You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							521 lines
						
					
					
						
							21 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							521 lines
						
					
					
						
							21 KiB
						
					
					
				| // Public real number operations. | |
|  | |
| #ifndef _CL_REAL_H | |
| #define _CL_REAL_H | |
|  | |
| #include "cln/number.h" | |
| #include "cln/real_class.h" | |
| #include "cln/rational_class.h" | |
| #include "cln/integer_class.h" | |
| #include "cln/float.h" | |
| #include "cln/floatformat.h" | |
| #include "cln/random.h" | |
|  | |
| namespace cln { | |
| 
 | |
| CL_DEFINE_AS_CONVERSION(cl_R) | |
| 
 | |
| 
 | |
| // zerop(x) testet, ob (= x 0). | |
| extern cl_boolean zerop (const cl_R& x); | |
| 
 | |
| // minusp(x) testet, ob (< x 0). | |
| extern cl_boolean minusp (const cl_R& x); | |
| 
 | |
| // plusp(x) testet, ob (> x 0). | |
| extern cl_boolean plusp (const cl_R& x); | |
| 
 | |
| 
 | |
| // R_to_SF(x) wandelt eine reelle Zahl x in ein Short-Float um. | |
| // < ergebnis: (coerce x 'short-float) | |
| extern const cl_SF cl_R_to_SF (const cl_R& x); | |
| 
 | |
| // R_to_FF(x) wandelt eine reelle Zahl x in ein Single-Float um. | |
| // < ergebnis: (coerce x 'single-float) | |
| extern const cl_FF cl_R_to_FF (const cl_R& x); | |
| 
 | |
| // R_to_DF(x) wandelt eine reelle Zahl x in ein Double-Float um. | |
| // < ergebnis: (coerce x 'double-float) | |
| extern const cl_DF cl_R_to_DF (const cl_R& x); | |
| 
 | |
| // R_to_LF(x,len) wandelt eine reelle Zahl x in ein Long-Float mit len Digits um. | |
| // > uintC len: gewünschte Anzahl Digits, >=LF_minlen | |
| // < ergebnis: (coerce x `(long-float ,len)) | |
| extern const cl_LF cl_R_to_LF (const cl_R& x, uintC len); | |
| 
 | |
| // cl_float(x,y) wandelt eine reelle Zahl x in das Float-Format des | |
| // Floats y um und rundet dabei nötigenfalls. | |
| // > x: eine reelle Zahl | |
| // > y: ein Float | |
| // < ergebnis: (float x y) | |
| extern const cl_F cl_float (const cl_R& x, const cl_F& y); | |
| 
 | |
| // cl_float(x,f) wandelt eine reelle Zahl x in das Float-Format f um | |
| // und rundet dabei nötigenfalls. | |
| // > x: eine reelle Zahl | |
| // > f: eine Float-Format-Spezifikation | |
| // < ergebnis: (float x f) | |
| extern const cl_F cl_float (const cl_R& x, float_format_t f); | |
| 
 | |
| // cl_float(x) wandelt eine reelle Zahl x in ein Float um | |
| // und rundet dabei nötigenfalls. | |
| // > x: eine reelle Zahl | |
| // < ergebnis: (float x) | |
| // Abhängig von default_float_format. | |
| extern const cl_F cl_float (const cl_R& x); | |
| 
 | |
| 
 | |
| // Liefert (- x), wo x eine reelle Zahl ist. | |
| extern const cl_R operator- (const cl_R& x); | |
| 
 | |
| // Liefert (+ x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R operator+ (const cl_R& x, const cl_R& y); | |
| // Spezialfall: x oder y Float -> Ergebnis Float | |
| inline const cl_F operator+ (const cl_R& x, const cl_F& y) | |
| 	{ return The(cl_F)(x + The(cl_R)(y)); } | |
| inline const cl_F operator+ (const cl_F& x, const cl_R& y) | |
| 	{ return The(cl_F)(The(cl_R)(x) + y); } | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R operator+ (const int x, const cl_R& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_R operator+ (const unsigned int x, const cl_R& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_R operator+ (const long x, const cl_R& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_R operator+ (const unsigned long x, const cl_R& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_R operator+ (const cl_R& x, const int y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_R operator+ (const cl_R& x, const unsigned int y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_R operator+ (const cl_R& x, const long y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_R operator+ (const cl_R& x, const unsigned long y) | |
| 	{ return x + cl_I(y); } | |
| 
 | |
| // Liefert (- x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R operator- (const cl_R& x, const cl_R& y); | |
| // Spezialfall: x oder y Float -> Ergebnis Float | |
| inline const cl_F operator- (const cl_R& x, const cl_F& y) | |
| 	{ return The(cl_F)(x - The(cl_R)(y)); } | |
| inline const cl_F operator- (const cl_F& x, const cl_R& y) | |
