
<DT><CODE><VAR>type</VAR> square (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX41"></A>
|
|
Returns <CODE>x * x</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><VAR>type</VAR> operator / (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX42"></A>
|
|
Division.
|
|
|
|
<DT><CODE><VAR>type</VAR> recip (const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX43"></A>
|
|
Returns the reciprocal of the argument.
|
|
</DL>
|
|
|
|
<P>
|
|
The class <CODE>cl_I</CODE> doesn't define a <SAMP>`/'</SAMP> operation because
|
|
in the C/C++ language this operator, applied to integral types,
|
|
denotes the <SAMP>`floor'</SAMP> or <SAMP>`truncate'</SAMP> operation (which one of these,
|
|
is implementation dependent). (See section <A HREF="cln.html#SEC26">4.6 Rounding functions</A>.)
|
|
Instead, <CODE>cl_I</CODE> defines an "exact quotient" function:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_I exquo (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX44"></A>
|
|
Checks that <CODE>y</CODE> divides <CODE>x</CODE>, and returns the quotient <CODE>x</CODE>/<CODE>y</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
The following exponentiation functions are defined:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_I expt_pos (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX45"></A>
|
|
<DT><CODE>cl_RA expt_pos (const cl_RA& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<CODE>y</CODE> must be > 0. Returns <CODE>x^y</CODE>.
|
|
|
|
<DT><CODE>cl_RA expt (const cl_RA& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX46"></A>
|
|
<DT><CODE>cl_R expt (const cl_R& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_N expt (const cl_N& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
Returns <CODE>x^y</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operation:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><VAR>type</VAR> abs (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX47"></A>
|
|
Returns the absolute value of <CODE>x</CODE>.
|
|
This is <CODE>x</CODE> if <CODE>x >= 0</CODE>, and <CODE>-x</CODE> if <CODE>x <= 0</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
The class <CODE>cl_N</CODE> implements this as follows:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_R abs (const cl_N x)</CODE>
|
|
<DD>
|
|
Returns the absolute value of <CODE>x</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operation:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><VAR>type</VAR> signum (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX48"></A>
|
|
Returns the sign of <CODE>x</CODE>, in the same number format as <CODE>x</CODE>.
|
|
This is defined as <CODE>x / abs(x)</CODE> if <CODE>x</CODE> is non-zero, and
|
|
<CODE>x</CODE> if <CODE>x</CODE> is zero. If <CODE>x</CODE> is real, the value is either
|
|
0 or 1 or -1.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC23" HREF="cln.html#TOC23">4.3 Elementary rational functions</A></H2>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_RA</CODE>, <CODE>cl_I</CODE> defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_I numerator (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX49"></A>
|
|
Returns the numerator of <CODE>x</CODE>.
|
|
|
|
<DT><CODE>cl_I denominator (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX50"></A>
|
|
Returns the denominator of <CODE>x</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
The numerator and denominator of a rational number are normalized in such
|
|
a way that they have no factor in common and the denominator is positive.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC24" HREF="cln.html#TOC24">4.4 Elementary complex functions</A></H2>
|
|
|
|
<P>
|
|
The class <CODE>cl_N</CODE> defines the following operation:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_N complex (const cl_R& a, const cl_R& b)</CODE>
|
|
<DD>
|
|
<A NAME="IDX51"></A>
|
|
Returns the complex number <CODE>a+bi</CODE>, that is, the complex number with
|
|
real part <CODE>a</CODE> and imaginary part <CODE>b</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE> defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_R realpart (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX52"></A>
|
|
Returns the real part of <CODE>x</CODE>.
|
|
|
|
<DT><CODE>cl_R imagpart (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX53"></A>
|
|
Returns the imaginary part of <CODE>x</CODE>.
|
|
|
|
<DT><CODE><VAR>type</VAR> conjugate (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX54"></A>
|
|
Returns the complex conjugate of <CODE>x</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
We have the relations
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
<CODE>x = complex(realpart(x), imagpart(x))</CODE>
|
|
<LI>
|
|
|
|
<CODE>conjugate(x) = complex(realpart(x), -imagpart(x))</CODE>
|
|
</UL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC25" HREF="cln.html#TOC25">4.5 Comparisons</A></H2>
|
|
<P>
|
|
<A NAME="IDX55"></A>
|
|
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>bool operator == (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX56"></A>
|
|
<DT><CODE>bool operator != (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX57"></A>
|
|
Comparison, as in C and C++.
|
|
|
|
<DT><CODE>uint32 cl_equal_hashcode (const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX58"></A>
|
|
Returns a 32-bit hash code that is the same for any two numbers which are
|
|
the same according to <CODE>==</CODE>. This hash code depends on the number's value,
|
|
not its type or precision.
|
|
|
|
<DT><CODE>cl_boolean zerop (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX59"></A>
|
|
Compare against zero: <CODE>x == 0</CODE>
|
|
</DL>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_signean cl_compare (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX60"></A>
|
|
Compares <CODE>x</CODE> and <CODE>y</CODE>. Returns +1 if <CODE>x</CODE>><CODE>y</CODE>,
|
|
-1 if <CODE>x</CODE><<CODE>y</CODE>, 0 if <CODE>x</CODE>=<CODE>y</CODE>.
|
|
|
|
<DT><CODE>bool operator <= (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX61"></A>
|
|
<DT><CODE>bool operator < (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX62"></A>
|
|
<DT><CODE>bool operator >= (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX63"></A>
|
|
<DT><CODE>bool operator > (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX64"></A>
|
|
Comparison, as in C and C++.
|
|
|
|
<DT><CODE>cl_boolean minusp (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX65"></A>
|
|
Compare against zero: <CODE>x < 0</CODE>
|
|
|
|
<DT><CODE>cl_boolean plusp (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX66"></A>
|
|
Compare against zero: <CODE>x > 0</CODE>
|
|
|
|
<DT><CODE><VAR>type</VAR> max (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX67"></A>
|
|
Return the maximum of <CODE>x</CODE> and <CODE>y</CODE>.
|
|
|
|
<DT><CODE><VAR>type</VAR> min (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX68"></A>
|
|
Return the minimum of <CODE>x</CODE> and <CODE>y</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
When a floating point number and a rational number are compared, the float
|
|
is first converted to a rational number using the function <CODE>rational</CODE>.
|
|
Since a floating point number actually represents an interval of real numbers,
|
|
the result might be surprising.
|
|
For example, <CODE>(cl_F)(cl_R)"1/3" == (cl_R)"1/3"</CODE> returns false because
|
|
there is no floating point number whose value is exactly <CODE>1/3</CODE>.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC26" HREF="cln.html#TOC26">4.6 Rounding functions</A></H2>
|
|
<P>
|
|
<A NAME="IDX69"></A>
|
|
|
|
|
|
<P>
|
|
When a real number is to be converted to an integer, there is no "best"
|
|
rounding. The desired rounding function depends on the application.
|
|
The Common Lisp and ISO Lisp standards offer four rounding functions:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>floor(x)</CODE>
|
|
<DD>
|
|
This is the largest integer <=<CODE>x</CODE>.
|
|
|
|
<DT><CODE>ceiling(x)</CODE>
|
|
<DD>
|
|
This is the smallest integer >=<CODE>x</CODE>.
|
|
|
|
<DT><CODE>truncate(x)</CODE>
|
|
<DD>
|
|
Among the integers between 0 and <CODE>x</CODE> (inclusive) the one nearest to <CODE>x</CODE>.
|
|
|
|
<DT><CODE>round(x)</CODE>
|
|
<DD>
|
|
The integer nearest to <CODE>x</CODE>. If <CODE>x</CODE> is exactly halfway between two
|
|
integers, choose the even one.
|
|
</DL>
|
|
|
|
<P>
|
|
These functions have different advantages:
|
|
|
|
|
|
<P>
|
|
<CODE>floor</CODE> and <CODE>ceiling</CODE> are translation invariant:
|
|
<CODE>floor(x+n) = floor(x) + n</CODE> and <CODE>ceiling(x+n) = ceiling(x) + n</CODE>
|
|
for every <CODE>x</CODE> and every integer <CODE>n</CODE>.
|
|
|
|
|
|
<P>
|
|
On the other hand, <CODE>truncate</CODE> and <CODE>round</CODE> are symmetric:
|
|
<CODE>truncate(-x) = -truncate(x)</CODE> and <CODE>round(-x) = -round(x)</CODE>,
|
|
and furthermore <CODE>round</CODE> is unbiased: on the "average", it rounds
|
|
down exactly as often as it rounds up.
|
|
|
|
|
|
<P>
|
|
The functions are related like this:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
<CODE>ceiling(m/n) = floor((m+n-1)/n) = floor((m-1)/n)+1</CODE>
|
|
for rational numbers <CODE>m/n</CODE> (<CODE>m</CODE>, <CODE>n</CODE> integers, <CODE>n</CODE>>0), and
|
|
<LI>
|
|
|
|
<CODE>truncate(x) = sign(x) * floor(abs(x))</CODE>
|
|
</UL>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_I floor1 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX70"></A>
|
|
Returns <CODE>floor(x)</CODE>.
|
|
<DT><CODE>cl_I ceiling1 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX71"></A>
|
|
Returns <CODE>ceiling(x)</CODE>.
|
|
<DT><CODE>cl_I truncate1 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX72"></A>
|
|
Returns <CODE>truncate(x)</CODE>.
|
|
<DT><CODE>cl_I round1 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX73"></A>
|
|
Returns <CODE>round(x)</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_I floor1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
Returns <CODE>floor(x/y)</CODE>.
|
|
<DT><CODE>cl_I ceiling1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
Returns <CODE>ceiling(x/y)</CODE>.
|
|
<DT><CODE>cl_I truncate1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
Returns <CODE>truncate(x/y)</CODE>.
|
|
<DT><CODE>cl_I round1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
Returns <CODE>round(x/y)</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
These functions are called <SAMP>`floor1'</SAMP>, ... here instead of
|
|
<SAMP>`floor'</SAMP>, ..., because on some systems, system dependent include
|
|
files define <SAMP>`floor'</SAMP> and <SAMP>`ceiling'</SAMP> as macros.
|
|
|
|
|
|
<P>
|
|
In many cases, one needs both the quotient and the remainder of a division.
|
|
It is more efficient to compute both at the same time than to perform
|
|
two divisions, one for quotient and the next one for the remainder.
|
|
The following functions therefore return a structure containing both
|
|
the quotient and the remainder. The suffix <SAMP>`2'</SAMP> indicates the number
|
|
of "return values". The remainder is defined as follows:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
for the computation of <CODE>quotient = floor(x)</CODE>,
|
|
<CODE>remainder = x - quotient</CODE>,
|
|
<LI>
|
|
|
|
for the computation of <CODE>quotient = floor(x,y)</CODE>,
|
|
<CODE>remainder = x - quotient*y</CODE>,
|
|
</UL>
|
|
|
|
<P>
|
|
and similarly for the other three operations.
|
|
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>struct <VAR>type</VAR>_div_t { cl_I quotient; <VAR>type</VAR> remainder; };</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>_div_t floor2 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>_div_t ceiling2 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>_div_t truncate2 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>_div_t round2 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
</DL>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>struct <VAR>type</VAR>_div_t { cl_I quotient; <VAR>type</VAR> remainder; };</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>_div_t floor2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX74"></A>
|
|
<DT><CODE><VAR>type</VAR>_div_t ceiling2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX75"></A>
|
|
<DT><CODE><VAR>type</VAR>_div_t truncate2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX76"></A>
|
|
<DT><CODE><VAR>type</VAR>_div_t round2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX77"></A>
|
|
</DL>
|
|
|
|
<P>
|
|
Sometimes, one wants the quotient as a floating-point number (of the
|
|
same format as the argument, if the argument is a float) instead of as
|
|
an integer. The prefix <SAMP>`f'</SAMP> indicates this.
|
|
|
|
|
|
<P>
|
|
Each of the classes
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><VAR>type</VAR> ffloor (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX78"></A>
|
|
<DT><CODE><VAR>type</VAR> fceiling (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX79"></A>
|
|
<DT><CODE><VAR>type</VAR> ftruncate (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX80"></A>
|
|
<DT><CODE><VAR>type</VAR> fround (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX81"></A>
|
|
</DL>
|
|
|
|
<P>
|
|
and similarly for class <CODE>cl_R</CODE>, but with return type <CODE>cl_F</CODE>.
|
|
|
|
|
|
<P>
|
|
The class <CODE>cl_R</CODE> defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_F ffloor (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_F fceiling (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_F ftruncate (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_F fround (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
</DL>
|
|
|
|
<P>
|
|
These functions also exist in versions which return both the quotient
|
|
and the remainder. The suffix <SAMP>`2'</SAMP> indicates this.
|
|
|
|
|
|
<P>
|
|
Each of the classes
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operations:
|
|
<A NAME="IDX82"></A>
|
|
<A NAME="IDX83"></A>
|
|
<A NAME="IDX84"></A>
|
|
<A NAME="IDX85"></A>
|
|
<A NAME="IDX86"></A>
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>struct <VAR>type</VAR>_fdiv_t { <VAR>type</VAR> quotient; <VAR>type</VAR> remainder; };</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>_fdiv_t ffloor2 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX87"></A>
|
|
<DT><CODE><VAR>type</VAR>_fdiv_t fceiling2 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX88"></A>
|
|
<DT><CODE><VAR>type</VAR>_fdiv_t ftruncate2 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX89"></A>
|
|
<DT><CODE><VAR>type</VAR>_fdiv_t fround2 (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX90"></A>
|
|
</DL>
|
|
<P>
|
|
and similarly for class <CODE>cl_R</CODE>, but with quotient type <CODE>cl_F</CODE>.
|
|
<A NAME="IDX91"></A>
|
|
|
|
|
|
<P>
|
|
The class <CODE>cl_R</CODE> defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>struct <VAR>type</VAR>_fdiv_t { cl_F quotient; cl_R remainder; };</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>_fdiv_t ffloor2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>_fdiv_t fceiling2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>_fdiv_t ftruncate2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>_fdiv_t fround2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
</DL>
|
|
|
|
<P>
|
|
Other applications need only the remainder of a division.
|
|
The remainder of <SAMP>`floor'</SAMP> and <SAMP>`ffloor'</SAMP> is called <SAMP>`mod'</SAMP>
|
|
(abbreviation of "modulo"). The remainder <SAMP>`truncate'</SAMP> and
|
|
<SAMP>`ftruncate'</SAMP> is called <SAMP>`rem'</SAMP> (abbreviation of "remainder").
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
<CODE>mod(x,y) = floor2(x,y).remainder = x - floor(x/y)*y</CODE>
|
|
<LI>
|
|
|
|
<CODE>rem(x,y) = truncate2(x,y).remainder = x - truncate(x/y)*y</CODE>
|
|
</UL>
|
|
|
|
<P>
|
|
If <CODE>x</CODE> and <CODE>y</CODE> are both >= 0, <CODE>mod(x,y) = rem(x,y) >= 0</CODE>.
|
|
In general, <CODE>mod(x,y)</CODE> has the sign of <CODE>y</CODE> or is zero,
|
|
and <CODE>rem(x,y)</CODE> has the sign of <CODE>x</CODE> or is zero.
|
|
|
|
|
|
<P>
|
|
The classes <CODE>cl_R</CODE>, <CODE>cl_I</CODE> define the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><VAR>type</VAR> mod (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX92"></A>
|
|
<DT><CODE><VAR>type</VAR> rem (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX93"></A>
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC27" HREF="cln.html#TOC27">4.7 Roots</A></H2>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_R</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operation:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><VAR>type</VAR> sqrt (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX94"></A>
|
|
<CODE>x</CODE> must be >= 0. This function returns the square root of <CODE>x</CODE>,
|
|
normalized to be >= 0. If <CODE>x</CODE> is the square of a rational number,
|
|
<CODE>sqrt(x)</CODE> will be a rational number, else it will return a
|
|
floating-point approximation.
|
|
</DL>
|
|
|
|
<P>
|
|
The classes <CODE>cl_RA</CODE>, <CODE>cl_I</CODE> define the following operation:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_boolean sqrtp (const <VAR>type</VAR>& x, <VAR>type</VAR>* root)</CODE>
|
|
<DD>
|
|
<A NAME="IDX95"></A>
|
|
This tests whether <CODE>x</CODE> is a perfect square. If so, it returns true
|
|
and the exact square root in <CODE>*root</CODE>, else it returns false.
|
|
</DL>
|
|
|
|
<P>
|
|
Furthermore, for integers, similarly:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_boolean isqrt (const <VAR>type</VAR>& x, <VAR>type</VAR>* root)</CODE>
|
|
<DD>
|
|
<A NAME="IDX96"></A>
|
|
<CODE>x</CODE> should be >= 0. This function sets <CODE>*root</CODE> to
|
|
<CODE>floor(sqrt(x))</CODE> and returns the same value as <CODE>sqrtp</CODE>:
|
|
the boolean value <CODE>(expt(*root,2) == x)</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
For <CODE>n</CODE>th roots, the classes <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>
|
|
define the following operation:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_boolean rootp (const <VAR>type</VAR>& x, const cl_I& n, <VAR>type</VAR>* root)</CODE>
|
|
<DD>
|
|
<A NAME="IDX97"></A>
|
|
<CODE>x</CODE> must be >= 0. <CODE>n</CODE> must be > 0.
