You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							251 lines
						
					
					
						
							7.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							251 lines
						
					
					
						
							7.2 KiB
						
					
					
				
								<HTML>
							 | 
						|
								<HEAD>
							 | 
						|
								<!-- Created by texi2html 1.56k from cln.texi on 5 May 2000 -->
							 | 
						|
								
							 | 
						|
								<TITLE>CLN, a Class Library for Numbers - 7. Modular integers</TITLE>
							 | 
						|
								</HEAD>
							 | 
						|
								<BODY>
							 | 
						|
								Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_6.html">previous</A>, <A HREF="cln_8.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>.
							 | 
						|
								<P><HR><P>
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<H1><A NAME="SEC49" HREF="cln_toc.html#TOC49">7. Modular integers</A></H1>
							 | 
						|
								<P>
							 | 
						|
								<A NAME="IDX240"></A>
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<H2><A NAME="SEC50" HREF="cln_toc.html#TOC50">7.1 Modular integer rings</A></H2>
							 | 
						|
								<P>
							 | 
						|
								<A NAME="IDX241"></A>
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<P>
							 | 
						|
								CLN implements modular integers, i.e. integers modulo a fixed integer N.
							 | 
						|
								The modulus is explicitly part of every modular integer. CLN doesn't
							 | 
						|
								allow you to (accidentally) mix elements of different modular rings,
							 | 
						|
								e.g. <CODE>(3 mod 4) + (2 mod 5)</CODE> will result in a runtime error.
							 | 
						|
								(Ideally one would imagine a generic data type <CODE>cl_MI(N)</CODE>, but C++
							 | 
						|
								doesn't have generic types. So one has to live with runtime checks.)
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<P>
							 | 
						|
								The class of modular integer rings is
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<PRE>
							 | 
						|
								                         Ring
							 | 
						|
								                       cl_ring
							 | 
						|
								                      <cl_ring.h>
							 | 
						|
								                          |
							 | 
						|
								                          |
							 | 
						|
								                 Modular integer ring
							 | 
						|
								                    cl_modint_ring
							 | 
						|
								                   <cl_modinteger.h>
							 | 
						|
								</PRE>
							 | 
						|
								
							 | 
						|
								<P>
							 | 
						|
								<A NAME="IDX242"></A>
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<P>
							 | 
						|
								and the class of all modular integers (elements of modular integer rings) is
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<PRE>
							 | 
						|
								                    Modular integer
							 | 
						|
								                         cl_MI
							 | 
						|
								                   <cl_modinteger.h>
							 | 
						|
								</PRE>
							 | 
						|
								
							 | 
						|
								<P>
							 | 
						|
								Modular integer rings are constructed using the function
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<DL COMPACT>
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_modint_ring cl_find_modint_ring (const cl_I& N)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX243"></A>
							 | 
						|
								This function returns the modular ring <SAMP>`Z/NZ'</SAMP>. It takes care
							 | 
						|
								of finding out about special cases of <CODE>N</CODE>, like powers of two
							 | 
						|
								and odd numbers for which Montgomery multiplication will be a win,
							 | 
						|
								<A NAME="IDX244"></A>
							 | 
						|
								and precomputes any necessary auxiliary data for computing modulo <CODE>N</CODE>.
							 | 
						|
								There is a cache table of rings, indexed by <CODE>N</CODE> (or, more precisely,
							 | 
						|
								by <CODE>abs(N)</CODE>). This ensures that the precomputation costs are reduced
							 | 
						|
								to a minimum.
							 | 
						|
								</DL>
							 | 
						|
								
							 | 
						|
								<P>
							 | 
						|
								Modular integer rings can be compared for equality:
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<DL COMPACT>
							 | 
						|
								
							 | 
						|
								<DT><CODE>bool operator== (const cl_modint_ring&, const cl_modint_ring&)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX245"></A>
							 | 
						|
								<DT><CODE>bool operator!= (const cl_modint_ring&, const cl_modint_ring&)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX246"></A>
							 | 
						|
								These compare two modular integer rings for equality. Two different calls
							 | 
						|
								to <CODE>cl_find_modint_ring</CODE> with the same argument necessarily return the
							 | 
						|
								same ring because it is memoized in the cache table.
							 | 
						|
								</DL>
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<H2><A NAME="SEC51" HREF="cln_toc.html#TOC51">7.2 Functions on modular integers</A></H2>
							 | 
						|
								
