You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							199 lines
						
					
					
						
							3.4 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							199 lines
						
					
					
						
							3.4 KiB
						
					
					
				
								#This file was created by <bruno> Sun Feb 16 00:38:14 1997
							 | 
						|
								#LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
							 | 
						|
								\lyxformat 2.10
							 | 
						|
								\textclass article
							 | 
						|
								\language default
							 | 
						|
								\inputencoding latin1
							 | 
						|
								\fontscheme default
							 | 
						|
								\epsfig dvips
							 | 
						|
								\papersize a4paper 
							 | 
						|
								\paperfontsize 12 
							 | 
						|
								\baselinestretch 1.00 
							 | 
						|
								\secnumdepth 3 
							 | 
						|
								\tocdepth 3 
							 | 
						|
								\paragraph_separation indent 
							 | 
						|
								\quotes_language english 
							 | 
						|
								\quotes_times 2 
							 | 
						|
								\paperorientation portrait 
							 | 
						|
								\papercolumns 0 
							 | 
						|
								\papersides 1 
							 | 
						|
								\paperpagestyle plain 
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								The Hermite polynomials 
							 | 
						|
								\begin_inset Formula  \( H_{n}(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 are defined through 
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								H_{n}(x)=(-1)^{n}e^{x^{2}}\cdot \left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Theorem:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula  \( H_{n}(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 satisfies the recurrence relation
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								H_{0}(x)=1\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								H_{n+1}(x)=2x\cdot H_{n}(x)-2n\cdot H_{n-1}(x)\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 for 
							 | 
						|
								\begin_inset Formula  \( n\geq 0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and the differential equation 
							 | 
						|
								\begin_inset Formula  \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 for all 
							 | 
						|
								\begin_inset Formula  \( n\geq 0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Description
							 | 
						|
								
							 | 
						|
								Proof:
							 | 
						|
								\layout Standard
							 | 
						|
								
							 | 
						|
								Let 
							 | 
						|
								\begin_inset Formula  \( F:=\sum ^{\infty }_{n=0}\frac{H_{n}(x)}{n!}z^{n} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 be the exponential generating function of the sequence of polynomials.
							 | 
						|
								 Then, because the Taylor series development theorem holds in formal power
							 | 
						|
								 series rings (see [1], section 2.
							 | 
						|
								16), we can simplify
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\begin{eqnarray*}
							 | 
						|
								F & = & e^{x^{2}}\cdot \sum ^{\infty }_{n=0}\frac{1}{n!}\left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \cdot (-z)^{n}\\
							 | 
						|
								 & = & e^{x^{2}}\cdot e^{-(x-z)^{2}}\\
							 | 
						|
								 & = & e^{2xz-z^{2}}
							 | 
						|
								\end{eqnarray*}
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								It follows that 
							 | 
						|
								\begin_inset Formula  \( \frac{d}{dz}F=(2x-2z)\cdot F \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 This is equivalent to the claimed recurrence.
							 | 
						|
								
							 | 
						|
								\layout Standard
							 | 
						|
								\cursor 190 
							 | 
						|
								Starting from this equation, we compute a linear relation for the partial
							 | 
						|
								 derivatives of 
							 | 
						|
								\begin_inset Formula  \( F \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 Write 
							 | 
						|
								\begin_inset Formula  \( \partial _{x}=\frac{d}{dx} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 and 
							 | 
						|
								\begin_inset Formula  \( \Delta _{z}=z\frac{d}{dz} \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								 One computes
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								F=1\cdot F\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\partial _{x}F=2z\cdot F\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\partial _{x}^{2}F=4z^{2}\cdot F\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\Delta _{z}F=(2xz-2z^{2})\cdot F\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\partial _{x}\Delta _{z}F=(2z+4xz^{2}-4z^{3})\cdot F\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								\Delta _{z}^{2}F=\left( 2x\cdot z+(4x^{2}-4)\cdot z^{2}-8x\cdot z^{3}+4\cdot z^{4}\right) \cdot F\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 Solve a homogeneous 
							 | 
						|
								\begin_inset Formula  \( 5\times 6 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 system of linear equations over 
							 | 
						|
								\begin_inset Formula  \( Q(x) \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 to get 
							 | 
						|
								\begin_inset Formula 
							 | 
						|
								\[
							 | 
						|
								(-2x)\cdot \partial _{x}F+\partial _{x}^{2}F+2\cdot \Delta _{z}F=0\]
							 | 
						|
								
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								 This is equivalent to the claimed equation 
							 | 
						|
								\begin_inset Formula  \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \)
							 | 
						|
								\end_inset 
							 | 
						|
								
							 | 
						|
								.
							 | 
						|
								
							 | 
						|
								\layout Bibliography
							 | 
						|
								
							 | 
						|
								[1] Bruno Haible: D-finite power series in several variables.
							 | 
						|
								 
							 | 
						|
								\shape italic 
							 | 
						|
								Diploma thesis, University of Karlsruhe, June 1989
							 | 
						|
								\shape default 
							 | 
						|
								.
							 | 
						|
								 Sections 2.
							 | 
						|
								15 and 2.
							 | 
						|
								22.
							 | 
						|
								
							 |