|
|
This tests whether <CODE>x</CODE> is an <CODE>n</CODE>th power of a rational number.
|
|
If so, it returns true and the exact root in <CODE>*root</CODE>, else it returns
|
|
false.
|
|
</DL>
|
|
|
|
<P>
|
|
The only square root function which accepts negative numbers is the one
|
|
for class <CODE>cl_N</CODE>:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_N sqrt (const cl_N& z)</CODE>
|
|
<DD>
|
|
<A NAME="IDX98"></A>
|
|
Returns the square root of <CODE>z</CODE>, as defined by the formula
|
|
<CODE>sqrt(z) = exp(log(z)/2)</CODE>. Conversion to a floating-point type
|
|
or to a complex number are done if necessary. The range of the result is the
|
|
right half plane <CODE>realpart(sqrt(z)) >= 0</CODE>
|
|
including the positive imaginary axis and 0, but excluding
|
|
the negative imaginary axis.
|
|
The result is an exact number only if <CODE>z</CODE> is an exact number.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC28" HREF="cln.html#TOC28">4.8 Transcendental functions</A></H2>
|
|
<P>
|
|
<A NAME="IDX99"></A>
|
|
|
|
|
|
<P>
|
|
The transcendental functions return an exact result if the argument
|
|
is exact and the result is exact as well. Otherwise they must return
|
|
inexact numbers even if the argument is exact.
|
|
For example, <CODE>cos(0) = 1</CODE> returns the rational number <CODE>1</CODE>.
|
|
|
|
|
|
|
|
|
|
<H3><A NAME="SEC29" HREF="cln.html#TOC29">4.8.1 Exponential and logarithmic functions</A></H3>
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_R exp (const cl_R& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX100"></A>
|
|
<DT><CODE>cl_N exp (const cl_N& x)</CODE>
|
|
<DD>
|
|
Returns the exponential function of <CODE>x</CODE>. This is <CODE>e^x</CODE> where
|
|
<CODE>e</CODE> is the base of the natural logarithms. The range of the result
|
|
is the entire complex plane excluding 0.
|
|
|
|
<DT><CODE>cl_R ln (const cl_R& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX101"></A>
|
|
<CODE>x</CODE> must be > 0. Returns the (natural) logarithm of x.
|
|
|
|
<DT><CODE>cl_N log (const cl_N& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX102"></A>
|
|
Returns the (natural) logarithm of x. If <CODE>x</CODE> is real and positive,
|
|
this is <CODE>ln(x)</CODE>. In general, <CODE>log(x) = log(abs(x)) + i*phase(x)</CODE>.
|
|
The range of the result is the strip in the complex plane
|
|
<CODE>-pi < imagpart(log(x)) <= pi</CODE>.
|
|
|
|
<DT><CODE>cl_R phase (const cl_N& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX103"></A>
|
|
Returns the angle part of <CODE>x</CODE> in its polar representation as a
|
|
complex number. That is, <CODE>phase(x) = atan(realpart(x),imagpart(x))</CODE>.
|
|
This is also the imaginary part of <CODE>log(x)</CODE>.
|
|
The range of the result is the interval <CODE>-pi < phase(x) <= pi</CODE>.
|
|
The result will be an exact number only if <CODE>zerop(x)</CODE> or
|
|
if <CODE>x</CODE> is real and positive.
|
|
|
|
<DT><CODE>cl_R log (const cl_R& a, const cl_R& b)</CODE>
|
|
<DD>
|
|
<CODE>a</CODE> and <CODE>b</CODE> must be > 0. Returns the logarithm of <CODE>a</CODE> with
|
|
respect to base <CODE>b</CODE>. <CODE>log(a,b) = ln(a)/ln(b)</CODE>.
|
|
The result can be exact only if <CODE>a = 1</CODE> or if <CODE>a</CODE> and <CODE>b</CODE>
|
|
are both rational.
|
|
|
|
<DT><CODE>cl_N log (const cl_N& a, const cl_N& b)</CODE>
|
|
<DD>
|
|
Returns the logarithm of <CODE>a</CODE> with respect to base <CODE>b</CODE>.
|
|
<CODE>log(a,b) = log(a)/log(b)</CODE>.
|
|
|
|
<DT><CODE>cl_N expt (const cl_N& x, const cl_N& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX104"></A>
|
|
Exponentiation: Returns <CODE>x^y = exp(y*log(x))</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
The constant e = exp(1) = 2.71828... is returned by the following functions:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_F cl_exp1 (cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX105"></A>
|
|
Returns e as a float of format <CODE>f</CODE>.
|
|
|
|
<DT><CODE>cl_F cl_exp1 (const cl_F& y)</CODE>
|
|
<DD>
|
|
Returns e in the float format of <CODE>y</CODE>.
|
|
|
|
<DT><CODE>cl_F cl_exp1 (void)</CODE>
|
|
<DD>
|
|
Returns e as a float of format <CODE>cl_default_float_format</CODE>.
|
|
</DL>
|
|
|
|
|
|
|
|
<H3><A NAME="SEC30" HREF="cln.html#TOC30">4.8.2 Trigonometric functions</A></H3>
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_R sin (const cl_R& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX106"></A>
|
|
Returns <CODE>sin(x)</CODE>. The range of the result is the interval
|
|
<CODE>-1 <= sin(x) <= 1</CODE>.
|
|
|
|
<DT><CODE>cl_N sin (const cl_N& z)</CODE>
|
|
<DD>
|
|
Returns <CODE>sin(z)</CODE>. The range of the result is the entire complex plane.
|
|
|
|
<DT><CODE>cl_R cos (const cl_R& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX107"></A>
|
|
Returns <CODE>cos(x)</CODE>. The range of the result is the interval
|
|
<CODE>-1 <= cos(x) <= 1</CODE>.
|
|
|
|
<DT><CODE>cl_N cos (const cl_N& x)</CODE>
|
|
<DD>
|
|
Returns <CODE>cos(z)</CODE>. The range of the result is the entire complex plane.
|
|
|
|
<DT><CODE>struct cl_cos_sin_t { cl_R cos; cl_R sin; };</CODE>
|
|
<DD>
|
|
<A NAME="IDX108"></A>
|
|
<DT><CODE>cl_cos_sin_t cl_cos_sin (const cl_R& x)</CODE>
|
|
<DD>
|
|
Returns both <CODE>sin(x)</CODE> and <CODE>cos(x)</CODE>. This is more efficient than
|
|
<A NAME="IDX109"></A>
|
|
computing them separately. The relation <CODE>cos^2 + sin^2 = 1</CODE> will
|
|
hold only approximately.
|
|
|
|
<DT><CODE>cl_R tan (const cl_R& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX110"></A>
|
|
<DT><CODE>cl_N tan (const cl_N& x)</CODE>
|
|
<DD>
|
|
Returns <CODE>tan(x) = sin(x)/cos(x)</CODE>.
|
|
|
|
<DT><CODE>cl_N cis (const cl_R& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX111"></A>
|
|
<DT><CODE>cl_N cis (const cl_N& x)</CODE>
|
|
<DD>
|
|
Returns <CODE>exp(i*x)</CODE>. The name <SAMP>`cis'</SAMP> means "cos + i sin", because
|
|
<CODE>e^(i*x) = cos(x) + i*sin(x)</CODE>.
|
|
|
|
<A NAME="IDX112"></A>
|
|
<A NAME="IDX113"></A>
|
|
<DT><CODE>cl_N asin (const cl_N& z)</CODE>
|
|
<DD>
|
|
Returns <CODE>arcsin(z)</CODE>. This is defined as
|
|
<CODE>arcsin(z) = log(iz+sqrt(1-z^2))/i</CODE> and satisfies
|
|
<CODE>arcsin(-z) = -arcsin(z)</CODE>.
|
|
The range of the result is the strip in the complex domain
|
|
<CODE>-pi/2 <= realpart(arcsin(z)) <= pi/2</CODE>, excluding the numbers
|
|
with <CODE>realpart = -pi/2</CODE> and <CODE>imagpart < 0</CODE> and the numbers
|
|
with <CODE>realpart = pi/2</CODE> and <CODE>imagpart > 0</CODE>.
|
|
|
|
<DT><CODE>cl_N acos (const cl_N& z)</CODE>
|
|
<DD>
|
|
<A NAME="IDX114"></A>
|
|
Returns <CODE>arccos(z)</CODE>. This is defined as
|
|
<CODE>arccos(z) = pi/2 - arcsin(z) = log(z+i*sqrt(1-z^2))/i</CODE>
|
|
and satisfies <CODE>arccos(-z) = pi - arccos(z)</CODE>.
|
|
The range of the result is the strip in the complex domain
|
|
<CODE>0 <= realpart(arcsin(z)) <= pi</CODE>, excluding the numbers
|
|
with <CODE>realpart = 0</CODE> and <CODE>imagpart < 0</CODE> and the numbers
|
|
with <CODE>realpart = pi</CODE> and <CODE>imagpart > 0</CODE>.
|
|
|
|
<A NAME="IDX115"></A>
|
|
<A NAME="IDX116"></A>
|
|
<DT><CODE>cl_R atan (const cl_R& x, const cl_R& y)</CODE>
|
|
<DD>
|
|
Returns the angle of the polar representation of the complex number
|
|
<CODE>x+iy</CODE>. This is <CODE>atan(y/x)</CODE> if <CODE>x>0</CODE>. The range of
|
|
the result is the interval <CODE>-pi < atan(x,y) <= pi</CODE>. The result will
|
|
be an exact number only if <CODE>x > 0</CODE> and <CODE>y</CODE> is the exact <CODE>0</CODE>.
|
|
WARNING: In Common Lisp, this function is called as <CODE>(atan y x)</CODE>,
|
|
with reversed order of arguments.
|
|
|
|
<DT><CODE>cl_R atan (const cl_R& x)</CODE>
|
|
<DD>
|
|
Returns <CODE>arctan(x)</CODE>. This is the same as <CODE>atan(1,x)</CODE>. The range
|
|
of the result is the interval <CODE>-pi/2 < atan(x) < pi/2</CODE>. The result
|
|
will be an exact number only if <CODE>x</CODE> is the exact <CODE>0</CODE>.
|
|
|
|
<DT><CODE>cl_N atan (const cl_N& z)</CODE>
|
|
<DD>
|
|
Returns <CODE>arctan(z)</CODE>. This is defined as
|
|
<CODE>arctan(z) = (log(1+iz)-log(1-iz)) / 2i</CODE> and satisfies
|
|
<CODE>arctan(-z) = -arctan(z)</CODE>. The range of the result is
|
|
the strip in the complex domain
|
|
<CODE>-pi/2 <= realpart(arctan(z)) <= pi/2</CODE>, excluding the numbers
|
|
with <CODE>realpart = -pi/2</CODE> and <CODE>imagpart >= 0</CODE> and the numbers
|
|
with <CODE>realpart = pi/2</CODE> and <CODE>imagpart <= 0</CODE>.
|
|
|
|
</DL>
|
|
|
|
<P>
|
|
<A NAME="IDX117"></A>
|
|
<A NAME="IDX118"></A>
|
|
Archimedes' constant pi = 3.14... is returned by the following functions:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_F cl_pi (cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX119"></A>
|
|
Returns pi as a float of format <CODE>f</CODE>.
|
|
|
|
<DT><CODE>cl_F cl_pi (const cl_F& y)</CODE>
|
|
<DD>
|
|
Returns pi in the float format of <CODE>y</CODE>.
|
|
|
|
<DT><CODE>cl_F cl_pi (void)</CODE>
|
|
<DD>
|
|
Returns pi as a float of format <CODE>cl_default_float_format</CODE>.
|
|
</DL>
|
|
|
|
|
|
|
|
<H3><A NAME="SEC31" HREF="cln.html#TOC31">4.8.3 Hyperbolic functions</A></H3>
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_R sinh (const cl_R& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX120"></A>
|
|
Returns <CODE>sinh(x)</CODE>.
|
|
|
|
<DT><CODE>cl_N sinh (const cl_N& z)</CODE>
|
|
<DD>
|
|
Returns <CODE>sinh(z)</CODE>. The range of the result is the entire complex plane.
|
|
|
|
<DT><CODE>cl_R cosh (const cl_R& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX121"></A>
|
|
Returns <CODE>cosh(x)</CODE>. The range of the result is the interval
|
|
<CODE>cosh(x) >= 1</CODE>.
|
|
|
|
<DT><CODE>cl_N cosh (const cl_N& z)</CODE>
|
|
<DD>
|
|
Returns <CODE>cosh(z)</CODE>. The range of the result is the entire complex plane.
|
|
|
|
<DT><CODE>struct cl_cosh_sinh_t { cl_R cosh; cl_R sinh; };</CODE>
|
|
<DD>
|
|
<A NAME="IDX122"></A>
|
|
<DT><CODE>cl_cosh_sinh_t cl_cosh_sinh (const cl_R& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX123"></A>
|
|
Returns both <CODE>sinh(x)</CODE> and <CODE>cosh(x)</CODE>. This is more efficient than
|
|
computing them separately. The relation <CODE>cosh^2 - sinh^2 = 1</CODE> will
|
|
hold only approximately.
|
|
|
|
<DT><CODE>cl_R tanh (const cl_R& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX124"></A>
|
|
<DT><CODE>cl_N tanh (const cl_N& x)</CODE>
|
|
<DD>
|
|
Returns <CODE>tanh(x) = sinh(x)/cosh(x)</CODE>.
|
|
|
|
<DT><CODE>cl_N asinh (const cl_N& z)</CODE>
|
|
<DD>
|
|
<A NAME="IDX125"></A>
|
|
Returns <CODE>arsinh(z)</CODE>. This is defined as
|
|
<CODE>arsinh(z) = log(z+sqrt(1+z^2))</CODE> and satisfies
|
|
<CODE>arsinh(-z) = -arsinh(z)</CODE>.
|
|
The range of the result is the strip in the complex domain
|
|
<CODE>-pi/2 <= imagpart(arsinh(z)) <= pi/2</CODE>, excluding the numbers
|
|
with <CODE>imagpart = -pi/2</CODE> and <CODE>realpart > 0</CODE> and the numbers
|
|
with <CODE>imagpart = pi/2</CODE> and <CODE>realpart < 0</CODE>.
|
|
|
|
<DT><CODE>cl_N acosh (const cl_N& z)</CODE>
|
|
<DD>
|
|
<A NAME="IDX126"></A>
|
|
Returns <CODE>arcosh(z)</CODE>. This is defined as
|
|
<CODE>arcosh(z) = 2*log(sqrt((z+1)/2)+sqrt((z-1)/2))</CODE>.
|
|
The range of the result is the half-strip in the complex domain
|
|
<CODE>-pi < imagpart(arcosh(z)) <= pi, realpart(arcosh(z)) >= 0</CODE>,
|
|
excluding the numbers with <CODE>realpart = 0</CODE> and <CODE>-pi < imagpart < 0</CODE>.
|
|
|
|
<DT><CODE>cl_N atanh (const cl_N& z)</CODE>
|
|
<DD>
|
|
<A NAME="IDX127"></A>
|
|
Returns <CODE>artanh(z)</CODE>. This is defined as
|
|
<CODE>artanh(z) = (log(1+z)-log(1-z)) / 2</CODE> and satisfies
|
|
<CODE>artanh(-z) = -artanh(z)</CODE>. The range of the result is
|
|
the strip in the complex domain
|
|
<CODE>-pi/2 <= imagpart(artanh(z)) <= pi/2</CODE>, excluding the numbers
|
|
with <CODE>imagpart = -pi/2</CODE> and <CODE>realpart <= 0</CODE> and the numbers
|
|
with <CODE>imagpart = pi/2</CODE> and <CODE>realpart >= 0</CODE>.
|
|
</DL>
|
|
|
|
|
|
|
|
<H3><A NAME="SEC32" HREF="cln.html#TOC32">4.8.4 Euler gamma</A></H3>
|
|
<P>
|
|
<A NAME="IDX128"></A>
|
|
|
|
|
|
<P>
|
|
Euler's constant C = 0.577... is returned by the following functions:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_F cl_eulerconst (cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX129"></A>
|
|
Returns Euler's constant as a float of format <CODE>f</CODE>.
|
|
|
|
<DT><CODE>cl_F cl_eulerconst (const cl_F& y)</CODE>
|
|
<DD>
|
|
Returns Euler's constant in the float format of <CODE>y</CODE>.
|
|
|
|
<DT><CODE>cl_F cl_eulerconst (void)</CODE>
|
|
<DD>
|
|
Returns Euler's constant as a float of format <CODE>cl_default_float_format</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
Catalan's constant G = 0.915... is returned by the following functions:
|
|
<A NAME="IDX130"></A>
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_F cl_catalanconst (cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX131"></A>
|
|
Returns Catalan's constant as a float of format <CODE>f</CODE>.