							 | 
						|
								<P>
							 | 
						|
								Given a modular integer ring <CODE>R</CODE>, the following members can be used.
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<DL COMPACT>
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_I R->modulus</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX247"></A>
							 | 
						|
								This is the ring's modulus, normalized to be nonnegative: <CODE>abs(N)</CODE>.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI R->zero()</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX248"></A>
							 | 
						|
								This returns <CODE>0 mod N</CODE>.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI R->one()</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX249"></A>
							 | 
						|
								This returns <CODE>1 mod N</CODE>.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI R->canonhom (const cl_I& x)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX250"></A>
							 | 
						|
								This returns <CODE>x mod N</CODE>.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_I R->retract (const cl_MI& x)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX251"></A>
							 | 
						|
								This is a partial inverse function to <CODE>R->canonhom</CODE>. It returns the
							 | 
						|
								standard representative (<CODE>>=0</CODE>, <CODE><N</CODE>) of <CODE>x</CODE>.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI R->random(cl_random_state& randomstate)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<DT><CODE>cl_MI R->random()</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX252"></A>
							 | 
						|
								This returns a random integer modulo <CODE>N</CODE>.
							 | 
						|
								</DL>
							 | 
						|
								
							 | 
						|
								<P>
							 | 
						|
								The following operations are defined on modular integers.
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<DL COMPACT>
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_modint_ring x.ring ()</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX253"></A>
							 | 
						|
								Returns the ring to which the modular integer <CODE>x</CODE> belongs.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI operator+ (const cl_MI&, const cl_MI&)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX254"></A>
							 | 
						|
								Returns the sum of two modular integers. One of the arguments may also be
							 | 
						|
								a plain integer.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI operator- (const cl_MI&, const cl_MI&)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX255"></A>
							 | 
						|
								Returns the difference of two modular integers. One of the arguments may also be
							 | 
						|
								a plain integer.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI operator- (const cl_MI&)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								Returns the negative of a modular integer.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI operator* (const cl_MI&, const cl_MI&)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX256"></A>
							 | 
						|
								Returns the product of two modular integers. One of the arguments may also be
							 | 
						|
								a plain integer.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI square (const cl_MI&)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX257"></A>
							 | 
						|
								Returns the square of a modular integer.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI recip (const cl_MI& x)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX258"></A>
							 | 
						|
								Returns the reciprocal <CODE>x^-1</CODE> of a modular integer <CODE>x</CODE>. <CODE>x</CODE>
							 | 
						|
								must be coprime to the modulus, otherwise an error message is issued.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI div (const cl_MI& x, const cl_MI& y)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX259"></A>
							 | 
						|
								Returns the quotient <CODE>x*y^-1</CODE> of two modular integers <CODE>x</CODE>, <CODE>y</CODE>.
							 | 
						|
								<CODE>y</CODE> must be coprime to the modulus, otherwise an error message is issued.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI expt_pos (const cl_MI& x, const cl_I& y)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX260"></A>
							 | 
						|
								<CODE>y</CODE> must be > 0. Returns <CODE>x^y</CODE>.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI expt (const cl_MI& x, const cl_I& y)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX261"></A>
							 | 
						|
								Returns <CODE>x^y</CODE>. If <CODE>y</CODE> is negative, <CODE>x</CODE> must be coprime to the
							 | 
						|
								modulus, else an error message is issued.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI operator<< (const cl_MI& x, const cl_I& y)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX262"></A>
							 | 
						|
								Returns <CODE>x*2^y</CODE>.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_MI operator>> (const cl_MI& x, const cl_I& y)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX263"></A>
							 | 
						|
								Returns <CODE>x*2^-y</CODE>. When <CODE>y</CODE> is positive, the modulus must be odd,
							 | 
						|
								or an error message is issued.
							 | 
						|
								
							 | 
						|
								<DT><CODE>bool operator== (const cl_MI&, const cl_MI&)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX264"></A>
							 | 
						|
								<DT><CODE>bool operator!= (const cl_MI&, const cl_MI&)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX265"></A>
							 | 
						|
								Compares two modular integers, belonging to the same modular integer ring,
							 | 
						|
								for equality.
							 | 
						|
								
							 | 
						|
								<DT><CODE>cl_boolean zerop (const cl_MI& x)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX266"></A>
							 | 
						|
								Returns true if <CODE>x</CODE> is <CODE>0 mod N</CODE>.
							 | 
						|
								</DL>
							 | 
						|
								
							 | 
						|
								<P>
							 | 
						|
								The following output functions are defined (see also the chapter on
							 | 
						|
								input/output).
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								<DL COMPACT>
							 | 
						|
								
							 | 
						|
								<DT><CODE>void fprint (cl_ostream stream, const cl_MI& x)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX267"></A>
							 | 
						|
								<DT><CODE>cl_ostream operator<< (cl_ostream stream, const cl_MI& x)</CODE>
							 | 
						|
								<DD>
							 | 
						|
								<A NAME="IDX268"></A>
							 | 
						|
								Prints the modular integer <CODE>x</CODE> on the <CODE>stream</CODE>. The output may depend
							 | 
						|
								on the global printer settings in the variable <CODE>cl_default_print_flags</CODE>.
							 | 
						|
								</DL>
							 | 
						|
								
							 | 
						|
								<P><HR><P>
							 | 
						|
								Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_6.html">previous</A>, <A HREF="cln_8.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>.
							 | 
						|
								</BODY>
							 | 
						|
								</HTML>
							 |