You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							269 lines
						
					
					
						
							9.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							269 lines
						
					
					
						
							9.7 KiB
						
					
					
				| %% This LaTeX-file was created by <bruno> Sun Feb 16 14:19:08 1997 | |
| %% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team | |
|  | |
| %% Don't edit this file unless you are sure what you are doing. | |
| \documentclass[12pt,a4paper,oneside,onecolumn]{article} | |
| \usepackage[]{fontenc} | |
| \usepackage[latin1]{inputenc} | |
| \usepackage[dvips]{epsfig} | |
| 
 | |
| %% | |
| %% BEGIN The lyx specific LaTeX commands. | |
| %% | |
|  | |
| \makeatletter | |
| \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}% | |
| \newcommand{\lyxtitle}[1] {\thispagestyle{empty} | |
| \global\@topnum\z@ | |
| \section*{\LARGE \centering \sffamily \bfseries \protect#1 } | |
| } | |
| \newcommand{\lyxline}[1]{ | |
| {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}} | |
| } | |
| \newenvironment{lyxsectionbibliography} | |
| { | |
| \section*{\refname} | |
| \@mkboth{\uppercase{\refname}}{\uppercase{\refname}} | |
| \begin{list}{}{ | |
| \itemindent-\leftmargin | |
| \labelsep 0pt | |
| \renewcommand{\makelabel}{} | |
| } | |
| } | |
| {\end{list}} | |
| \newenvironment{lyxchapterbibliography} | |
| { | |
| \chapter*{\bibname} | |
| \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}} | |
| \begin{list}{}{ | |
| \itemindent-\leftmargin | |
| \labelsep 0pt | |
| \renewcommand{\makelabel}{} | |
| } | |
| } | |
| {\end{list}} | |
| \def\lxq{"} | |
| \newenvironment{lyxcode} | |
| {\list{}{ | |
| \rightmargin\leftmargin | |
| \raggedright | |
| \itemsep 0pt | |
| \parsep 0pt | |
| \ttfamily | |
| }% | |
| \item[] | |
| } | |
| {\endlist} | |
| \newcommand{\lyxlabel}[1]{#1 \hfill} | |
| \newenvironment{lyxlist}[1] | |
| {\begin{list}{} | |
| {\settowidth{\labelwidth}{#1} | |
| \setlength{\leftmargin}{\labelwidth} | |
| \addtolength{\leftmargin}{\labelsep} | |
| \renewcommand{\makelabel}{\lyxlabel}}} | |
| {\end{list}} | |
| \newcommand{\lyxletterstyle}{ | |
| \setlength\parskip{0.7em} | |
| \setlength\parindent{0pt} | |
| } | |
| \newcommand{\lyxaddress}[1]{ | |
| \par {\raggedright #1  | |
| \vspace{1.4em} | |
| \noindent\par} | |
| } | |
| \newcommand{\lyxrightaddress}[1]{ | |
| \par {\raggedleft \begin{tabular}{l}\ignorespaces | |
| #1 | |
| \end{tabular} | |
| \vspace{1.4em} | |
| \par} | |
| } | |
| \newcommand{\lyxformula}[1]{ | |
| \begin{eqnarray*} | |
| #1 | |
| \end{eqnarray*} | |
| } | |
| \newcommand{\lyxnumberedformula}[1]{ | |
| \begin{eqnarray} | |
| #1 | |
| \end{eqnarray} | |
| } | |
| \makeatother | |
| 
 | |
| %% | |
| %% END The lyx specific LaTeX commands. | |
| %% | |
|  | |
| \pagestyle{plain} | |
| \setcounter{secnumdepth}{3} | |
| \setcounter{tocdepth}{3} | |
| 
 | |
| %% Begin LyX user specified preamble: | |
| \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe | |
| \def\Res{\mathop{\operator@font Res}} | |
| \def\ll{\langle\!\langle} | |
| \def\gg{\rangle\!\rangle} | |
| \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen | |
|  | |
| 
 | |
| %% End LyX user specified preamble. | |
| \begin{document} | |
| 
 | |
| 
 | |
| \title{The diagonal of a rational function} | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Theorem:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
| Let  \( M \) be a torsion-free  \( R \)-module, and  \( d>0 \). Let  | |
| \[ | |
| f=\sum _{n_{1},...,n_{d}}a_{n_{1},...,n_{d}}\, x_{1}^{n_{1}}\cdots x_{d}^{n_{d}}\in M[[x_{1},\ldots x_{d}]]\] | |
| be a rational function, | |
| i.e. there are  \( P\in M[x_{1},\ldots ,x_{d}] \) and  \( Q\in R[x_{1},\ldots ,x_{d}] \) with  \( Q(0,\ldots ,0)=1 \) and  \( Q\cdot f=P \). Then the full diagonal of  \( f \) | |
| \[ | |
| g=\sum ^{\infty }_{n=0}a_{n,\ldots ,n}\, x_{1}^{n}\] | |
| is | |
| a D-finite element of  \( M[[x_{1}]] \), w.r.t.  \( R[x_{1}] \) and  \( \{\partial _{x_{1}}\} \). | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Proof:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
| From the hypotheses,  \( M[[x_{1},\ldots ,x_{d}]] \) is a torsion-free differential module over | |
|  \( R[x_{1},\ldots ,x_{d}] \) w.r.t. the derivatives  \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \), and  \( f \) is a D-finite element of  \( M[[x_{1},\ldots ,x_{d}]] \) over | |
|  \( R[x_{1},\ldots ,x_{d}] \) w.r.t.  \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \). Now apply the general diagonal theorem ([1], section 2.18) | |
|  \( d-1 \) times. | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Theorem:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
| Let  \( R \) be an integral domain of characteristic 0 and  \( M \) simultaneously | |
| a torsion-free  \( R \)-module and a commutative  \( R \)-algebra without zero divisors. | |
| Let  | |
| \[ | |
| f=\sum _{m,n\geq 0}a_{m,n}x^{m}y^{n}\in M[[x,y]]\] | |
|  be a rational function. Then the diagonal of  \( f \) | |
| \[ | |
| g=\sum ^{\infty }_{n=0}a_{n,n}\, x^{n}\] | |
|  is algebraic | |
| over  \( R[x] \). | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Motivation~of~proof:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
| The usual proof ([2]) uses complex analysis and works only for  \( R=M=C \). | |
| The idea is to compute | |
| \[ | |
| g(x^{2})=\frac{1}{2\pi i}\oint _{|z|=1}f(xz,\frac{x}{z})\frac{dz}{z}\] | |
| This integral, whose integrand is a rational | |
| function in  \( x \) and  \( z \), is calculated using the residue theorem. Since | |
|  \( f(x,y) \) is continuous at  \( (0,0) \), there is a  \( \delta >0 \) such that  \( f(x,y)\neq \infty  \) for  \( |x|<\delta  \),  \( |y|<\delta  \). It follows | |
| that for all  \( \varepsilon >0 \) and  \( |x|<\delta \varepsilon  \) all the poles of  \( f(xz,\frac{x}{z}) \) are contained in  \( \{z:|z|<\varepsilon \}\cup \{z:|z|>\frac{1}{\varepsilon }\} \). Thus the | |