|
|
|
|
<DT><CODE>cl_F cl_catalanconst (const cl_F& y)</CODE>
|
|
<DD>
|
|
Returns Catalan's constant in the float format of <CODE>y</CODE>.
|
|
|
|
<DT><CODE>cl_F cl_catalanconst (void)</CODE>
|
|
<DD>
|
|
Returns Catalan's constant as a float of format <CODE>cl_default_float_format</CODE>.
|
|
</DL>
|
|
|
|
|
|
|
|
<H3><A NAME="SEC33" HREF="cln.html#TOC33">4.8.5 Riemann zeta</A></H3>
|
|
<P>
|
|
<A NAME="IDX132"></A>
|
|
|
|
|
|
<P>
|
|
Riemann's zeta function at an integral point <CODE>s>1</CODE> is returned by the
|
|
following functions:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_F cl_zeta (int s, cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX133"></A>
|
|
Returns Riemann's zeta function at <CODE>s</CODE> as a float of format <CODE>f</CODE>.
|
|
|
|
<DT><CODE>cl_F cl_zeta (int s, const cl_F& y)</CODE>
|
|
<DD>
|
|
Returns Riemann's zeta function at <CODE>s</CODE> in the float format of <CODE>y</CODE>.
|
|
|
|
<DT><CODE>cl_F cl_zeta (int s)</CODE>
|
|
<DD>
|
|
Returns Riemann's zeta function at <CODE>s</CODE> as a float of format
|
|
<CODE>cl_default_float_format</CODE>.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC34" HREF="cln.html#TOC34">4.9 Functions on integers</A></H2>
|
|
|
|
|
|
|
|
<H3><A NAME="SEC35" HREF="cln.html#TOC35">4.9.1 Logical functions</A></H3>
|
|
|
|
<P>
|
|
Integers, when viewed as in two's complement notation, can be thought as
|
|
infinite bit strings where the bits' values eventually are constant.
|
|
For example,
|
|
|
|
<PRE>
|
|
17 = ......00010001
|
|
-6 = ......11111010
|
|
</PRE>
|
|
|
|
<P>
|
|
The logical operations view integers as such bit strings and operate
|
|
on each of the bit positions in parallel.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_I lognot (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX134"></A>
|
|
<DT><CODE>cl_I operator ~ (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX135"></A>
|
|
Logical not, like <CODE>~x</CODE> in C. This is the same as <CODE>-1-x</CODE>.
|
|
|
|
<DT><CODE>cl_I logand (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX136"></A>
|
|
<DT><CODE>cl_I operator & (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX137"></A>
|
|
Logical and, like <CODE>x & y</CODE> in C.
|
|
|
|
<DT><CODE>cl_I logior (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX138"></A>
|
|
<DT><CODE>cl_I operator | (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX139"></A>
|
|
Logical (inclusive) or, like <CODE>x | y</CODE> in C.
|
|
|
|
<DT><CODE>cl_I logxor (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX140"></A>
|
|
<DT><CODE>cl_I operator ^ (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX141"></A>
|
|
Exclusive or, like <CODE>x ^ y</CODE> in C.
|
|
|
|
<DT><CODE>cl_I logeqv (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX142"></A>
|
|
Bitwise equivalence, like <CODE>~(x ^ y)</CODE> in C.
|
|
|
|
<DT><CODE>cl_I lognand (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX143"></A>
|
|
Bitwise not and, like <CODE>~(x & y)</CODE> in C.
|
|
|
|
<DT><CODE>cl_I lognor (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX144"></A>
|
|
Bitwise not or, like <CODE>~(x | y)</CODE> in C.
|
|
|
|
<DT><CODE>cl_I logandc1 (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX145"></A>
|
|
Logical and, complementing the first argument, like <CODE>~x & y</CODE> in C.
|
|
|
|
<DT><CODE>cl_I logandc2 (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX146"></A>
|
|
Logical and, complementing the second argument, like <CODE>x & ~y</CODE> in C.
|
|
|
|
<DT><CODE>cl_I logorc1 (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX147"></A>
|
|
Logical or, complementing the first argument, like <CODE>~x | y</CODE> in C.
|
|
|
|
<DT><CODE>cl_I logorc2 (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX148"></A>
|
|
Logical or, complementing the second argument, like <CODE>x | ~y</CODE> in C.
|
|
</DL>
|
|
|
|
<P>
|
|
These operations are all available though the function
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_I boole (cl_boole op, const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX149"></A>
|
|
</DL>
|
|
<P>
|
|
where <CODE>op</CODE> must have one of the 16 values (each one stands for a function
|
|
which combines two bits into one bit): <CODE>boole_clr</CODE>, <CODE>boole_set</CODE>,
|
|
<CODE>boole_1</CODE>, <CODE>boole_2</CODE>, <CODE>boole_c1</CODE>, <CODE>boole_c2</CODE>,
|
|
<CODE>boole_and</CODE>, <CODE>boole_ior</CODE>, <CODE>boole_xor</CODE>, <CODE>boole_eqv</CODE>,
|
|
<CODE>boole_nand</CODE>, <CODE>boole_nor</CODE>, <CODE>boole_andc1</CODE>, <CODE>boole_andc2</CODE>,
|
|
<CODE>boole_orc1</CODE>, <CODE>boole_orc2</CODE>.
|
|
<A NAME="IDX150"></A>
|
|
<A NAME="IDX151"></A>
|
|
<A NAME="IDX152"></A>
|
|
<A NAME="IDX153"></A>
|
|
<A NAME="IDX154"></A>
|
|
<A NAME="IDX155"></A>
|
|
<A NAME="IDX156"></A>
|
|
<A NAME="IDX157"></A>
|
|
<A NAME="IDX158"></A>
|
|
<A NAME="IDX159"></A>
|
|
<A NAME="IDX160"></A>
|
|
<A NAME="IDX161"></A>
|
|
<A NAME="IDX162"></A>
|
|
<A NAME="IDX163"></A>
|
|
<A NAME="IDX164"></A>
|
|
|
|
|
|
<P>
|
|
Other functions that view integers as bit strings:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_boolean logtest (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX165"></A>
|
|
Returns true if some bit is set in both <CODE>x</CODE> and <CODE>y</CODE>, i.e. if
|
|
<CODE>logand(x,y) != 0</CODE>.
|
|
|
|
<DT><CODE>cl_boolean logbitp (const cl_I& n, const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX166"></A>
|
|
Returns true if the <CODE>n</CODE>th bit (from the right) of <CODE>x</CODE> is set.
|
|
Bit 0 is the least significant bit.
|
|
|
|
<DT><CODE>uintL logcount (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX167"></A>
|
|
Returns the number of one bits in <CODE>x</CODE>, if <CODE>x</CODE> >= 0, or
|
|
the number of zero bits in <CODE>x</CODE>, if <CODE>x</CODE> < 0.
|
|
</DL>
|
|
|
|
<P>
|
|
The following functions operate on intervals of bits in integers.
|
|
The type
|
|
|
|
<PRE>
|
|
struct cl_byte { uintL size; uintL position; };
|
|
</PRE>
|
|
|
|
<P>
|
|
<A NAME="IDX168"></A>
|
|
represents the bit interval containing the bits
|
|
<CODE>position</CODE>...<CODE>position+size-1</CODE> of an integer.
|
|
The constructor <CODE>cl_byte(size,position)</CODE> constructs a <CODE>cl_byte</CODE>.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_I ldb (const cl_I& n, const cl_byte& b)</CODE>
|
|
<DD>
|
|
<A NAME="IDX169"></A>
|
|
extracts the bits of <CODE>n</CODE> described by the bit interval <CODE>b</CODE>
|
|
and returns them as a nonnegative integer with <CODE>b.size</CODE> bits.
|
|
|
|
<DT><CODE>cl_boolean ldb_test (const cl_I& n, const cl_byte& b)</CODE>
|
|
<DD>
|
|
<A NAME="IDX170"></A>
|
|
Returns true if some bit described by the bit interval <CODE>b</CODE> is set in
|
|
<CODE>n</CODE>.
|
|
|
|
<DT><CODE>cl_I dpb (const cl_I& newbyte, const cl_I& n, const cl_byte& b)</CODE>
|
|
<DD>
|
|
<A NAME="IDX171"></A>
|
|
Returns <CODE>n</CODE>, with the bits described by the bit interval <CODE>b</CODE>
|
|
replaced by <CODE>newbyte</CODE>. Only the lowest <CODE>b.size</CODE> bits of
|
|
<CODE>newbyte</CODE> are relevant.
|
|
</DL>
|
|
|
|
<P>
|
|
The functions <CODE>ldb</CODE> and <CODE>dpb</CODE> implicitly shift. The following
|
|
functions are their counterparts without shifting:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_I mask_field (const cl_I& n, const cl_byte& b)</CODE>
|
|
<DD>
|
|
<A NAME="IDX172"></A>
|
|
returns an integer with the bits described by the bit interval <CODE>b</CODE>
|
|
copied from the corresponding bits in <CODE>n</CODE>, the other bits zero.
|
|
|
|
<DT><CODE>cl_I deposit_field (const cl_I& newbyte, const cl_I& n, const cl_byte& b)</CODE>
|
|
<DD>
|
|
<A NAME="IDX173"></A>
|
|
returns an integer where the bits described by the bit interval <CODE>b</CODE>
|
|
come from <CODE>newbyte</CODE> and the other bits come from <CODE>n</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
The following relations hold:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
<CODE>ldb (n, b) = mask_field(n, b) >> b.position</CODE>,
|
|
<LI>
|
|
|
|
<CODE>dpb (newbyte, n, b) = deposit_field (newbyte << b.position, n, b)</CODE>,
|
|
<LI>
|
|
|
|
<CODE>deposit_field(newbyte,n,b) = n ^ mask_field(n,b) ^ mask_field(new_byte,b)</CODE>.
|
|
</UL>
|
|
|
|
<P>
|
|
The following operations on integers as bit strings are efficient shortcuts
|
|
for common arithmetic operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_boolean oddp (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX174"></A>
|
|
Returns true if the least significant bit of <CODE>x</CODE> is 1. Equivalent to
|
|
<CODE>mod(x,2) != 0</CODE>.
|
|
|
|
<DT><CODE>cl_boolean evenp (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX175"></A>
|
|
Returns true if the least significant bit of <CODE>x</CODE> is 0. Equivalent to
|
|
<CODE>mod(x,2) == 0</CODE>.
|
|
|
|
<DT><CODE>cl_I operator << (const cl_I& x, const cl_I& n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX176"></A>
|
|
Shifts <CODE>x</CODE> by <CODE>n</CODE> bits to the left. <CODE>n</CODE> should be >=0.
|
|
Equivalent to <CODE>x * expt(2,n)</CODE>.
|
|
|
|
<DT><CODE>cl_I operator >> (const cl_I& x, const cl_I& n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX177"></A>
|
|
Shifts <CODE>x</CODE> by <CODE>n</CODE> bits to the right. <CODE>n</CODE> should be >=0.
|
|
Bits shifted out to the right are thrown away.
|
|
Equivalent to <CODE>floor(x / expt(2,n))</CODE>.
|
|
|
|
<DT><CODE>cl_I ash (const cl_I& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX178"></A>
|
|
Shifts <CODE>x</CODE> by <CODE>y</CODE> bits to the left (if <CODE>y</CODE>>=0) or
|
|
by <CODE>-y</CODE> bits to the right (if <CODE>y</CODE><=0). In other words, this
|
|
returns <CODE>floor(x * expt(2,y))</CODE>.
|
|
|
|
<DT><CODE>uintL integer_length (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX179"></A>
|
|
Returns the number of bits (excluding the sign bit) needed to represent <CODE>x</CODE>
|
|
in two's complement notation. This is the smallest n >= 0 such that
|
|
-2^n <= x < 2^n. If x > 0, this is the unique n > 0 such that
|
|
2^(n-1) <= x < 2^n.
|
|
|
|
<DT><CODE>uintL ord2 (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX180"></A>
|
|
<CODE>x</CODE> must be non-zero. This function returns the number of 0 bits at the
|
|
right of <CODE>x</CODE> in two's complement notation. This is the largest n >= 0
|
|
such that 2^n divides <CODE>x</CODE>.
|
|
|
|
<DT><CODE>uintL power2p (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX181"></A>
|
|
<CODE>x</CODE> must be > 0. This function checks whether <CODE>x</CODE> is a power of 2.
|
|
If <CODE>x</CODE> = 2^(n-1), it returns n. Else it returns 0.
|
|
(See also the function <CODE>logp</CODE>.)
|
|
</DL>
|
|
|
|
|
|
|
|
<H3><A NAME="SEC36" HREF="cln.html#TOC36">4.9.2 Number theoretic functions</A></H3>
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>uint32 gcd (uint32 a, uint32 b)</CODE>
|
|
<DD>
|
|
<A NAME="IDX182"></A>
|
|
<DT><CODE>cl_I gcd (const cl_I& a, const cl_I& b)</CODE>
|
|
<DD>
|
|
This function returns the greatest common divisor of <CODE>a</CODE> and <CODE>b</CODE>,
|
|
normalized to be >= 0.
|
|
|
|
<DT><CODE>cl_I xgcd (const cl_I& a, const cl_I& b, cl_I* u, cl_I* v)</CODE>
|
|
<DD>
|
|
<A NAME="IDX183"></A>
|
|
This function ("extended gcd") returns the greatest common divisor <CODE>g</CODE> of
|
|
<CODE>a</CODE> and <CODE>b</CODE> and at the same time the representation of <CODE>g</CODE>
|
|
as an integral linear combination of <CODE>a</CODE> and <CODE>b</CODE>:
|
|
<CODE>u</CODE> and <CODE>v</CODE> with <CODE>u*a+v*b = g</CODE>, <CODE>g</CODE> >= 0.
|
|
<CODE>u</CODE> and <CODE>v</CODE> will be normalized to be of smallest possible absolute
|
|
value, in the following sense: If <CODE>a</CODE> and <CODE>b</CODE> are non-zero, and
|
|
<CODE>abs(a) != abs(b)</CODE>, <CODE>u</CODE> and <CODE>v</CODE> will satisfy the inequalities
|
|
<CODE>abs(u) <= abs(b)/(2*g)</CODE>, <CODE>abs(v) <= abs(a)/(2*g)</CODE>.
|
|
|
|
<DT><CODE>cl_I lcm (const cl_I& a, const cl_I& b)</CODE>
|
|
<DD>
|
|
<A NAME="IDX184"></A>
|
|
This function returns the least common multiple of <CODE>a</CODE> and <CODE>b</CODE>,
|
|
normalized to be >= 0.
|
|
|
|
<DT><CODE>cl_boolean logp (const cl_I& a, const cl_I& b, cl_RA* l)</CODE>
|
|
<DD>
|
|
<A NAME="IDX185"></A>
|
|
<DT><CODE>cl_boolean logp (const cl_RA& a, const cl_RA& b, cl_RA* l)</CODE>
|
|
<DD>
|
|
<CODE>a</CODE> must be > 0. <CODE>b</CODE> must be >0 and != 1. If log(a,b) is
|
|
rational number, this function returns true and sets *l = log(a,b), else
|
|
it returns false.
|
|
</DL>
|
|
|
|
|
|
|
|
<H3><A NAME="SEC37" HREF="cln.html#TOC37">4.9.3 Combinatorial functions</A></H3>
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_I factorial (uintL n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX186"></A>
|
|
<CODE>n</CODE> must be a small integer >= 0. This function returns the factorial
|
|
<CODE>n</CODE>! = <CODE>1*2*...*n</CODE>.
|
|
|
|
<DT><CODE>cl_I doublefactorial (uintL n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX187"></A>
|
|
<CODE>n</CODE> must be a small integer >= 0. This function returns the
|
|
doublefactorial <CODE>n</CODE>!! = <CODE>1*3*...*n</CODE> or
|
|
<CODE>n</CODE>!! = <CODE>2*4*...*n</CODE>, respectively.
|
|
|
|
<DT><CODE>cl_I binomial (uintL n, uintL k)</CODE>
|
|
<DD>
|
|
<A NAME="IDX188"></A>
|
|
<CODE>n</CODE> and <CODE>k</CODE> must be small integers >= 0. This function returns the
|
|
binomial coefficient
|
|
(<CODE>n</CODE> choose <CODE>k</CODE>) = <CODE>n</CODE>! / <CODE>k</CODE>! <CODE>(n-k)</CODE>!
|
|
for 0 <= k <= n, 0 else.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC38" HREF="cln.html#TOC38">4.10 Functions on floating-point numbers</A></H2>
|
|
|
|
<P>
|
|
Recall that a floating-point number consists of a sign <CODE>s</CODE>, an
|
|
exponent <CODE>e</CODE> and a mantissa <CODE>m</CODE>. The value of the number is
|
|
<CODE>(-1)^s * 2^e * m</CODE>.
|
|
|
|
|
|
<P>
|
|
Each of the classes
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines the following operations.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><VAR>type</VAR> scale_float (const <VAR>type</VAR>& x, sintL delta)</CODE>
|
|
<DD>
|
|
<A NAME="IDX189"></A>
|
|
<DT><CODE><VAR>type</VAR> scale_float (const <VAR>type</VAR>& x, const cl_I& delta)</CODE>
|
|
<DD>
|
|
Returns <CODE>x*2^delta</CODE>. This is more efficient than an explicit multiplication
|
|
because it copies <CODE>x</CODE> and modifies the exponent.