| 	{ return The(cl_F)(The(cl_R)(x) - y); } | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R operator- (const int x, const cl_R& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_R operator- (const unsigned int x, const cl_R& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_R operator- (const long x, const cl_R& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_R operator- (const unsigned long x, const cl_R& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_R operator- (const cl_R& x, const int y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_R operator- (const cl_R& x, const unsigned int y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_R operator- (const cl_R& x, const long y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_R operator- (const cl_R& x, const unsigned long y) | |
| 	{ return x - cl_I(y); } | |
| 
 | |
| // Liefert (* x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R operator* (const cl_R& x, const cl_R& y); | |
| // Dem C++-Compiler muß man auch das Folgende sagen (wg. `int * cl_F' u.ä.): | |
| inline const cl_R operator* (const int x, const cl_R& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_R operator* (const unsigned int x, const cl_R& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_R operator* (const long x, const cl_R& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_R operator* (const unsigned long x, const cl_R& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_R operator* (const cl_R& x, const int y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_R operator* (const cl_R& x, const unsigned int y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_R operator* (const cl_R& x, const long y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_R operator* (const cl_R& x, const unsigned long y) | |
| 	{ return x * cl_I(y); } | |
| 
 | |
| // Liefert (* x x), wo x eine reelle Zahl ist. | |
| extern const cl_R square (const cl_R& x); | |
| 
 | |
| // Liefert (/ x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R operator/ (const cl_R& x, const cl_R& y); | |
| // Spezialfall: x oder y Float -> Ergebnis Float | |
| inline const cl_F operator/ (const cl_F& x, const cl_R& y) | |
| 	{ return The(cl_F)(The(cl_R)(x) / y); } | |
| // Dem C++-Compiler muß man auch das Folgende sagen (wg. `int / cl_F' u.ä.): | |
| inline const cl_R operator/ (const int x, const cl_R& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_R operator/ (const unsigned int x, const cl_R& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_R operator/ (const long x, const cl_R& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_R operator/ (const unsigned long x, const cl_R& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_R operator/ (const cl_R& x, const int y) | |
| 	{ return x / cl_I(y); } | |
| inline const cl_R operator/ (const cl_R& x, const unsigned int y) | |
| 	{ return x / cl_I(y); } | |
| inline const cl_R operator/ (const cl_R& x, const long y) | |
| 	{ return x / cl_I(y); } | |
| inline const cl_R operator/ (const cl_R& x, const unsigned long y) | |
| 	{ return x / cl_I(y); } | |
| 
 | |
| // Liefert (abs x), wo x eine reelle Zahl ist. | |
| extern const cl_R abs (const cl_R& x); | |
| 
 | |
| // recip(x) liefert (/ x), wo x eine reelle Zahl ist. | |
| extern const cl_R recip (const cl_R& x); | |
| 
 | |
| // (1+ x), wo x eine reelle Zahl ist. | |
| extern const cl_R plus1 (const cl_R& x); | |
| 
 | |
| // (1- x), wo x eine reelle Zahl ist. | |
| extern const cl_R minus1 (const cl_R& x); | |
| 
 | |
| 
 | |
| // Return type for rounding operators. | |
| // x / y  --> (q,r) with x = y*q+r. | |
| struct cl_R_div_t { | |
| 	cl_I quotient; | |
| 	cl_R remainder; | |
| // Constructor. | |
| 	cl_R_div_t () {} | |
| 	cl_R_div_t (const cl_I& q, const cl_R& r) : quotient(q), remainder(r) {} | |
| 	cl_R_div_t (const struct cl_I_div_t &); | |
| 	cl_R_div_t (const struct cl_RA_div_t &); | |
| 	cl_R_div_t (const struct cl_F_div_t &); | |
| }; | |
| 
 | |
| // floor2(x) liefert (floor x), wo x eine reelle Zahl ist. | |
| extern const cl_R_div_t floor2 (const cl_R& x); | |
| extern const cl_I floor1 (const cl_R& x); | |
| 
 | |
| // ceiling2(x) liefert (ceiling x), wo x eine reelle Zahl ist. | |