| poles of  \( f(xz,\frac{x}{z}) \), all algebraic functions of  \( x \) -- let's call them  \( \zeta _{1}(x),\ldots \zeta _{s}(x) \) --, | |
| can be divided up into those for which  \( |\zeta _{i}(x)|=O(|x|) \) as  \( x\rightarrow 0 \) and those for which | |
|  \( \frac{1}{|\zeta _{i}(x)|}=O(|x|) \) as  \( x\rightarrow 0 \). It follows from the residue theorem that for  \( |x|<\delta  \) | |
| \[ | |
| g(x^{2})=\sum _{\zeta =0\vee \zeta =O(|x|)}\Res _{z=\zeta }\, f(xz,\frac{x}{z})\] | |
|  This is algebraic | |
| over  \( C(x) \). Hence  \( g(x) \) is algebraic over  \( C(x^{1/2}) \), hence also algebraic over  \( C(x) \). | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Proof:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
| Let  | |
| \[ | |
| h(x,z):=f(xz,\frac{x}{z})=\sum ^{\infty }_{m,n=0}a_{m,n}x^{m+n}z^{m-n}\in M[[xz,xz^{-1}]]\] | |
| Then  \( g(x^{2}) \) is the coefficient of  \( z^{0} \) in  \( h(x,z) \). Let  \( N(x,z):=z^{d}Q(xz,\frac{x}{z}) \) (with  \( d:=\max (\deg _{y}P,\deg _{y}Q) \)) be ``the denominator'' | |
| of  \( h(x,z) \). We have  \( N(x,z)\in R[x,z] \) and  \( N\neq 0 \) (because  \( N(0,z)=z^{d} \)). Let  \( K \) be the quotient field of | |
|  \( R \). Thus  \( N(x,z)\in K[x][z]\setminus \{0\} \). | |
| 
 | |
| It is well-known (see [3], p.64, or [4], chap. IV, §2, prop. 8, or | |
| [5], chap. III, §1) that the splitting field of  \( N(x,z) \) over  \( K(x) \) can be embedded | |
| into a field  \( L((x^{1/r})) \), where  \( r \) is a positive integer and  \( L \) is a finite-algebraic | |
| extension field of  \( K \), i.e. a simple algebraic extension  \( L=K(\alpha )=K\alpha ^{0}+\cdots +K\alpha ^{u-1} \).  | |
| 
 | |
|  \( \widetilde{M}:=(R\setminus \{0\})^{-1}\cdot M \) is a  \( K \)-vector space and a commutative  \( K \)-algebra without zero divisors. | |
|  \( \widehat{M}:=\widetilde{M}\alpha ^{0}+\cdots +\widetilde{M}\alpha ^{u-1} \) is an  \( L \)-vector space and a commutative  \( L \)-algebra without zero divisors. | |
| 
 | |
| 
 | |
| 
 | |
| \begin{eqnarray*} | |
| \widehat{M}\ll x,z\gg  & := & \widehat{M}[[x^{1/r}\cdot z,x^{1/r}\cdot z^{-1},x^{1/r}]][x^{-1/r}]\\ | |
|  & = & \left\{ \sum _{m,n}c_{m,n}x^{m/r}z^{n}:c_{m,n}\neq 0\Rightarrow |n|\leq m+O(1)\right\}  | |
| \end{eqnarray*} | |
| is an  \( L \)-algebra which contains  \( \widehat{M}((x^{1/r})) \). | |
| 
 | |
| Since  \( N(x,z) \) splits into linear factors in  \( L((x^{1/r}))[z] \),  \( N(x,z)=l\prod ^{s}_{i=1}(z-\zeta _{i}(x))^{k_{i}} \), there exists a partial | |
| fraction decomposition of  \( h(x,z)=\frac{P(xz,\frac{x}{z})}{Q(xz,\frac{x}{z})}=\frac{z^{d}P(xz,\frac{x}{z})}{N(x,z)} \) in  \( \widehat{M}\ll x,z\gg  \): | |
| 
 | |
| 
 | |
| \[ | |
| h(x,z)=\sum ^{l}_{j=0}P_{j}(x)z^{j}+\sum ^{s}_{i=1}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}}\] | |
| with  \( P_{j}(x),P_{i,k}(x)\in \widehat{M}((x^{1/r})) \). | |
| 
 | |
| Recall that we are looking for the coefficient of  \( z^{0} \) in  \( h(x,z) \). We compute | |