|
|
</DL>
|
|
|
|
<P>
|
|
The following functions provide an abstract interface to the underlying
|
|
representation of floating-point numbers.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>sintL float_exponent (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX190"></A>
|
|
Returns the exponent <CODE>e</CODE> of <CODE>x</CODE>.
|
|
For <CODE>x = 0.0</CODE>, this is 0. For <CODE>x</CODE> non-zero, this is the unique
|
|
integer with <CODE>2^(e-1) <= abs(x) < 2^e</CODE>.
|
|
|
|
<DT><CODE>sintL float_radix (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX191"></A>
|
|
Returns the base of the floating-point representation. This is always <CODE>2</CODE>.
|
|
|
|
<DT><CODE><VAR>type</VAR> float_sign (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX192"></A>
|
|
Returns the sign <CODE>s</CODE> of <CODE>x</CODE> as a float. The value is 1 for
|
|
<CODE>x</CODE> >= 0, -1 for <CODE>x</CODE> < 0.
|
|
|
|
<DT><CODE>uintL float_digits (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX193"></A>
|
|
Returns the number of mantissa bits in the floating-point representation
|
|
of <CODE>x</CODE>, including the hidden bit. The value only depends on the type
|
|
of <CODE>x</CODE>, not on its value.
|
|
|
|
<DT><CODE>uintL float_precision (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX194"></A>
|
|
Returns the number of significant mantissa bits in the floating-point
|
|
representation of <CODE>x</CODE>. Since denormalized numbers are not supported,
|
|
this is the same as <CODE>float_digits(x)</CODE> if <CODE>x</CODE> is non-zero, and
|
|
0 if <CODE>x</CODE> = 0.
|
|
</DL>
|
|
|
|
<P>
|
|
The complete internal representation of a float is encoded in the type
|
|
<A NAME="IDX195"></A>
|
|
<A NAME="IDX196"></A>
|
|
<A NAME="IDX197"></A>
|
|
<A NAME="IDX198"></A>
|
|
<A NAME="IDX199"></A>
|
|
<CODE>cl_decoded_float</CODE> (or <CODE>cl_decoded_sfloat</CODE>, <CODE>cl_decoded_ffloat</CODE>,
|
|
<CODE>cl_decoded_dfloat</CODE>, <CODE>cl_decoded_lfloat</CODE>, respectively), defined by
|
|
|
|
<PRE>
|
|
struct cl_decoded_<VAR>type</VAR>float {
|
|
<VAR>type</VAR> mantissa; cl_I exponent; <VAR>type</VAR> sign;
|
|
};
|
|
</PRE>
|
|
|
|
<P>
|
|
and returned by the function
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_decoded_<VAR>type</VAR>float decode_float (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX200"></A>
|
|
For <CODE>x</CODE> non-zero, this returns <CODE>(-1)^s</CODE>, <CODE>e</CODE>, <CODE>m</CODE> with
|
|
<CODE>x = (-1)^s * 2^e * m</CODE> and <CODE>0.5 <= m < 1.0</CODE>. For <CODE>x</CODE> = 0,
|
|
it returns <CODE>(-1)^s</CODE>=1, <CODE>e</CODE>=0, <CODE>m</CODE>=0.
|
|
<CODE>e</CODE> is the same as returned by the function <CODE>float_exponent</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
A complete decoding in terms of integers is provided as type
|
|
|
|
<PRE>
|
|
<A NAME="IDX201"></A>struct cl_idecoded_float {
|
|
cl_I mantissa; cl_I exponent; cl_I sign;
|
|
};
|
|
</PRE>
|
|
|
|
<P>
|
|
by the following function:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_idecoded_float integer_decode_float (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX202"></A>
|
|
For <CODE>x</CODE> non-zero, this returns <CODE>(-1)^s</CODE>, <CODE>e</CODE>, <CODE>m</CODE> with
|
|
<CODE>x = (-1)^s * 2^e * m</CODE> and <CODE>m</CODE> an integer with <CODE>float_digits(x)</CODE>
|
|
bits. For <CODE>x</CODE> = 0, it returns <CODE>(-1)^s</CODE>=1, <CODE>e</CODE>=0, <CODE>m</CODE>=0.
|
|
WARNING: The exponent <CODE>e</CODE> is not the same as the one returned by
|
|
the functions <CODE>decode_float</CODE> and <CODE>float_exponent</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
Some other function, implemented only for class <CODE>cl_F</CODE>:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_F float_sign (const cl_F& x, const cl_F& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX203"></A>
|
|
This returns a floating point number whose precision and absolute value
|
|
is that of <CODE>y</CODE> and whose sign is that of <CODE>x</CODE>. If <CODE>x</CODE> is
|
|
zero, it is treated as positive. Same for <CODE>y</CODE>.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC39" HREF="cln.html#TOC39">4.11 Conversion functions</A></H2>
|
|
<P>
|
|
<A NAME="IDX204"></A>
|
|
|
|
|
|
|
|
|
|
<H3><A NAME="SEC40" HREF="cln.html#TOC40">4.11.1 Conversion to floating-point numbers</A></H3>
|
|
|
|
<P>
|
|
The type <CODE>cl_float_format_t</CODE> describes a floating-point format.
|
|
<A NAME="IDX205"></A>
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_float_format_t cl_float_format (uintL n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX206"></A>
|
|
Returns the smallest float format which guarantees at least <CODE>n</CODE>
|
|
decimal digits in the mantissa (after the decimal point).
|
|
|
|
<DT><CODE>cl_float_format_t cl_float_format (const cl_F& x)</CODE>
|
|
<DD>
|
|
Returns the floating point format of <CODE>x</CODE>.
|
|
|
|
<DT><CODE>cl_float_format_t cl_default_float_format</CODE>
|
|
<DD>
|
|
<A NAME="IDX207"></A>
|
|
Global variable: the default float format used when converting rational numbers
|
|
to floats.
|
|
</DL>
|
|
|
|
<P>
|
|
To convert a real number to a float, each of the types
|
|
<CODE>cl_R</CODE>, <CODE>cl_F</CODE>, <CODE>cl_I</CODE>, <CODE>cl_RA</CODE>,
|
|
<CODE>int</CODE>, <CODE>unsigned int</CODE>, <CODE>float</CODE>, <CODE>double</CODE>
|
|
defines the following operations:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_F cl_float (const <VAR>type</VAR>&x, cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX208"></A>
|
|
Returns <CODE>x</CODE> as a float of format <CODE>f</CODE>.
|
|
<DT><CODE>cl_F cl_float (const <VAR>type</VAR>&x, const cl_F& y)</CODE>
|
|
<DD>
|
|
Returns <CODE>x</CODE> in the float format of <CODE>y</CODE>.
|
|
<DT><CODE>cl_F cl_float (const <VAR>type</VAR>&x)</CODE>
|
|
<DD>
|
|
Returns <CODE>x</CODE> as a float of format <CODE>cl_default_float_format</CODE> if
|
|
it is an exact number, or <CODE>x</CODE> itself if it is already a float.
|
|
</DL>
|
|
|
|
<P>
|
|
Of course, converting a number to a float can lose precision.
|
|
|
|
|
|
<P>
|
|
Every floating-point format has some characteristic numbers:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_F most_positive_float (cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX209"></A>
|
|
Returns the largest (most positive) floating point number in float format <CODE>f</CODE>.
|
|
|
|
<DT><CODE>cl_F most_negative_float (cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX210"></A>
|
|
Returns the smallest (most negative) floating point number in float format <CODE>f</CODE>.
|
|
|
|
<DT><CODE>cl_F least_positive_float (cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX211"></A>
|
|
Returns the least positive floating point number (i.e. > 0 but closest to 0)
|
|
in float format <CODE>f</CODE>.
|
|
|
|
<DT><CODE>cl_F least_negative_float (cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX212"></A>
|
|
Returns the least negative floating point number (i.e. < 0 but closest to 0)
|
|
in float format <CODE>f</CODE>.
|
|
|
|
<DT><CODE>cl_F float_epsilon (cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX213"></A>
|
|
Returns the smallest floating point number e > 0 such that <CODE>1+e != 1</CODE>.
|
|
|
|
<DT><CODE>cl_F float_negative_epsilon (cl_float_format_t f)</CODE>
|
|
<DD>
|
|
<A NAME="IDX214"></A>
|
|
Returns the smallest floating point number e > 0 such that <CODE>1-e != 1</CODE>.
|
|
</DL>
|
|
|
|
|
|
|
|
<H3><A NAME="SEC41" HREF="cln.html#TOC41">4.11.2 Conversion to rational numbers</A></H3>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_F</CODE>
|
|
defines the following operation:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_RA rational (const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX215"></A>
|
|
Returns the value of <CODE>x</CODE> as an exact number. If <CODE>x</CODE> is already
|
|
an exact number, this is <CODE>x</CODE>. If <CODE>x</CODE> is a floating-point number,
|
|
the value is a rational number whose denominator is a power of 2.
|
|
</DL>
|
|
|
|
<P>
|
|
In order to convert back, say, <CODE>(cl_F)(cl_R)"1/3"</CODE> to <CODE>1/3</CODE>, there is
|
|
the function
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_RA rationalize (const cl_R& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX216"></A>
|
|
If <CODE>x</CODE> is a floating-point number, it actually represents an interval
|
|
of real numbers, and this function returns the rational number with
|
|
smallest denominator (and smallest numerator, in magnitude)
|
|
which lies in this interval.
|
|
If <CODE>x</CODE> is already an exact number, this function returns <CODE>x</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
If <CODE>x</CODE> is any float, one has
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
<CODE>cl_float(rational(x),x) = x</CODE>
|
|
<LI>
|
|
|
|
<CODE>cl_float(rationalize(x),x) = x</CODE>
|
|
</UL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC42" HREF="cln.html#TOC42">4.12 Random number generators</A></H2>
|
|
|
|
<P>
|
|
A random generator is a machine which produces (pseudo-)random numbers.
|
|
The include file <CODE><cl_random.h></CODE> defines a class <CODE>cl_random_state</CODE>
|
|
which contains the state of a random generator. If you make a copy
|
|
of the random number generator, the original one and the copy will produce
|
|
the same sequence of random numbers.
|
|
|
|
|
|
<P>
|
|
The following functions return (pseudo-)random numbers in different formats.
|
|
Calling one of these modifies the state of the random number generator in
|
|
a complicated but deterministic way.
|
|
|
|
|
|
<P>
|
|
The global variable
|
|
<A NAME="IDX217"></A>
|
|
<A NAME="IDX218"></A>
|
|
|
|
<PRE>
|
|
cl_random_state cl_default_random_state
|
|
</PRE>
|
|
|
|
<P>
|
|
contains a default random number generator. It is used when the functions
|
|
below are called without <CODE>cl_random_state</CODE> argument.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>uint32 random32 (cl_random_state& randomstate)</CODE>
|
|
<DD>
|
|
<DT><CODE>uint32 random32 ()</CODE>
|
|
<DD>
|
|
<A NAME="IDX219"></A>
|
|
Returns a random unsigned 32-bit number. All bits are equally random.
|
|
|
|
<DT><CODE>cl_I random_I (cl_random_state& randomstate, const cl_I& n)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_I random_I (const cl_I& n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX220"></A>
|
|
<CODE>n</CODE> must be an integer > 0. This function returns a random integer <CODE>x</CODE>
|
|
in the range <CODE>0 <= x < n</CODE>.
|
|
|
|
<DT><CODE>cl_F random_F (cl_random_state& randomstate, const cl_F& n)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_F random_F (const cl_F& n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX221"></A>
|
|
<CODE>n</CODE> must be a float > 0. This function returns a random floating-point
|
|
number of the same format as <CODE>n</CODE> in the range <CODE>0 <= x < n</CODE>.
|
|
|
|
<DT><CODE>cl_R random_R (cl_random_state& randomstate, const cl_R& n)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_R random_R (const cl_R& n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX222"></A>
|
|
Behaves like <CODE>random_I</CODE> if <CODE>n</CODE> is an integer and like <CODE>random_F</CODE>
|
|
if <CODE>n</CODE> is a float.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC43" HREF="cln.html#TOC43">4.13 Obfuscating operators</A></H2>
|
|
<P>
|
|
<A NAME="IDX223"></A>
|
|
|
|
|
|
<P>
|
|
The modifying C/C++ operators <CODE>+=</CODE>, <CODE>-=</CODE>, <CODE>*=</CODE>, <CODE>/=</CODE>,
|
|
<CODE>&=</CODE>, <CODE>|=</CODE>, <CODE>^=</CODE>, <CODE><<=</CODE>, <CODE>>>=</CODE>
|
|
are not available by default because their
|
|
use tends to make programs unreadable. It is trivial to get away without
|
|
them. However, if you feel that you absolutely need these operators
|
|
to get happy, then add
|
|
|
|
<PRE>
|
|
#define WANT_OBFUSCATING_OPERATORS
|
|
</PRE>
|
|
|
|
<P>
|
|
<A NAME="IDX224"></A>
|
|
to the beginning of your source files, before the inclusion of any CLN
|
|
include files. This flag will enable the following operators:
|
|
|
|
|
|
<P>
|
|
For the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><VAR>type</VAR>& operator += (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX225"></A>
|
|
<DT><CODE><VAR>type</VAR>& operator -= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX226"></A>
|
|
<DT><CODE><VAR>type</VAR>& operator *= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX227"></A>
|
|
<DT><CODE><VAR>type</VAR>& operator /= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX228"></A>
|
|
</DL>
|
|
|
|
<P>
|
|
For the class <CODE>cl_I</CODE>:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><VAR>type</VAR>& operator += (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>& operator -= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>& operator *= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<DT><CODE><VAR>type</VAR>& operator &= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX229"></A>
|
|
<DT><CODE><VAR>type</VAR>& operator |= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX230"></A>
|
|
<DT><CODE><VAR>type</VAR>& operator ^= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX231"></A>
|
|
<DT><CODE><VAR>type</VAR>& operator <<= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX232"></A>
|
|
<DT><CODE><VAR>type</VAR>& operator >>= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX233"></A>
|
|
</DL>
|
|
|
|
<P>
|
|
For the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><VAR>type</VAR>& operator ++ (<VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX234"></A>
|
|
The prefix operator <CODE>++x</CODE>.
|
|
|
|
<DT><CODE>void operator ++ (<VAR>type</VAR>& x, int)</CODE>
|
|
<DD>
|
|
The postfix operator <CODE>x++</CODE>.
|
|
|
|
<DT><CODE><VAR>type</VAR>& operator -- (<VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX235"></A>
|
|
The prefix operator <CODE>--x</CODE>.
|
|
|
|
<DT><CODE>void operator -- (<VAR>type</VAR>& x, int)</CODE>
|
|
<DD>
|
|
The postfix operator <CODE>x--</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
Note that by using these obfuscating operators, you wouldn't gain efficiency:
|
|
In CLN <SAMP>`x += y;'</SAMP> is exactly the same as <SAMP>`x = x+y;'</SAMP>, not more
|
|
efficient.
|
|
|
|
|
|
|
|
|
|
<H1><A NAME="SEC44" HREF="cln.html#TOC44">5. Input/Output</A></H1>
|
|
<P>
|
|
<A NAME="IDX236"></A>
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC45" HREF="cln.html#TOC45">5.1 Internal and printed representation</A></H2>
|
|
<P>
|
|
<A NAME="IDX237"></A>
|
|
|
|
|
|
<P>
|
|
All computations deal with the internal representations of the numbers.
|
|
|
|
|
|
<P>
|
|
Every number has an external representation as a sequence of ASCII characters.
|
|
Several external representations may denote the same number, for example,
|
|
"20.0" and "20.000".
|
|
|
|
|
|
<P>
|
|
Converting an internal to an external representation is called "printing",
|
|
<A NAME="IDX238"></A>
|
|
converting an external to an internal representation is called "reading".
|
|
<A NAME="IDX239"></A>
|
|
In CLN, it is always true that conversion of an internal to an external
|
|
representation and then back to an internal representation will yield the
|
|
same internal representation. Symbolically: <CODE>read(print(x)) == x</CODE>.
|
|
This is called "print-read consistency".
|
|
|
|
|
|
<P>
|
|
Different types of numbers have different external representations (case
|
|
is insignificant):
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT>Integers
|
|
<DD>
|
|
External representation: <VAR>sign</VAR>{<VAR>digit</VAR>}+. The reader also accepts the
|
|
Common Lisp syntaxes <VAR>sign</VAR>{<VAR>digit</VAR>}+<CODE>.</CODE> with a trailing dot
|
|
for decimal integers
|
|
and the <CODE>#<VAR>n</VAR>R</CODE>, <CODE>#b</CODE>, <CODE>#o</CODE>, <CODE>#x</CODE> prefixes.
