You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							316 lines
						
					
					
						
							6.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							316 lines
						
					
					
						
							6.0 KiB
						
					
					
				
								#This file was created by <bruno> Sun Feb 16 14:05:04 1997
							 | 
						|
								#LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
							 | 
						|
								\lyxformat 2.10
							 | 
						|
								\textclass article
							 | 
						|
								\begin_preamble
							 | 
						|
								\catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
							 | 
						|
								\def\ll{\langle\!\langle}
							 | 
						|
								\def\gg{\rangle\!\rangle}
							 | 
						|
								\catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
							 | 
						|
								
							 | 
						|
								\end_preamble
							 | 
						|
								\language default
							 | 
						|
								\inputencoding latin1
							 | 
						|
								\fontscheme default
							 | 
						|
								\epsfig dvips
							 | 
						|
								\papersize a4paper 
							 | 
						|
								\paperfontsize 12 
							 | 
						|
								\baselinestretch 1.00 
							 | 
						|
								\secnumdepth 3 
							 | 
						|
								\tocdepth 3 
							 | 
						|
								\paragraph_separation indent 
							 | 
						|
								\quotes_language english 
							 | 
						|
								\quotes_times 2 
							 | 
						|
								\paperorientation portrait 
							 | 
						|
								\papercolumns 0 
							 | 
						|
								\papersides 1 
							 | 
						|
								\paperpagestyle plain 
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								The Laguerre polynomials 
							 | 
						|
								\begin_inset Formula  \( L_{n}(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 are defined through 
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								L_{n}(x)=e^{x}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{n}e^{-x})\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Theorem:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula  \( L_{n}(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 satisfies the recurrence relation
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								L_{0}(x)=1\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								L_{n+1}(x)=(2n+1-x)\cdot L_{n}(x)-n^{2}\cdot L_{n-1}(x)\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								for 
							 | 
						|
								\begin_inset Formula  \( n\geq 0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and the differential equation 
							 | 
						|
								\begin_inset Formula  \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 for all 
							 | 
						|
								\begin_inset Formula  \( n\geq 0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Proof:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Let 
							 | 
						|
								\begin_inset Formula  \( F:=\sum ^{\infty }_{n=0}\frac{L_{n}(x)}{n!}\cdot z^{n} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 be the exponential generating function of the sequence of polynomials.
							 | 
						|
								 It is the diagonal series of the power series
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								G:=\sum _{m,n=0}^{\infty }\frac{1}{m!}\cdot e^{x}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\cdot z^{n}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								Because the Taylor series development theorem holds in formal power series
							 | 
						|
								 rings (see [1], section 2.
							 | 
						|
								16), we can simplify
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								G & = & e^{x}\cdot \sum _{n=0}^{\infty }\left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\right) \cdot z^{n}\\
							 | 
						|
								 & = & e^{x}\cdot \sum _{n=0}^{\infty }(x+y)^{n}e^{-(x+y)}\cdot z^{n}\\
							 | 
						|
								 & = & \frac{e^{-y}}{1-(x+y)z}
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								We take over the terminology from the 
							 | 
						|
								\begin_inset Quotes eld
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								diag_rational
							 | 
						|
								\begin_inset Quotes erd
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 paper; here 
							 | 
						|
								\begin_inset Formula  \( R=Q[x] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( M=Q[[x]] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 (or, if you like it better, 
							 | 
						|
								\begin_inset Formula  \( M=H(C) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, the algebra of functions holomorphic in the entire complex plane).
							 | 
						|
								 
							 | 
						|
								\begin_inset Formula  \( G\in M[[y,z]] \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is not rational; nevertheless we can proceed similarly to the 
							 | 
						|
								\begin_inset Quotes eld
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								diag_series
							 | 
						|
								\begin_inset Quotes erd
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 paper.
							 | 
						|
								 
							 | 
						|
								\begin_inset Formula  \( F(z^{2}) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is the coefficient of 
							 | 
						|
								\begin_inset Formula  \( t^{0} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 in
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								G(zt,\frac{z}{t})=\frac{e^{-zt}}{1-z^{2}-\frac{xz}{t}}\in M[[zt,\frac{z}{t},z]]=M\ll z,t\gg \]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								The denominator's only zero is 
							 | 
						|
								\begin_inset Formula  \( t=\frac{xz}{1-z^{2}} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 We can write
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								e^{-zt}=e^{-\frac{xz^{2}}{1-z^{2}}}+\left( zt-\frac{xz^{2}}{1-z^{2}}\right) \cdot P(z,t)\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								with 
							 | 
						|
								\begin_inset Formula  \( P(z,t)\in Q[[zt,\frac{xz^{2}}{1-z^{2}}]]\subset Q[[zt,x,z]]=M[[zt,z]]\subset M\ll z,t\gg  \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 This yields -- all computations being done in 
							 | 
						|
								\begin_inset Formula  \( M\ll z,t\gg  \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 --
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								G(zt,\frac{z}{t}) & = & \frac{e^{-\frac{xz^{2}}{1-z^{2}}}}{1-z^{2}-\frac{xz}{t}}+\frac{zt}{1-z^{2}}\cdot P(z,t)\\
							 | 
						|
								 & = & \frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\cdot \sum _{j=0}^{\infty }\left( \frac{x}{1-z^{2}}\frac{z}{t}\right) ^{j}+\frac{zt}{1-z^{2}}\cdot P(z,t)
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								Here, the coefficient of 
							 | 
						|
								\begin_inset Formula  \( t^{0} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 is
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								F(z^{2})=\frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								hence
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								F(z)=\frac{1}{1-z}\cdot e^{-\frac{xz}{1-z}}\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								It follows that 
							 | 
						|
								\begin_inset Formula  \( (1-z)^{2}\cdot \frac{d}{dz}F-(1-x-z)\cdot F=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 This is equivalent to the claimed recurrence.
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Starting from the closed form for 
							 | 
						|
								\begin_inset Formula  \( F \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								, we compute a linear relation for the partial derivatives of 
							 | 
						|
								\begin_inset Formula  \( F \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Write 
							 | 
						|
								\begin_inset Formula  \( \partial _{x}=\frac{d}{dx} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( \Delta _{z}=z\frac{d}{dz} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 One computes
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								F=1\cdot F\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\left( 1-z\right) \cdot \partial _{x}F=-z\cdot F\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\left( 1-z\right) ^{2}\cdot \partial _{x}^{2}F=z^{2}\cdot F\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\left( 1-z\right) ^{2}\cdot \Delta _{z}F=((1-x)z-z^{2})\cdot F\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\left( 1-z\right) ^{3}\cdot \partial _{x}\Delta _{z}F=(-z+xz^{2}+z^{3})\cdot F\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								Solve a homogeneous 
							 | 
						|
								\begin_inset Formula  \( 4\times 5 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 system of linear equations over 
							 | 
						|
								\begin_inset Formula  \( Q(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 to get 
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\left( 1-z\right) ^{3}\cdot \left( (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F\right) =0\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								Divide by the first factor to get
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								(1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F=0\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								This is equivalent to the claimed equation 
							 | 
						|
								\begin_inset Formula  \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Bibliography
							 | 
						|
								\cursor 123 
							 | 
						|
								[1] Bruno Haible: D-finite power series in several variables.
							 | 
						|
								 
							 | 
						|
								\shape italic 
							 | 
						|
								Diploma thesis, University of Karlsruhe, June 1989
							 | 
						|
								\shape default 
							 | 
						|
								.
							 | 
						|
								 Sections 2.
							 | 
						|
								15 and 2.
							 | 
						|
								22.
							 | 
						|
								
							 |