| it separately for each summand. | |
| 
 | |
| If  \( \zeta _{i}(x)=ax^{m/r}+... \) with  \( a\in L\setminus \{0\} \),  \( m>0 \), or  \( \zeta _{i}(x)=0 \), we have | |
| 
 | |
| 
 | |
| \begin{eqnarray*} | |
| \frac{1}{(z-\zeta _{i}(x))^{k}} & = & \frac{1}{z^{k}}\cdot \frac{1}{\left( 1-\frac{\zeta _{i}(x)}{z}\right) ^{k}}\\ | |
|  & = & \frac{1}{z^{k}}\cdot \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\left( \frac{\zeta _{i}(x)}{z}\right) ^{j}\\ | |
|  & = & \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\frac{\zeta _{i}(x)^{j}}{z^{k+j}} | |
| \end{eqnarray*} | |
| hence the coefficient of  \( z^{0} \) in  \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \) is  \( 0 \). | |
| 
 | |
| If  \( \zeta _{i}(x)=ax^{m/r}+... \) with  \( a\in L\setminus \{0\} \),  \( m<0 \), we have | |
| \[ | |
| \frac{1}{(z-\zeta _{i}(x))^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \frac{1}{\left( 1-\frac{z}{\zeta _{i}(x)}\right) ^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \sum _{j=0}^{\infty }{k-1+j\choose k-1}\left( \frac{z}{\zeta _{i}(x)}\right) ^{j}\] | |
| hence the coefficient of  \( z^{0} \) in  \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \) is  \( \frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}} \). | |
| 
 | |
| The case  \( \zeta _{i}(x)=ax^{m/r}+... \) with  \( a\in L\setminus \{0\} \),  \( m=0 \), cannot occur, because it would imply  \( 0=N(0,\zeta _{i}(0))=N(0,a)=a^{d}. \) | |
| 
 | |
| Altogether we have | |
| \[ | |
| g(x^{2})=[z^{0}]h(x,z)=P_{0}(x)+\sum _{\frac{1}{\zeta _{i}(x)}=o(x)}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}}\in \widehat{M}((x^{1/r}))\] | |
| 
 | |
| 
 | |
| Since all  \( \zeta _{i}(x) \)(in  \( L((x^{1/r})) \)) and all  \( P_{j}(x),P_{i,k}(x) \) (in  \( \widehat{M}((x^{1/r})) \)) are algebraic over  \( K(x) \), the same | |
| holds also for  \( g(x^{2}) \). Hence  \( g(x) \) is algebraic over  \( K(x^{1/2}) \), hence also over  \( K(x) \). | |
| After clearing denominators, we finally conclude that  \( g(x) \) is algebraic | |
| over  \( R[x] \). | |
| 
 | |
| \begin{lyxsectionbibliography} | |
| 
 | |
| \item [1] Bruno Haible: D-finite power series in several variables. \em Diploma | |
| thesis, University of Karlsruhe, June 1989. \em Sections 2.18 and | |
| 2.20. | |
| 
 | |
| \item [2] M. L. J. Hautus, D. A. Klarner: The diagonal of a double power | |
| series. \em Duke Math. J. \em \bfseries 38 \mdseries (1971), | |
| 229-235. | |
| 
 | |
| \item [3] C. Chevalley: Introduction to the theory of algebraic functions | |
| of one variable. \em Mathematical Surveys VI. American Mathematical | |
| Society.\em  | |
| 
 | |
| \item [4] Jean-Pierre Serre: Corps locaux. \em Hermann. Paris \em 1968. | |
| 
 | |
| \item [5] Martin Eichler: Introduction to the theory of algebraic numbers | |
| and functions. \em Academic Press. New York, London \em 1966. | |
| 
 | |
| \end{lyxsectionbibliography} | |
| 
 | |
| \end{document}
 |