|
|
|
|
<DT>Rational numbers
|
|
<DD>
|
|
External representation: <VAR>sign</VAR>{<VAR>digit</VAR>}+<CODE>/</CODE>{<VAR>digit</VAR>}+.
|
|
The <CODE>#<VAR>n</VAR>R</CODE>, <CODE>#b</CODE>, <CODE>#o</CODE>, <CODE>#x</CODE> prefixes are allowed
|
|
here as well.
|
|
|
|
<DT>Floating-point numbers
|
|
<DD>
|
|
External representation: <VAR>sign</VAR>{<VAR>digit</VAR>}*<VAR>exponent</VAR> or
|
|
<VAR>sign</VAR>{<VAR>digit</VAR>}*<CODE>.</CODE>{<VAR>digit</VAR>}*<VAR>exponent</VAR> or
|
|
<VAR>sign</VAR>{<VAR>digit</VAR>}*<CODE>.</CODE>{<VAR>digit</VAR>}+. A precision specifier
|
|
of the form _<VAR>prec</VAR> may be appended. There must be at least
|
|
one digit in the non-exponent part. The exponent has the syntax
|
|
<VAR>expmarker</VAR> <VAR>expsign</VAR> {<VAR>digit</VAR>}+.
|
|
The exponent marker is
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
<SAMP>`s'</SAMP> for short-floats,
|
|
<LI>
|
|
|
|
<SAMP>`f'</SAMP> for single-floats,
|
|
<LI>
|
|
|
|
<SAMP>`d'</SAMP> for double-floats,
|
|
<LI>
|
|
|
|
<SAMP>`L'</SAMP> for long-floats,
|
|
</UL>
|
|
|
|
or <SAMP>`e'</SAMP>, which denotes a default float format. The precision specifying
|
|
suffix has the syntax _<VAR>prec</VAR> where <VAR>prec</VAR> denotes the number of
|
|
valid mantissa digits (in decimal, excluding leading zeroes), cf. also
|
|
function <SAMP>`cl_float_format'</SAMP>.
|
|
|
|
<DT>Complex numbers
|
|
<DD>
|
|
External representation:
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
In algebraic notation: <CODE><VAR>realpart</VAR>+<VAR>imagpart</VAR>i</CODE>. Of course,
|
|
if <VAR>imagpart</VAR> is negative, its printed representation begins with
|
|
a <SAMP>`-'</SAMP>, and the <SAMP>`+'</SAMP> between <VAR>realpart</VAR> and <VAR>imagpart</VAR>
|
|
may be omitted. Note that this notation cannot be used when the <VAR>imagpart</VAR>
|
|
is rational and the rational number's base is >18, because the <SAMP>`i'</SAMP>
|
|
is then read as a digit.
|
|
<LI>
|
|
|
|
In Common Lisp notation: <CODE>#C(<VAR>realpart</VAR> <VAR>imagpart</VAR>)</CODE>.
|
|
</UL>
|
|
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC46" HREF="cln.html#TOC46">5.2 Input functions</A></H2>
|
|
|
|
<P>
|
|
Including <CODE><cl_io.h></CODE> defines a type <CODE>cl_istream</CODE>, which is
|
|
the type of the first argument to all input functions. Unless you build
|
|
and use CLN with the macro CL_IO_STDIO being defined, <CODE>cl_istream</CODE>
|
|
is the same as <CODE>istream&</CODE>.
|
|
|
|
|
|
<P>
|
|
The variable
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
<CODE>cl_istream cl_stdin</CODE>
|
|
</UL>
|
|
|
|
<P>
|
|
contains the standard input stream.
|
|
|
|
|
|
<P>
|
|
These are the simple input functions:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>int freadchar (cl_istream stream)</CODE>
|
|
<DD>
|
|
Reads a character from <CODE>stream</CODE>. Returns <CODE>cl_EOF</CODE> (not a <SAMP>`char'</SAMP>!)
|
|
if the end of stream was encountered or an error occurred.
|
|
|
|
<DT><CODE>int funreadchar (cl_istream stream, int c)</CODE>
|
|
<DD>
|
|
Puts back <CODE>c</CODE> onto <CODE>stream</CODE>. <CODE>c</CODE> must be the result of the
|
|
last <CODE>freadchar</CODE> operation on <CODE>stream</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines, in <CODE><cl_<VAR>type</VAR>_io.h></CODE>, the following input function:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_istream operator>> (cl_istream stream, <VAR>type</VAR>& result)</CODE>
|
|
<DD>
|
|
Reads a number from <CODE>stream</CODE> and stores it in the <CODE>result</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
The most flexible input functions, defined in <CODE><cl_<VAR>type</VAR>_io.h></CODE>,
|
|
are the following:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_N read_complex (cl_istream stream, const cl_read_flags& flags)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_R read_real (cl_istream stream, const cl_read_flags& flags)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_F read_float (cl_istream stream, const cl_read_flags& flags)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_RA read_rational (cl_istream stream, const cl_read_flags& flags)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_I read_integer (cl_istream stream, const cl_read_flags& flags)</CODE>
|
|
<DD>
|
|
Reads a number from <CODE>stream</CODE>. The <CODE>flags</CODE> are parameters which
|
|
affect the input syntax. Whitespace before the number is silently skipped.
|
|
|
|
<DT><CODE>cl_N read_complex (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_R read_real (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_F read_float (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_RA read_rational (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_I read_integer (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE>
|
|
<DD>
|
|
Reads a number from a string in memory. The <CODE>flags</CODE> are parameters which
|
|
affect the input syntax. The string starts at <CODE>string</CODE> and ends at
|
|
<CODE>string_limit</CODE> (exclusive limit). <CODE>string_limit</CODE> may also be
|
|
<CODE>NULL</CODE>, denoting the entire string, i.e. equivalent to
|
|
<CODE>string_limit = string + strlen(string)</CODE>. If <CODE>end_of_parse</CODE> is
|
|
<CODE>NULL</CODE>, the string in memory must contain exactly one number and nothing
|
|
more, else a fatal error will be signalled. If <CODE>end_of_parse</CODE>
|
|
is not <CODE>NULL</CODE>, <CODE>*end_of_parse</CODE> will be assigned a pointer past
|
|
the last parsed character (i.e. <CODE>string_limit</CODE> if nothing came after
|
|
the number). Whitespace is not allowed.
|
|
</DL>
|
|
|
|
<P>
|
|
The structure <CODE>cl_read_flags</CODE> contains the following fields:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_read_syntax_t syntax</CODE>
|
|
<DD>
|
|
The possible results of the read operation. Possible values are
|
|
<CODE>syntax_number</CODE>, <CODE>syntax_real</CODE>, <CODE>syntax_rational</CODE>,
|
|
<CODE>syntax_integer</CODE>, <CODE>syntax_float</CODE>, <CODE>syntax_sfloat</CODE>,
|
|
<CODE>syntax_ffloat</CODE>, <CODE>syntax_dfloat</CODE>, <CODE>syntax_lfloat</CODE>.
|
|
|
|
<DT><CODE>cl_read_lsyntax_t lsyntax</CODE>
|
|
<DD>
|
|
Specifies the language-dependent syntax variant for the read operation.
|
|
Possible values are
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>lsyntax_standard</CODE>
|
|
<DD>
|
|
accept standard algebraic notation only, no complex numbers,
|
|
<DT><CODE>lsyntax_algebraic</CODE>
|
|
<DD>
|
|
accept the algebraic notation <CODE><VAR>x</VAR>+<VAR>y</VAR>i</CODE> for complex numbers,
|
|
<DT><CODE>lsyntax_commonlisp</CODE>
|
|
<DD>
|
|
accept the <CODE>#b</CODE>, <CODE>#o</CODE>, <CODE>#x</CODE> syntaxes for binary, octal,
|
|
hexadecimal numbers,
|
|
<CODE>#<VAR>base</VAR>R</CODE> for rational numbers in a given base,
|
|
<CODE>#c(<VAR>realpart</VAR> <VAR>imagpart</VAR>)</CODE> for complex numbers,
|
|
<DT><CODE>lsyntax_all</CODE>
|
|
<DD>
|
|
accept all of these extensions.
|
|
</DL>
|
|
|
|
<DT><CODE>unsigned int rational_base</CODE>
|
|
<DD>
|
|
The base in which rational numbers are read.
|
|
|
|
<DT><CODE>cl_float_format_t float_flags.default_float_format</CODE>
|
|
<DD>
|
|
The float format used when reading floats with exponent marker <SAMP>`e'</SAMP>.
|
|
|
|
<DT><CODE>cl_float_format_t float_flags.default_lfloat_format</CODE>
|
|
<DD>
|
|
The float format used when reading floats with exponent marker <SAMP>`l'</SAMP>.
|
|
|
|
<DT><CODE>cl_boolean float_flags.mantissa_dependent_float_format</CODE>
|
|
<DD>
|
|
When this flag is true, floats specified with more digits than corresponding
|
|
to the exponent marker they contain, but without <VAR>_nnn</VAR> suffix, will get a
|
|
precision corresponding to their number of significant digits.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC47" HREF="cln.html#TOC47">5.3 Output functions</A></H2>
|
|
|
|
<P>
|
|
Including <CODE><cl_io.h></CODE> defines a type <CODE>cl_ostream</CODE>, which is
|
|
the type of the first argument to all output functions. Unless you build
|
|
and use CLN with the macro CL_IO_STDIO being defined, <CODE>cl_ostream</CODE>
|
|
is the same as <CODE>ostream&</CODE>.
|
|
|
|
|
|
<P>
|
|
The variable
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
<CODE>cl_ostream cl_stdout</CODE>
|
|
</UL>
|
|
|
|
<P>
|
|
contains the standard output stream.
|
|
|
|
|
|
<P>
|
|
The variable
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
<CODE>cl_ostream cl_stderr</CODE>
|
|
</UL>
|
|
|
|
<P>
|
|
contains the standard error output stream.
|
|
|
|
|
|
<P>
|
|
These are the simple output functions:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>void fprintchar (cl_ostream stream, char c)</CODE>
|
|
<DD>
|
|
Prints the character <CODE>x</CODE> literally on the <CODE>stream</CODE>.
|
|
|
|
<DT><CODE>void fprint (cl_ostream stream, const char * string)</CODE>
|
|
<DD>
|
|
Prints the <CODE>string</CODE> literally on the <CODE>stream</CODE>.
|
|
|
|
<DT><CODE>void fprintdecimal (cl_ostream stream, int x)</CODE>
|
|
<DD>
|
|
<DT><CODE>void fprintdecimal (cl_ostream stream, const cl_I& x)</CODE>
|
|
<DD>
|
|
Prints the integer <CODE>x</CODE> in decimal on the <CODE>stream</CODE>.
|
|
|
|
<DT><CODE>void fprintbinary (cl_ostream stream, const cl_I& x)</CODE>
|
|
<DD>
|
|
Prints the integer <CODE>x</CODE> in binary (base 2, without prefix)
|
|
on the <CODE>stream</CODE>.
|
|
|
|
<DT><CODE>void fprintoctal (cl_ostream stream, const cl_I& x)</CODE>
|
|
<DD>
|
|
Prints the integer <CODE>x</CODE> in octal (base 8, without prefix)
|
|
on the <CODE>stream</CODE>.
|
|
|
|
<DT><CODE>void fprinthexadecimal (cl_ostream stream, const cl_I& x)</CODE>
|
|
<DD>
|
|
Prints the integer <CODE>x</CODE> in hexadecimal (base 16, without prefix)
|
|
on the <CODE>stream</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>,
|
|
<CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>
|
|
defines, in <CODE><cl_<VAR>type</VAR>_io.h></CODE>, the following output functions:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>void fprint (cl_ostream stream, const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_ostream operator<< (cl_ostream stream, const <VAR>type</VAR>& x)</CODE>
|
|
<DD>
|
|
Prints the number <CODE>x</CODE> on the <CODE>stream</CODE>. The output may depend
|
|
on the global printer settings in the variable <CODE>cl_default_print_flags</CODE>.
|
|
The <CODE>ostream</CODE> flags and settings (flags, width and locale) are
|
|
ignored.
|
|
</DL>
|
|
|
|
<P>
|
|
The most flexible output function, defined in <CODE><cl_<VAR>type</VAR>_io.h></CODE>,
|
|
are the following:
|
|
|
|
<PRE>
|
|
void print_complex (cl_ostream stream, const cl_print_flags& flags,
|
|
const cl_N& z);
|
|
void print_real (cl_ostream stream, const cl_print_flags& flags,
|
|
const cl_R& z);
|
|
void print_float (cl_ostream stream, const cl_print_flags& flags,
|
|
const cl_F& z);
|
|
void print_rational (cl_ostream stream, const cl_print_flags& flags,
|
|
const cl_RA& z);
|
|
void print_integer (cl_ostream stream, const cl_print_flags& flags,
|
|
const cl_I& z);
|
|
</PRE>
|
|
|
|
<P>
|
|
Prints the number <CODE>x</CODE> on the <CODE>stream</CODE>. The <CODE>flags</CODE> are
|
|
parameters which affect the output.
|
|
|
|
|
|
<P>
|
|
The structure type <CODE>cl_print_flags</CODE> contains the following fields:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>unsigned int rational_base</CODE>
|
|
<DD>
|
|
The base in which rational numbers are printed. Default is <CODE>10</CODE>.
|
|
|
|
<DT><CODE>cl_boolean rational_readably</CODE>
|
|
<DD>
|
|
If this flag is true, rational numbers are printed with radix specifiers in
|
|
Common Lisp syntax (<CODE>#<VAR>n</VAR>R</CODE> or <CODE>#b</CODE> or <CODE>#o</CODE> or <CODE>#x</CODE>
|
|
prefixes, trailing dot). Default is false.
|
|
|
|
<DT><CODE>cl_boolean float_readably</CODE>
|
|
<DD>
|
|
If this flag is true, type specific exponent markers have precedence over 'E'.
|
|
Default is false.
|
|
|
|
<DT><CODE>cl_float_format_t default_float_format</CODE>
|
|
<DD>
|
|
Floating point numbers of this format will be printed using the 'E' exponent
|
|
marker. Default is <CODE>cl_float_format_ffloat</CODE>.
|
|
|
|
<DT><CODE>cl_boolean complex_readably</CODE>
|
|
<DD>
|
|
If this flag is true, complex numbers will be printed using the Common Lisp
|
|
syntax <CODE>#C(<VAR>realpart</VAR> <VAR>imagpart</VAR>)</CODE>. Default is false.
|
|
|
|
<DT><CODE>cl_string univpoly_varname</CODE>
|
|
<DD>
|
|
Univariate polynomials with no explicit indeterminate name will be printed
|
|
using this variable name. Default is <CODE>"x"</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
The global variable <CODE>cl_default_print_flags</CODE> contains the default values,
|
|
used by the function <CODE>fprint</CODE>.
|
|
|
|
|
|
|
|
|
|
<H1><A NAME="SEC48" HREF="cln.html#TOC48">6. Rings</A></H1>
|
|
|
|
<P>
|
|
CLN has a class of abstract rings.
|
|
|
|
|
|
|
|
<PRE>
|
|
Ring
|
|
cl_ring
|
|
<cl_ring.h>
|
|
</PRE>
|
|
|
|
<P>
|
|
Rings can be compared for equality:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>bool operator== (const cl_ring&, const cl_ring&)</CODE>
|
|
<DD>
|
|
<DT><CODE>bool operator!= (const cl_ring&, const cl_ring&)</CODE>
|
|
<DD>
|
|
These compare two rings for equality.
|
|
</DL>
|
|
|
|
<P>
|
|
Given a ring <CODE>R</CODE>, the following members can be used.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>void R->fprint (cl_ostream stream, const cl_ring_element& x)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_boolean R->equal (const cl_ring_element& x, const cl_ring_element& y)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_ring_element R->zero ()</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_boolean R->zerop (const cl_ring_element& x)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_ring_element R->plus (const cl_ring_element& x, const cl_ring_element& y)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_ring_element R->minus (const cl_ring_element& x, const cl_ring_element& y)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_ring_element R->uminus (const cl_ring_element& x)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_ring_element R->one ()</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_ring_element R->canonhom (const cl_I& x)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_ring_element R->mul (const cl_ring_element& x, const cl_ring_element& y)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_ring_element R->square (const cl_ring_element& x)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_ring_element R->expt_pos (const cl_ring_element& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
</DL>
|
|
|
|
<P>
|
|
The following rings are built-in.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_null_ring cl_0_ring</CODE>
|
|
<DD>
|
|
The null ring, containing only zero.
|
|
|
|
<DT><CODE>cl_complex_ring cl_C_ring</CODE>
|
|
<DD>
|
|
The ring of complex numbers. This corresponds to the type <CODE>cl_N</CODE>.
|
|
|
|
<DT><CODE>cl_real_ring cl_R_ring</CODE>
|
|
<DD>
|
|
The ring of real numbers. This corresponds to the type <CODE>cl_R</CODE>.
|
|
|
|
<DT><CODE>cl_rational_ring cl_RA_ring</CODE>
|
|
<DD>
|
|
The ring of rational numbers. This corresponds to the type <CODE>cl_RA</CODE>.
|
|
|
|
<DT><CODE>cl_integer_ring cl_I_ring</CODE>
|
|
<DD>
|
|
The ring of integers. This corresponds to the type <CODE>cl_I</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
Type tests can be performed for any of <CODE>cl_C_ring</CODE>, <CODE>cl_R_ring</CODE>,
|
|
<CODE>cl_RA_ring</CODE>, <CODE>cl_I_ring</CODE>:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_boolean instanceof (const cl_number& x, const cl_number_ring& R)</CODE>
|
|
<DD>
|
|
<A NAME="IDX240"></A>
|
|
Tests whether the given number is an element of the number ring R.
|
|
</DL>
|
|
|
|
|
|
|
|
<H1><A NAME="SEC49" HREF="cln.html#TOC49">7. Modular integers</A></H1>
|
|
<P>
|
|
<A NAME="IDX241"></A>
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC50" HREF="cln.html#TOC50">7.1 Modular integer rings</A></H2>
|
|
<P>
|
|
<A NAME="IDX242"></A>
|
|
|
|
|
|
<P>
|
|
CLN implements modular integers, i.e. integers modulo a fixed integer N.
|
|
The modulus is explicitly part of every modular integer. CLN doesn't
|
|
allow you to (accidentally) mix elements of different modular rings,
|
|
e.g. <CODE>(3 mod 4) + (2 mod 5)</CODE> will result in a runtime error.
|
|
(Ideally one would imagine a generic data type <CODE>cl_MI(N)</CODE>, but C++
|
|
doesn't have generic types. So one has to live with runtime checks.)
|
|
|
|
|
|
<P>
|
|
The class of modular integer rings is
|
|
|
|
|
|
|
|
<PRE>
|
|
Ring
|
|
cl_ring
|
|
<cl_ring.h>
|
|
|
|
|
|
|
|
Modular integer ring
|
|
cl_modint_ring
|
|
<cl_modinteger.h>
|
|
</PRE>
|
|
|
|
<P>
|
|
<A NAME="IDX243"></A>
|
|
|
|
|
|
<P>
|
|
and the class of all modular integers (elements of modular integer rings) is
|
|
|
|
|
|
|
|
<PRE>
|
|
Modular integer
|
|
cl_MI
|
|
<cl_modinteger.h>
|
|
</PRE>
|
|
|
|
<P>
|
|
Modular integer rings are constructed using the function
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_modint_ring cl_find_modint_ring (const cl_I& N)</CODE>
|
|
<DD>
|
|
<A NAME="IDX244"></A>
|
|
This function returns the modular ring <SAMP>`Z/NZ'</SAMP>. It takes care
|
|
of finding out about special cases of <CODE>N</CODE>, like powers of two
|
|
and odd numbers for which Montgomery multiplication will be a win,
|
|
<A NAME="IDX245"></A>
|
|
and precomputes any necessary auxiliary data for computing modulo <CODE>N</CODE>.
|
|
There is a cache table of rings, indexed by <CODE>N</CODE> (or, more precisely,
|
|
by <CODE>abs(N)</CODE>). This ensures that the precomputation costs are reduced
|
|
to a minimum.
|
|
</DL>
|
|
|
|
<P>
|
|
Modular integer rings can be compared for equality:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>bool operator== (const cl_modint_ring&, const cl_modint_ring&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX246"></A>
|
|
<DT><CODE>bool operator!= (const cl_modint_ring&, const cl_modint_ring&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX247"></A>
|
|
These compare two modular integer rings for equality. Two different calls
|
|
to <CODE>cl_find_modint_ring</CODE> with the same argument necessarily return the
|
|
same ring because it is memoized in the cache table.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC51" HREF="cln.html#TOC51">7.2 Functions on modular integers</A></H2>
|
|
|
|
<P>
|
|
Given a modular integer ring <CODE>R</CODE>, the following members can be used.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_I R->modulus</CODE>
|
|
<DD>
|
|
<A NAME="IDX248"></A>
|
|
This is the ring's modulus, normalized to be nonnegative: <CODE>abs(N)</CODE>.
|
|
|
|
<DT><CODE>cl_MI R->zero()</CODE>
|
|
<DD>
|
|
<A NAME="IDX249"></A>
|
|
This returns <CODE>0 mod N</CODE>.
|
|
|
|
<DT><CODE>cl_MI R->one()</CODE>
|
|
<DD>
|
|
<A NAME="IDX250"></A>
|
|
This returns <CODE>1 mod N</CODE>.
|
|
|
|
<DT><CODE>cl_MI R->canonhom (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX251"></A>
|
|
This returns <CODE>x mod N</CODE>.
|
|
|
|
<DT><CODE>cl_I R->retract (const cl_MI& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX252"></A>
|
|
This is a partial inverse function to <CODE>R->canonhom</CODE>. It returns the
|
|
standard representative (<CODE>>=0</CODE>, <CODE><N</CODE>) of <CODE>x</CODE>.
|
|
|
|
<DT><CODE>cl_MI R->random(cl_random_state& randomstate)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_MI R->random()</CODE>
|
|
<DD>
|
|
<A NAME="IDX253"></A>
|
|
This returns a random integer modulo <CODE>N</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
The following operations are defined on modular integers.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_modint_ring x.ring ()</CODE>
|
|
<DD>
|
|
<A NAME="IDX254"></A>
|
|
Returns the ring to which the modular integer <CODE>x</CODE> belongs.
|
|
|
|
<DT><CODE>cl_MI operator+ (const cl_MI&, const cl_MI&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX255"></A>
|
|
Returns the sum of two modular integers. One of the arguments may also
|
|
be a plain integer.
|
|
|
|
<DT><CODE>cl_MI operator- (const cl_MI&, const cl_MI&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX256"></A>
|
|
Returns the difference of two modular integers. One of the arguments may also
|
|
be a plain integer.
|
|
|
|
<DT><CODE>cl_MI operator- (const cl_MI&)</CODE>
|
|
<DD>
|
|
Returns the negative of a modular integer.
|
|
|
|
<DT><CODE>cl_MI operator* (const cl_MI&, const cl_MI&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX257"></A>
|
|
Returns the product of two modular integers. One of the arguments may also
|
|
be a plain integer.
|
|
|
|
<DT><CODE>cl_MI square (const cl_MI&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX258"></A>
|
|
Returns the square of a modular integer.
|
|
|
|
<DT><CODE>cl_MI recip (const cl_MI& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX259"></A>
|
|
Returns the reciprocal <CODE>x^-1</CODE> of a modular integer <CODE>x</CODE>. <CODE>x</CODE>
|
|
must be coprime to the modulus, otherwise an error message is issued.
|
|
|
|
<DT><CODE>cl_MI div (const cl_MI& x, const cl_MI& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX260"></A>
|
|
Returns the quotient <CODE>x*y^-1</CODE> of two modular integers <CODE>x</CODE>, <CODE>y</CODE>.
|
|
<CODE>y</CODE> must be coprime to the modulus, otherwise an error message is issued.
|
|
|
|
<DT><CODE>cl_MI expt_pos (const cl_MI& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX261"></A>
|
|
<CODE>y</CODE> must be > 0. Returns <CODE>x^y</CODE>.
|
|
|
|
<DT><CODE>cl_MI expt (const cl_MI& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX262"></A>
|
|
Returns <CODE>x^y</CODE>. If <CODE>y</CODE> is negative, <CODE>x</CODE> must be coprime to the
|
|
modulus, else an error message is issued.
|
|
|
|
<DT><CODE>cl_MI operator<< (const cl_MI& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX263"></A>
|
|
Returns <CODE>x*2^y</CODE>.
|
|
|
|
<DT><CODE>cl_MI operator>> (const cl_MI& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX264"></A>
|
|
Returns <CODE>x*2^-y</CODE>. When <CODE>y</CODE> is positive, the modulus must be odd,
|
|
or an error message is issued.
|
|
|
|
<DT><CODE>bool operator== (const cl_MI&, const cl_MI&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX265"></A>
|
|
<DT><CODE>bool operator!= (const cl_MI&, const cl_MI&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX266"></A>
|
|
Compares two modular integers, belonging to the same modular integer ring,
|
|
for equality.
|
|
|
|
<DT><CODE>cl_boolean zerop (const cl_MI& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX267"></A>
|
|
Returns true if <CODE>x</CODE> is <CODE>0 mod N</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
The following output functions are defined (see also the chapter on
|
|
input/output).
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>void fprint (cl_ostream stream, const cl_MI& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX268"></A>
|
|
<DT><CODE>cl_ostream operator<< (cl_ostream stream, const cl_MI& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX269"></A>
|
|
Prints the modular integer <CODE>x</CODE> on the <CODE>stream</CODE>. The output may depend
|
|
on the global printer settings in the variable <CODE>cl_default_print_flags</CODE>.
|
|
</DL>
|
|
|
|
|
|
|
|
<H1><A NAME="SEC52" HREF="cln.html#TOC52">8. Symbolic data types</A></H1>
|
|
<P>
|
|
<A NAME="IDX270"></A>
|
|
|
|
|
|
<P>
|
|
CLN implements two symbolic (non-numeric) data types: strings and symbols.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC53" HREF="cln.html#TOC53">8.1 Strings</A></H2>
|
|
<P>
|
|
<A NAME="IDX271"></A>
|
|
|
|
|
|
<P>
|
|
The class
|
|
|
|
|
|
|
|
<PRE>
|
|
String
|
|
cl_string
|
|
<cl_string.h>
|
|
</PRE>
|
|
|
|
<P>
|
|
implements immutable strings.
|
|
|
|
|
|
<P>
|
|
Strings are constructed through the following constructors:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_string (const char * s)</CODE>
|
|
<DD>
|
|
<A NAME="IDX272"></A>
|
|
Returns an immutable copy of the (zero-terminated) C string <CODE>s</CODE>.
|
|
|
|
<DT><CODE>cl_string (const char * ptr, unsigned long len)</CODE>
|
|
<DD>
|
|
Returns an immutable copy of the <CODE>len</CODE> characters at
|
|
<CODE>ptr[0]</CODE>, ..., <CODE>ptr[len-1]</CODE>. NUL characters are allowed.
|
|
</DL>
|
|
|
|
<P>
|
|
The following functions are available on strings:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>operator =</CODE>
|
|
<DD>
|
|
Assignment from <CODE>cl_string</CODE> and <CODE>const char *</CODE>.
|
|
|
|
<DT><CODE>s.length()</CODE>
|
|
<DD>
|
|
<A NAME="IDX273"></A>
|
|
<DT><CODE>strlen(s)</CODE>
|
|
<DD>
|
|
<A NAME="IDX274"></A>
|
|
Returns the length of the string <CODE>s</CODE>.
|
|
|
|
<DT><CODE>s[i]</CODE>
|
|
<DD>
|
|
<A NAME="IDX275"></A>
|
|
Returns the <CODE>i</CODE>th character of the string <CODE>s</CODE>.
|
|
<CODE>i</CODE> must be in the range <CODE>0 <= i < s.length()</CODE>.
|
|
|
|
<DT><CODE>bool equal (const cl_string& s1, const cl_string& s2)</CODE>
|
|
<DD>
|
|
<A NAME="IDX276"></A>
|
|
Compares two strings for equality. One of the arguments may also be a
|
|
plain <CODE>const char *</CODE>.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC54" HREF="cln.html#TOC54">8.2 Symbols</A></H2>
|
|
<P>
|
|
<A NAME="IDX277"></A>
|
|
|
|
|
|
<P>
|
|
Symbols are uniquified strings: all symbols with the same name are shared.
|
|
This means that comparison of two symbols is fast (effectively just a pointer
|
|
comparison), whereas comparison of two strings must in the worst case walk
|
|
both strings until their end.
|
|
Symbols are used, for example, as tags for properties, as names of variables
|
|
in polynomial rings, etc.
|
|
|
|
|
|
<P>
|
|
Symbols are constructed through the following constructor:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_symbol (const cl_string& s)</CODE>
|
|
<DD>
|
|
<A NAME="IDX278"></A>
|
|
Looks up or creates a new symbol with a given name.
|
|
</DL>
|
|
|
|
<P>
|
|
The following operations are available on symbols:
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_string (const cl_symbol& sym)</CODE>
|
|
<DD>
|
|
Conversion to <CODE>cl_string</CODE>: Returns the string which names the symbol
|
|
<CODE>sym</CODE>.
|
|
|
|
<DT><CODE>bool equal (const cl_symbol& sym1, const cl_symbol& sym2)</CODE>
|
|
<DD>
|
|
<A NAME="IDX279"></A>
|
|
Compares two symbols for equality. This is very fast.
|
|
</DL>
|
|
|
|
|
|
|
|
<H1><A NAME="SEC55" HREF="cln.html#TOC55">9. Univariate polynomials</A></H1>
|
|
<P>
|
|
<A NAME="IDX280"></A>
|
|
<A NAME="IDX281"></A>
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC56" HREF="cln.html#TOC56">9.1 Univariate polynomial rings</A></H2>
|
|
|
|
<P>
|
|
CLN implements univariate polynomials (polynomials in one variable) over an
|
|
arbitrary ring. The indeterminate variable may be either unnamed (and will be
|
|
printed according to <CODE>cl_default_print_flags.univpoly_varname</CODE>, which
|
|
defaults to <SAMP>`x'</SAMP>) or carry a given name. The base ring and the
|
|
indeterminate are explicitly part of every polynomial. CLN doesn't allow you to
|
|
(accidentally) mix elements of different polynomial rings, e.g.
|
|
<CODE>(a^2+1) * (b^3-1)</CODE> will result in a runtime error. (Ideally this should
|
|
return a multivariate polynomial, but they are not yet implemented in CLN.)
|
|
|
|
|
|
<P>
|
|
The classes of univariate polynomial rings are
|
|
|
|
|
|
|
|
<PRE>
|
|
Ring
|
|
cl_ring
|
|
<cl_ring.h>
|
|
|
|
|
|
|
|
Univariate polynomial ring
|
|
cl_univpoly_ring
|
|
<cl_univpoly.h>
|
|
|
|
|
+----------------+-------------------+
|
|
| | |
|
|
Complex polynomial ring | Modular integer polynomial ring
|
|
cl_univpoly_complex_ring | cl_univpoly_modint_ring
|
|
<cl_univpoly_complex.h> | <cl_univpoly_modint.h>
|
|
|
|
|
+----------------+
|
|
| |
|
|
Real polynomial ring |
|
|
cl_univpoly_real_ring |
|
|
<cl_univpoly_real.h> |
|
|
|
|
|
+----------------+
|
|
| |
|
|
Rational polynomial ring |
|
|
cl_univpoly_rational_ring |
|
|
<cl_univpoly_rational.h> |
|
|
|
|
|
+----------------+
|
|
|
|
|
Integer polynomial ring
|
|
cl_univpoly_integer_ring
|
|
<cl_univpoly_integer.h>
|
|
</PRE>
|
|
|
|
<P>
|
|
and the corresponding classes of univariate polynomials are
|
|
|
|
|
|
|
|
<PRE>
|
|
Univariate polynomial
|
|
cl_UP
|
|
<cl_univpoly.h>
|
|
|
|
|
+----------------+-------------------+
|
|
| | |
|
|
Complex polynomial | Modular integer polynomial
|
|
cl_UP_N | cl_UP_MI
|
|
<cl_univpoly_complex.h> | <cl_univpoly_modint.h>
|
|
|
|
|
+----------------+
|
|
| |
|
|
Real polynomial |
|
|
cl_UP_R |
|
|
<cl_univpoly_real.h> |
|
|
|
|
|
+----------------+
|
|
| |
|
|
Rational polynomial |
|
|
cl_UP_RA |
|
|
<cl_univpoly_rational.h> |
|
|
|
|
|
+----------------+
|
|
|
|
|
Integer polynomial
|
|
cl_UP_I
|
|
<cl_univpoly_integer.h>
|
|
</PRE>
|
|
|
|
<P>
|
|
Univariate polynomial rings are constructed using the functions
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_univpoly_ring cl_find_univpoly_ring (const cl_ring& R)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_ring cl_find_univpoly_ring (const cl_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
This function returns the polynomial ring <SAMP>`R[X]'</SAMP>, unnamed or named.
|
|
<CODE>R</CODE> may be an arbitrary ring. This function takes care of finding out
|
|
about special cases of <CODE>R</CODE>, such as the rings of complex numbers,
|
|
real numbers, rational numbers, integers, or modular integer rings.
|
|
There is a cache table of rings, indexed by <CODE>R</CODE> and <CODE>varname</CODE>.
|
|
This ensures that two calls of this function with the same arguments will
|
|
return the same polynomial ring.
|
|
|
|
<DT><CODE>cl_univpoly_complex_ring cl_find_univpoly_ring (const cl_complex_ring& R)</CODE>
|
|
<DD>
|
|
<A NAME="IDX282"></A>
|
|
<DT><CODE>cl_univpoly_complex_ring cl_find_univpoly_ring (const cl_complex_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& R)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_rational_ring cl_find_univpoly_ring (const cl_rational_ring& R)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_rational_ring cl_find_univpoly_ring (const cl_rational_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& R)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_modint_ring cl_find_univpoly_ring (const cl_modint_ring& R)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_modint_ring cl_find_univpoly_ring (const cl_modint_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
These functions are equivalent to the general <CODE>cl_find_univpoly_ring</CODE>,
|
|
only the return type is more specific, according to the base ring's type.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC57" HREF="cln.html#TOC57">9.2 Functions on univariate polynomials</A></H2>
|
|
|
|
<P>
|
|
Given a univariate polynomial ring <CODE>R</CODE>, the following members can be used.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_ring R->basering()</CODE>
|
|
<DD>
|
|
<A NAME="IDX283"></A>
|
|
This returns the base ring, as passed to <SAMP>`cl_find_univpoly_ring'</SAMP>.
|
|
|
|
<DT><CODE>cl_UP R->zero()</CODE>
|
|
<DD>
|
|
<A NAME="IDX284"></A>
|
|
This returns <CODE>0 in R</CODE>, a polynomial of degree -1.
|
|
|
|
<DT><CODE>cl_UP R->one()</CODE>
|
|
<DD>
|
|
<A NAME="IDX285"></A>
|
|
This returns <CODE>1 in R</CODE>, a polynomial of degree <= 0.
|
|
|
|
<DT><CODE>cl_UP R->canonhom (const cl_I& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX286"></A>
|
|
This returns <CODE>x in R</CODE>, a polynomial of degree <= 0.
|
|
|
|
<DT><CODE>cl_UP R->monomial (const cl_ring_element& x, uintL e)</CODE>
|
|
<DD>
|
|
<A NAME="IDX287"></A>
|
|
This returns a sparse polynomial: <CODE>x * X^e</CODE>, where <CODE>X</CODE> is the
|
|
indeterminate.
|
|
|
|
<DT><CODE>cl_UP R->create (sintL degree)</CODE>
|
|
<DD>
|
|
<A NAME="IDX288"></A>
|
|
Creates a new polynomial with a given degree. The zero polynomial has degree
|
|
<CODE>-1</CODE>. After creating the polynomial, you should put in the coefficients,
|
|
using the <CODE>set_coeff</CODE> member function, and then call the <CODE>finalize</CODE>
|
|
member function.
|
|
</DL>
|
|
|
|
<P>
|
|
The following are the only destructive operations on univariate polynomials.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX289"></A>
|
|
This changes the coefficient of <CODE>X^index</CODE> in <CODE>x</CODE> to be <CODE>y</CODE>.
|
|
After changing a polynomial and before applying any "normal" operation on it,
|
|
you should call its <CODE>finalize</CODE> member function.
|
|
|
|
<DT><CODE>void finalize (cl_UP& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX290"></A>
|
|
This function marks the endpoint of destructive modifications of a polynomial.
|
|
It normalizes the internal representation so that subsequent computations have
|
|
less overhead. Doing normal computations on unnormalized polynomials may
|
|
produce wrong results or crash the program.
|
|
</DL>
|
|
|
|
<P>
|
|
The following operations are defined on univariate polynomials.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_univpoly_ring x.ring ()</CODE>
|
|
<DD>
|
|
<A NAME="IDX291"></A>
|
|
Returns the ring to which the univariate polynomial <CODE>x</CODE> belongs.
|
|
|
|
<DT><CODE>cl_UP operator+ (const cl_UP&, const cl_UP&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX292"></A>
|
|
Returns the sum of two univariate polynomials.
|
|
|
|
<DT><CODE>cl_UP operator- (const cl_UP&, const cl_UP&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX293"></A>
|
|
Returns the difference of two univariate polynomials.
|
|
|
|
<DT><CODE>cl_UP operator- (const cl_UP&)</CODE>
|
|
<DD>
|
|
Returns the negative of a univariate polynomial.
|
|
|
|
<DT><CODE>cl_UP operator* (const cl_UP&, const cl_UP&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX294"></A>
|
|
Returns the product of two univariate polynomials. One of the arguments may
|
|
also be a plain integer or an element of the base ring.
|
|
|
|
<DT><CODE>cl_UP square (const cl_UP&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX295"></A>
|
|
Returns the square of a univariate polynomial.
|
|
|
|
<DT><CODE>cl_UP expt_pos (const cl_UP& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX296"></A>
|
|
<CODE>y</CODE> must be > 0. Returns <CODE>x^y</CODE>.
|
|
|
|
<DT><CODE>bool operator== (const cl_UP&, const cl_UP&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX297"></A>
|
|
<DT><CODE>bool operator!= (const cl_UP&, const cl_UP&)</CODE>
|
|
<DD>
|
|
<A NAME="IDX298"></A>
|
|
Compares two univariate polynomials, belonging to the same univariate
|
|
polynomial ring, for equality.
|
|
|
|
<DT><CODE>cl_boolean zerop (const cl_UP& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX299"></A>
|
|
Returns true if <CODE>x</CODE> is <CODE>0 in R</CODE>.
|
|
|
|
<DT><CODE>sintL degree (const cl_UP& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX300"></A>
|
|
Returns the degree of the polynomial. The zero polynomial has degree <CODE>-1</CODE>.
|
|
|
|
<DT><CODE>cl_ring_element coeff (const cl_UP& x, uintL index)</CODE>
|
|
<DD>
|
|
<A NAME="IDX301"></A>
|
|
Returns the coefficient of <CODE>X^index</CODE> in the polynomial <CODE>x</CODE>.
|
|
|
|
<DT><CODE>cl_ring_element x (const cl_ring_element& y)</CODE>
|
|
<DD>
|
|
<A NAME="IDX302"></A>
|
|
Evaluation: If <CODE>x</CODE> is a polynomial and <CODE>y</CODE> belongs to the base ring,
|
|
then <SAMP>`x(y)'</SAMP> returns the value of the substitution of <CODE>y</CODE> into
|
|
<CODE>x</CODE>.
|
|
|
|
<DT><CODE>cl_UP deriv (const cl_UP& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX303"></A>
|
|
Returns the derivative of the polynomial <CODE>x</CODE> with respect to the
|
|
indeterminate <CODE>X</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
The following output functions are defined (see also the chapter on
|
|
input/output).
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>void fprint (cl_ostream stream, const cl_UP& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX304"></A>
|
|
<DT><CODE>cl_ostream operator<< (cl_ostream stream, const cl_UP& x)</CODE>
|
|
<DD>
|
|
<A NAME="IDX305"></A>
|
|
Prints the univariate polynomial <CODE>x</CODE> on the <CODE>stream</CODE>. The output may
|
|
depend on the global printer settings in the variable
|
|
<CODE>cl_default_print_flags</CODE>.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC58" HREF="cln.html#TOC58">9.3 Special polynomials</A></H2>
|
|
|
|
<P>
|
|
The following functions return special polynomials.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_UP_I cl_tschebychev (sintL n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX306"></A>
|
|
<A NAME="IDX307"></A>
|
|
Returns the n-th Tchebychev polynomial (n >= 0).
|
|
|
|
<DT><CODE>cl_UP_I cl_hermite (sintL n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX308"></A>
|
|
<A NAME="IDX309"></A>
|
|
Returns the n-th Hermite polynomial (n >= 0).
|
|
|
|
<DT><CODE>cl_UP_RA cl_legendre (sintL n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX310"></A>
|
|
<A NAME="IDX311"></A>
|
|
Returns the n-th Legendre polynomial (n >= 0).
|
|
|
|
<DT><CODE>cl_UP_I cl_laguerre (sintL n)</CODE>
|
|
<DD>
|
|
<A NAME="IDX312"></A>
|
|
<A NAME="IDX313"></A>
|
|
Returns the n-th Laguerre polynomial (n >= 0).
|
|
</DL>
|
|
|
|
<P>
|
|
Information how to derive the differential equation satisfied by each
|
|
of these polynomials from their definition can be found in the
|
|
<CODE>doc/polynomial/</CODE> directory.
|
|
|
|
|
|
|
|
|
|
<H1><A NAME="SEC59" HREF="cln.html#TOC59">10. Internals</A></H1>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC60" HREF="cln.html#TOC60">10.1 Why C++ ?</A></H2>
|
|
<P>
|
|
<A NAME="IDX314"></A>
|
|
|
|
|
|
<P>
|
|
Using C++ as an implementation language provides
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
Efficiency: It compiles to machine code.
|
|
|
|
<LI>
|
|
|
|
<A NAME="IDX315"></A>
|
|
Portability: It runs on all platforms supporting a C++ compiler. Because
|
|
of the availability of GNU C++, this includes all currently used 32-bit and
|
|
64-bit platforms, independently of the quality of the vendor's C++ compiler.
|
|
|
|
<LI>
|
|
|
|
Type safety: The C++ compilers knows about the number types and complains if,
|
|
for example, you try to assign a float to an integer variable. However,
|
|
a drawback is that C++ doesn't know about generic types, hence a restriction
|
|
like that <CODE>operator+ (const cl_MI&, const cl_MI&)</CODE> requires that both
|
|
arguments belong to the same modular ring cannot be expressed as a compile-time
|
|
information.
|
|
|
|
<LI>
|
|
|
|
Algebraic syntax: The elementary operations <CODE>+</CODE>, <CODE>-</CODE>, <CODE>*</CODE>,
|
|
<CODE>=</CODE>, <CODE>==</CODE>, ... can be used in infix notation, which is more
|
|
convenient than Lisp notation <SAMP>`(+ x y)'</SAMP> or C notation <SAMP>`add(x,y,&z)'</SAMP>.
|
|
</UL>
|
|
|
|
<P>
|
|
With these language features, there is no need for two separate languages,
|
|
one for the implementation of the library and one in which the library's users
|
|
can program. This means that a prototype implementation of an algorithm
|
|
can be integrated into the library immediately after it has been tested and
|
|
debugged. No need to rewrite it in a low-level language after having prototyped
|
|
in a high-level language.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC61" HREF="cln.html#TOC61">10.2 Memory efficiency</A></H2>
|
|
|
|
<P>
|
|
In order to save memory allocations, CLN implements:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
Object sharing: An operation like <CODE>x+0</CODE> returns <CODE>x</CODE> without copying
|
|
it.
|
|
<LI>
|
|
|
|
<A NAME="IDX316"></A>
|
|
<A NAME="IDX317"></A>
|
|
Garbage collection: A reference counting mechanism makes sure that any
|
|
number object's storage is freed immediately when the last reference to the
|
|
object is gone.
|
|
<LI>
|
|
|
|
Small integers are represented as immediate values instead of pointers
|
|
to heap allocated storage. This means that integers <CODE>> -2^29</CODE>,
|
|
<CODE>< 2^29</CODE> don't consume heap memory, unless they were explicitly allocated
|
|
on the heap.
|
|
</UL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC62" HREF="cln.html#TOC62">10.3 Speed efficiency</A></H2>
|
|
|
|
<P>
|
|
Speed efficiency is obtained by the combination of the following tricks
|
|
and algorithms:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>
|
|
|
|
Small integers, being represented as immediate values, don't require
|
|
memory access, just a couple of instructions for each elementary operation.
|
|
<LI>
|
|
|
|
The kernel of CLN has been written in assembly language for some CPUs
|
|
(<CODE>i386</CODE>, <CODE>m68k</CODE>, <CODE>sparc</CODE>, <CODE>mips</CODE>, <CODE>arm</CODE>).
|
|
<LI>
|
|
|
|
On all CPUs, CLN may be configured to use the superefficient low-level
|
|
routines from GNU GMP version 3.
|
|
<LI>
|
|
|
|
For large numbers, CLN uses, instead of the standard <CODE>O(N^2)</CODE>
|
|
algorithm, the Karatsuba multiplication, which is an
|
|
<CODE>O(N^1.6)</CODE>
|
|
algorithm.
|
|
<LI>
|
|
|
|
For very large numbers (more than 12000 decimal digits), CLN uses
|
|
Schönhage-Strassen
|
|
<A NAME="IDX318"></A>
|
|
multiplication, which is an asymptotically optimal multiplication
|
|
algorithm.
|
|
<LI>
|
|
|
|
These fast multiplication algorithms also give improvements in the speed
|
|
of division and radix conversion.
|
|
</UL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC63" HREF="cln.html#TOC63">10.4 Garbage collection</A></H2>
|
|
<P>
|
|
<A NAME="IDX319"></A>
|
|
|
|
|
|
<P>
|
|
All the number classes are reference count classes: They only contain a pointer
|
|
to an object in the heap. Upon construction, assignment and destruction of
|
|
number objects, only the objects' reference count are manipulated.
|
|
|
|
|
|
<P>
|
|
Memory occupied by number objects are automatically reclaimed as soon as
|
|
their reference count drops to zero.
|
|
|
|
|
|
<P>
|
|
For number rings, another strategy is implemented: There is a cache of,
|
|
for example, the modular integer rings. A modular integer ring is destroyed
|
|
only if its reference count dropped to zero and the cache is about to be
|
|
resized. The effect of this strategy is that recently used rings remain
|
|
cached, whereas undue memory consumption through cached rings is avoided.
|
|
|
|
|
|
|
|
|
|
<H1><A NAME="SEC64" HREF="cln.html#TOC64">11. Using the library</A></H1>
|
|
|
|
<P>
|
|
For the following discussion, we will assume that you have installed
|
|
the CLN source in <CODE>$CLN_DIR</CODE> and built it in <CODE>$CLN_TARGETDIR</CODE>.
|
|
For example, for me it's <CODE>CLN_DIR="$HOME/cln"</CODE> and
|
|
<CODE>CLN_TARGETDIR="$HOME/cln/linuxelf"</CODE>. You might define these as
|
|
environment variables, or directly substitute the appropriate values.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC65" HREF="cln.html#TOC65">11.1 Compiler options</A></H2>
|
|
<P>
|
|
<A NAME="IDX320"></A>
|
|
|
|
|
|
<P>
|
|
Until you have installed CLN in a public place, the following options are
|
|
needed:
|
|
|
|
|
|
<P>
|
|
When you compile CLN application code, add the flags
|
|
|
|
<PRE>
|
|
-I$CLN_DIR/include -I$CLN_TARGETDIR/include
|
|
</PRE>
|
|
|
|
<P>
|
|
to the C++ compiler's command line (<CODE>make</CODE> variable CFLAGS or CXXFLAGS).
|
|
When you link CLN application code to form an executable, add the flags
|
|
|
|
<PRE>
|
|
$CLN_TARGETDIR/src/libcln.a
|
|
</PRE>
|
|
|
|
<P>
|
|
to the C/C++ compiler's command line (<CODE>make</CODE> variable LIBS).
|
|
|
|
|
|
<P>
|
|
If you did a <CODE>make install</CODE>, the include files are installed in a
|
|
public directory (normally <CODE>/usr/local/include</CODE>), hence you don't
|
|
need special flags for compiling. The library has been installed to a
|
|
public directory as well (normally <CODE>/usr/local/lib</CODE>), hence when
|
|
linking a CLN application it is sufficient to give the flag <CODE>-lcln</CODE>.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC66" HREF="cln.html#TOC66">11.2 Include files</A></H2>
|
|
<P>
|
|
<A NAME="IDX321"></A>
|
|
<A NAME="IDX322"></A>
|
|
|
|
|
|
<P>
|
|
Here is a summary of the include files and their contents.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE><cl_object.h></CODE>
|
|
<DD>
|
|
General definitions, reference counting, garbage collection.
|
|
<DT><CODE><cl_number.h></CODE>
|
|
<DD>
|
|
The class cl_number.
|
|
<DT><CODE><cl_complex.h></CODE>
|
|
<DD>
|
|
Functions for class cl_N, the complex numbers.
|
|
<DT><CODE><cl_real.h></CODE>
|
|
<DD>
|
|
Functions for class cl_R, the real numbers.
|
|
<DT><CODE><cl_float.h></CODE>
|
|
<DD>
|
|
Functions for class cl_F, the floats.
|
|
<DT><CODE><cl_sfloat.h></CODE>
|
|
<DD>
|
|
Functions for class cl_SF, the short-floats.
|
|
<DT><CODE><cl_ffloat.h></CODE>
|
|
<DD>
|
|
Functions for class cl_FF, the single-floats.
|
|
<DT><CODE><cl_dfloat.h></CODE>
|
|
<DD>
|
|
Functions for class cl_DF, the double-floats.
|
|
<DT><CODE><cl_lfloat.h></CODE>
|
|
<DD>
|
|
Functions for class cl_LF, the long-floats.
|
|
<DT><CODE><cl_rational.h></CODE>
|
|
<DD>
|
|
Functions for class cl_RA, the rational numbers.
|
|
<DT><CODE><cl_integer.h></CODE>
|
|
<DD>
|
|
Functions for class cl_I, the integers.
|
|
<DT><CODE><cl_io.h></CODE>
|
|
<DD>
|
|
Input/Output.
|
|
<DT><CODE><cl_complex_io.h></CODE>
|
|
<DD>
|
|
Input/Output for class cl_N, the complex numbers.
|
|
<DT><CODE><cl_real_io.h></CODE>
|
|
<DD>
|
|
Input/Output for class cl_R, the real numbers.
|
|
<DT><CODE><cl_float_io.h></CODE>
|
|
<DD>
|
|
Input/Output for class cl_F, the floats.
|
|
<DT><CODE><cl_sfloat_io.h></CODE>
|
|
<DD>
|
|
Input/Output for class cl_SF, the short-floats.
|
|
<DT><CODE><cl_ffloat_io.h></CODE>
|
|
<DD>
|
|
Input/Output for class cl_FF, the single-floats.
|
|
<DT><CODE><cl_dfloat_io.h></CODE>
|
|
<DD>
|
|
Input/Output for class cl_DF, the double-floats.
|
|
<DT><CODE><cl_lfloat_io.h></CODE>
|
|
<DD>
|
|
Input/Output for class cl_LF, the long-floats.
|
|
<DT><CODE><cl_rational_io.h></CODE>
|
|
<DD>
|
|
Input/Output for class cl_RA, the rational numbers.
|
|
<DT><CODE><cl_integer_io.h></CODE>
|
|
<DD>
|
|
Input/Output for class cl_I, the integers.
|
|
<DT><CODE><cl_input.h></CODE>
|
|
<DD>
|
|
Flags for customizing input operations.
|
|
<DT><CODE><cl_output.h></CODE>
|
|
<DD>
|
|
Flags for customizing output operations.
|
|
<DT><CODE><cl_malloc.h></CODE>
|
|
<DD>
|
|
<CODE>cl_malloc_hook</CODE>, <CODE>cl_free_hook</CODE>.
|
|
<DT><CODE><cl_abort.h></CODE>
|
|
<DD>
|
|
<CODE>cl_abort</CODE>.
|
|
<DT><CODE><cl_condition.h></CODE>
|
|
<DD>
|
|
Conditions/exceptions.
|
|
<DT><CODE><cl_string.h></CODE>
|
|
<DD>
|
|
Strings.
|
|
<DT><CODE><cl_symbol.h></CODE>
|
|
<DD>
|
|
Symbols.
|
|
<DT><CODE><cl_proplist.h></CODE>
|
|
<DD>
|
|
Property lists.
|
|
<DT><CODE><cl_ring.h></CODE>
|
|
<DD>
|
|
General rings.
|
|
<DT><CODE><cl_null_ring.h></CODE>
|
|
<DD>
|
|
The null ring.
|
|
<DT><CODE><cl_complex_ring.h></CODE>
|
|
<DD>
|
|
The ring of complex numbers.
|
|
<DT><CODE><cl_real_ring.h></CODE>
|
|
<DD>
|
|
The ring of real numbers.
|
|
<DT><CODE><cl_rational_ring.h></CODE>
|
|
<DD>
|
|
The ring of rational numbers.
|
|
<DT><CODE><cl_integer_ring.h></CODE>
|
|
<DD>
|
|
The ring of integers.
|
|
<DT><CODE><cl_numtheory.h></CODE>
|
|
<DD>
|
|
Number threory functions.
|
|
<DT><CODE><cl_modinteger.h></CODE>
|
|
<DD>
|
|
Modular integers.
|
|
<DT><CODE><cl_V.h></CODE>
|
|
<DD>
|
|
Vectors.
|
|
<DT><CODE><cl_GV.h></CODE>
|
|
<DD>
|
|
General vectors.
|
|
<DT><CODE><cl_GV_number.h></CODE>
|
|
<DD>
|
|
General vectors over cl_number.
|
|
<DT><CODE><cl_GV_complex.h></CODE>
|
|
<DD>
|
|
General vectors over cl_N.
|
|
<DT><CODE><cl_GV_real.h></CODE>
|
|
<DD>
|
|
General vectors over cl_R.
|
|
<DT><CODE><cl_GV_rational.h></CODE>
|
|
<DD>
|
|
General vectors over cl_RA.
|
|
<DT><CODE><cl_GV_integer.h></CODE>
|
|
<DD>
|
|
General vectors over cl_I.
|
|
<DT><CODE><cl_GV_modinteger.h></CODE>
|
|
<DD>
|
|
General vectors of modular integers.
|
|
<DT><CODE><cl_SV.h></CODE>
|
|
<DD>
|
|
Simple vectors.
|
|
<DT><CODE><cl_SV_number.h></CODE>
|
|
<DD>
|
|
Simple vectors over cl_number.
|
|
<DT><CODE><cl_SV_complex.h></CODE>
|
|
<DD>
|
|
Simple vectors over cl_N.
|
|
<DT><CODE><cl_SV_real.h></CODE>
|
|
<DD>
|
|
Simple vectors over cl_R.
|
|
<DT><CODE><cl_SV_rational.h></CODE>
|
|
<DD>
|
|
Simple vectors over cl_RA.
|
|
<DT><CODE><cl_SV_integer.h></CODE>
|
|
<DD>
|
|
Simple vectors over cl_I.
|
|
<DT><CODE><cl_SV_ringelt.h></CODE>
|
|
<DD>
|
|
Simple vectors of general ring elements.
|
|
<DT><CODE><cl_univpoly.h></CODE>
|
|
<DD>
|
|
Univariate polynomials.
|
|
<DT><CODE><cl_univpoly_integer.h></CODE>
|
|
<DD>
|
|
Univariate polynomials over the integers.
|
|
<DT><CODE><cl_univpoly_rational.h></CODE>
|
|
<DD>
|
|
Univariate polynomials over the rational numbers.
|
|
<DT><CODE><cl_univpoly_real.h></CODE>
|
|
<DD>
|
|
Univariate polynomials over the real numbers.
|
|
<DT><CODE><cl_univpoly_complex.h></CODE>
|
|
<DD>
|
|
Univariate polynomials over the complex numbers.
|
|
<DT><CODE><cl_univpoly_modint.h></CODE>
|
|
<DD>
|
|
Univariate polynomials over modular integer rings.
|
|
<DT><CODE><cl_timing.h></CODE>
|
|
<DD>
|
|
Timing facilities.
|
|
<DT><CODE><cln.h></CODE>
|
|
<DD>
|
|
Includes all of the above.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC67" HREF="cln.html#TOC67">11.3 An Example</A></H2>
|
|
|
|
<P>
|
|
A function which computes the nth Fibonacci number can be written as follows.
|
|
<A NAME="IDX323"></A>
|
|
|
|
|
|
|
|
<PRE>
|
|
#include <cl_integer.h>
|
|
#include <cl_real.h>
|
|
|
|
// Returns F_n, computed as the nearest integer to
|
|
// ((1+sqrt(5))/2)^n/sqrt(5). Assume n>=0.
|
|
const cl_I fibonacci (int n)
|
|
{
|
|
// Need a precision of ((1+sqrt(5))/2)^-n.
|
|
cl_float_format_t prec = cl_float_format((int)(0.208987641*n+5));
|
|
cl_R sqrt5 = sqrt(cl_float(5,prec));
|
|
cl_R phi = (1+sqrt5)/2;
|
|
return round1( expt(phi,n)/sqrt5 );
|
|
}
|
|
</PRE>
|
|
|
|
<P>
|
|
Let's explain what is going on in detail.
|
|
|
|
|
|
<P>
|
|
The include file <CODE><cl_integer.h></CODE> is necessary because the type
|
|
<CODE>cl_I</CODE> is used in the function, and the include file <CODE><cl_real.h></CODE>
|
|
is needed for the type <CODE>cl_R</CODE> and the floating point number functions.
|
|
The order of the include files does not matter.
|
|
|
|
|
|
<P>
|
|
Then comes the function declaration. The argument is an <CODE>int</CODE>, the
|
|
result an integer. The return type is defined as <SAMP>`const cl_I'</SAMP>, not
|
|
simply <SAMP>`cl_I'</SAMP>, because that allows the compiler to detect typos like
|
|
<SAMP>`fibonacci(n) = 100'</SAMP>. It would be possible to declare the return
|
|
type as <CODE>const cl_R</CODE> (real number) or even <CODE>const cl_N</CODE> (complex
|
|
number). We use the most specialized possible return type because functions
|
|
which call <SAMP>`fibonacci'</SAMP> will be able to profit from the compiler's type
|
|
analysis: Adding two integers is slightly more efficient than adding the
|
|
same objects declared as complex numbers, because it needs less type
|
|
dispatch. Also, when linking to CLN as a non-shared library, this minimizes
|
|
the size of the resulting executable program.
|
|
|
|
|
|
<P>
|
|
The result will be computed as expt(phi,n)/sqrt(5), rounded to the nearest
|
|
integer. In order to get a correct result, the absolute error should be less
|
|
than 1/2, i.e. the relative error should be less than sqrt(5)/(2*expt(phi,n)).
|
|
To this end, the first line computes a floating point precision for sqrt(5)
|
|
and phi.
|
|
|
|
|
|
<P>
|
|
Then sqrt(5) is computed by first converting the integer 5 to a floating point
|
|
number and than taking the square root. The converse, first taking the square
|
|
root of 5, and then converting to the desired precision, would not work in
|
|
CLN: The square root would be computed to a default precision (normally
|
|
single-float precision), and the following conversion could not help about
|
|
the lacking accuracy. This is because CLN is not a symbolic computer algebra
|
|
system and does not represent sqrt(5) in a non-numeric way.
|
|
|
|
|
|
<P>
|
|
The type <CODE>cl_R</CODE> for sqrt5 and, in the following line, phi is the only
|
|
possible choice. You cannot write <CODE>cl_F</CODE> because the C++ compiler can
|
|
only infer that <CODE>cl_float(5,prec)</CODE> is a real number. You cannot write
|
|
<CODE>cl_N</CODE> because a <SAMP>`round1'</SAMP> does not exist for general complex
|
|
numbers.
|
|
|
|
|
|
<P>
|
|
When the function returns, all the local variables in the function are
|
|
automatically reclaimed (garbage collected). Only the result survives and
|
|
gets passed to the caller.
|
|
|
|
|
|
<P>
|
|
The file <CODE>fibonacci.cc</CODE> in the subdirectory <CODE>examples</CODE>
|
|
contains this implementation together with an even faster algorithm.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC68" HREF="cln.html#TOC68">11.4 Debugging support</A></H2>
|
|
<P>
|
|
<A NAME="IDX324"></A>
|
|
|
|
|
|
<P>
|
|
When debugging a CLN application with GNU <CODE>gdb</CODE>, two facilities are
|
|
available from the library:
|
|
|
|
|
|
|
|
<UL>
|
|
<LI>The library does type checks, range checks, consistency checks at
|
|
|
|
many places. When one of these fails, the function <CODE>cl_abort()</CODE> is
|
|
called. Its default implementation is to perform an <CODE>exit(1)</CODE>, so
|
|
you won't have a core dump. But for debugging, it is best to set a
|
|
breakpoint at this function:
|
|
|
|
<PRE>
|
|
(gdb) break cl_abort
|
|
</PRE>
|
|
|
|
When this breakpoint is hit, look at the stack's backtrace:
|
|
|
|
<PRE>
|
|
(gdb) where
|
|
</PRE>
|
|
|
|
<LI>The debugger's normal <CODE>print</CODE> command doesn't know about
|
|
|
|
CLN's types and therefore prints mostly useless hexadecimal addresses.
|
|
CLN offers a function <CODE>cl_print</CODE>, callable from the debugger,
|
|
for printing number objects. In order to get this function, you have
|
|
to define the macro <SAMP>`CL_DEBUG'</SAMP> and then include all the header files
|
|
for which you want <CODE>cl_print</CODE> debugging support. For example:
|
|
<A NAME="IDX325"></A>
|
|
|
|
<PRE>
|
|
#define CL_DEBUG
|
|
#include <cl_string.h>
|
|
</PRE>
|
|
|
|
Now, if you have in your program a variable <CODE>cl_string s</CODE>, and
|
|
inspect it under <CODE>gdb</CODE>, the output may look like this:
|
|
|
|
<PRE>
|
|
(gdb) print s
|
|
$7 = {<cl_gcpointer> = { = {pointer = 0x8055b60, heappointer = 0x8055b60,
|
|
word = 134568800}}, }
|
|
(gdb) call cl_print(s)
|
|
(cl_string) ""
|
|
$8 = 134568800
|
|
</PRE>
|
|
|
|
Note that the output of <CODE>cl_print</CODE> goes to the program's error output,
|
|
not to gdb's standard output.
|
|
|
|
Note, however, that the above facility does not work with all CLN types,
|
|
only with number objects and similar. Therefore CLN offers a member function
|
|
<CODE>debug_print()</CODE> on all CLN types. The same macro <SAMP>`CL_DEBUG'</SAMP>
|
|
is needed for this member function to be implemented. Under <CODE>gdb</CODE>,
|
|
you call it like this:
|
|
<A NAME="IDX326"></A>
|
|
|
|
<PRE>
|
|
(gdb) print s
|
|
$7 = {<cl_gcpointer> = { = {pointer = 0x8055b60, heappointer = 0x8055b60,
|
|
word = 134568800}}, }
|
|
(gdb) call s.debug_print()
|
|
(cl_string) ""
|
|
(gdb) define cprint
|
|
>call ($1).debug_print()
|
|
>end
|
|
(gdb) cprint s
|
|
(cl_string) ""
|
|
</PRE>
|
|
|
|
Unfortunately, this feature does not seem to work under all circumstances.
|
|
</UL>
|
|
|
|
|
|
|
|
<H1><A NAME="SEC69" HREF="cln.html#TOC69">12. Customizing</A></H1>
|
|
<P>
|
|
<A NAME="IDX327"></A>
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC70" HREF="cln.html#TOC70">12.1 Error handling</A></H2>
|
|
|
|
<P>
|
|
When a fatal error occurs, an error message is output to the standard error
|
|
output stream, and the function <CODE>cl_abort</CODE> is called. The default
|
|
version of this function (provided in the library) terminates the application.
|
|
To catch such a fatal error, you need to define the function <CODE>cl_abort</CODE>
|
|
yourself, with the prototype
|
|
|
|
<PRE>
|
|
#include <cl_abort.h>
|
|
void cl_abort (void);
|
|
</PRE>
|
|
|
|
<P>
|
|
<A NAME="IDX328"></A>
|
|
This function must not return control to its caller.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC71" HREF="cln.html#TOC71">12.2 Floating-point underflow</A></H2>
|
|
<P>
|
|
<A NAME="IDX329"></A>
|
|
|
|
|
|
<P>
|
|
Floating point underflow denotes the situation when a floating-point number
|
|
is to be created which is so close to <CODE>0</CODE> that its exponent is too
|
|
low to be represented internally. By default, this causes a fatal error.
|
|
If you set the global variable
|
|
|
|
<PRE>
|
|
cl_boolean cl_inhibit_floating_point_underflow
|
|
</PRE>
|
|
|
|
<P>
|
|
to <CODE>cl_true</CODE>, the error will be inhibited, and a floating-point zero
|
|
will be generated instead. The default value of
|
|
<CODE>cl_inhibit_floating_point_underflow</CODE> is <CODE>cl_false</CODE>.
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC72" HREF="cln.html#TOC72">12.3 Customizing I/O</A></H2>
|
|
|
|
<P>
|
|
The output of the function <CODE>fprint</CODE> may be customized by changing the
|
|
value of the global variable <CODE>cl_default_print_flags</CODE>.
|
|
<A NAME="IDX330"></A>
|
|
|
|
|
|
|
|
|
|
<H2><A NAME="SEC73" HREF="cln.html#TOC73">12.4 Customizing the memory allocator</A></H2>
|
|
|
|
<P>
|
|
Every memory allocation of CLN is done through the function pointer
|
|
<CODE>cl_malloc_hook</CODE>. Freeing of this memory is done through the function
|
|
pointer <CODE>cl_free_hook</CODE>. The default versions of these functions,
|
|
provided in the library, call <CODE>malloc</CODE> and <CODE>free</CODE> and check
|
|
the <CODE>malloc</CODE> result against <CODE>NULL</CODE>.
|
|
If you want to provide another memory allocator, you need to define
|
|
the variables <CODE>cl_malloc_hook</CODE> and <CODE>cl_free_hook</CODE> yourself,
|
|
like this:
|
|
|
|
<PRE>
|
|
#include <cl_malloc.h>
|
|
void* (*cl_malloc_hook) (size_t size) = ...;
|
|
void (*cl_free_hook) (void* ptr) = ...;
|
|
</PRE>
|
|
|
|
<P>
|
|
<A NAME="IDX331"></A>
|
|
<A NAME="IDX332"></A>
|
|
The <CODE>cl_malloc_hook</CODE> function must not return a <CODE>NULL</CODE> pointer.
|
|
|
|
|
|
<P>
|
|
It is not possible to change the memory allocator at runtime, because
|
|
it is already called at program startup by the constructors of some
|
|
global variables.
|
|
|
|
|
|
|
|
|
|
<H1><A NAME="SEC74" HREF="cln.html#TOC74">Index</A></H1>
|
|
|
|
<P>
|
|
Jump to:
|
|
<P>
|
|
|
|
|
|
<P><HR><P>
|
|
This document was generated on 2 June 2000 using
|
|
<A HREF="http://wwwinfo.cern.ch/dis/texi2html/">texi2html</A> 1.56k.
|
|
</BODY>
|
|
</HTML>
|