| extern const cl_R_div_t ceiling2 (const cl_R& x); | |
| extern const cl_I ceiling1 (const cl_R& x); | |
| 
 | |
| // truncate2(x) liefert (truncate x), wo x eine reelle Zahl ist. | |
| extern const cl_R_div_t truncate2 (const cl_R& x); | |
| extern const cl_I truncate1 (const cl_R& x); | |
| 
 | |
| // round2(x) liefert (round x), wo x eine reelle Zahl ist. | |
| extern const cl_R_div_t round2 (const cl_R& x); | |
| extern const cl_I round1 (const cl_R& x); | |
| 
 | |
| // floor2(x,y) liefert (floor x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R_div_t floor2 (const cl_R& x, const cl_R& y); | |
| extern const cl_I floor1 (const cl_R& x, const cl_R& y); | |
| 
 | |
| // ceiling2(x,y) liefert (ceiling x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R_div_t ceiling2 (const cl_R& x, const cl_R& y); | |
| extern const cl_I ceiling1 (const cl_R& x, const cl_R& y); | |
| 
 | |
| // truncate2(x,y) liefert (truncate x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R_div_t truncate2 (const cl_R& x, const cl_R& y); | |
| extern const cl_I truncate1 (const cl_R& x, const cl_R& y); | |
| 
 | |
| // round2(x,y) liefert (round x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R_div_t round2 (const cl_R& x, const cl_R& y); | |
| extern const cl_I round1 (const cl_R& x, const cl_R& y); | |
| 
 | |
| 
 | |
| // Return type for frounding operators. | |
| // x / y  --> (q,r) with x = y*q+r. | |
| struct cl_R_fdiv_t { | |
| 	cl_F quotient; | |
| 	cl_R remainder; | |
| // Constructor. | |
| 	cl_R_fdiv_t () {} | |
| 	cl_R_fdiv_t (const cl_F& q, const cl_R& r) : quotient(q), remainder(r) {} | |
| 	cl_R_fdiv_t (const struct cl_F_fdiv_t &); | |
| }; | |
| 
 | |
| // ffloor2(x) liefert (ffloor x), wo x eine reelle Zahl ist. | |
| extern const cl_R_fdiv_t ffloor2 (const cl_R& x); | |
| extern const cl_F ffloor (const cl_R& x); | |
| 
 | |
| // fceiling2(x) liefert (fceiling x), wo x eine reelle Zahl ist. | |
| extern const cl_R_fdiv_t fceiling2 (const cl_R& x); | |
| extern const cl_F fceiling (const cl_R& x); | |
| 
 | |
| // ftruncate2(x) liefert (ftruncate x), wo x eine reelle Zahl ist. | |
| extern const cl_R_fdiv_t ftruncate2 (const cl_R& x); | |
| extern const cl_F ftruncate (const cl_R& x); | |
| 
 | |
| // fround2(x) liefert (fround x), wo x eine reelle Zahl ist. | |
| extern const cl_R_fdiv_t fround2 (const cl_R& x); | |
| extern const cl_F fround (const cl_R& x); | |
| 
 | |
| // ffloor2(x,y) liefert (ffloor x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R_fdiv_t ffloor2 (const cl_R& x, const cl_R& y); | |
| extern const cl_F ffloor (const cl_R& x, const cl_R& y); | |
| 
 | |
| // fceiling2(x,y) liefert (fceiling x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R_fdiv_t fceiling2 (const cl_R& x, const cl_R& y); | |
| extern const cl_F fceiling (const cl_R& x, const cl_R& y); | |
| 
 | |
| // ftruncate2(x,y) liefert (ftruncate x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R_fdiv_t ftruncate2 (const cl_R& x, const cl_R& y); | |
| extern const cl_F ftruncate (const cl_R& x, const cl_R& y); | |
| 
 | |
| // fround2(x,y) liefert (fround x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R_fdiv_t fround2 (const cl_R& x, const cl_R& y); | |
| extern const cl_F fround (const cl_R& x, const cl_R& y); | |
| 
 | |
| 
 | |
| // mod(x,y) = (mod x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R mod (const cl_R& x, const cl_R& y); | |
| 
 | |
| // rem(x,y) = (rem x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R rem (const cl_R& x, const cl_R& y); | |
| 
 | |
| 
 | |
| // rational(x) liefert (rational x), wo x eine reelle Zahl ist. | |
| extern const cl_RA rational (const cl_R& x); | |
| // Spezialfall: | |
| inline const cl_RA rational (const cl_RA& x) { return x; } | |
| 
 | |
| 
 | |
| // equal(x,y) vergleicht zwei reelle Zahlen x und y auf Gleichheit. | |
| extern cl_boolean equal (const cl_R& x, const cl_R& y); | |
| // equal_hashcode(x) liefert einen equal-invarianten Hashcode für x. | |
| extern uint32 equal_hashcode (const cl_R& x); | |
| 
 | |
| // compare(x,y) vergleicht zwei reelle Zahlen x und y. | |
| // Ergebnis: 0 falls x=y, +1 falls x>y, -1 falls x<y. | |
| extern cl_signean compare (const cl_R& x, const cl_R& y); | |
| 
 | |
| inline bool operator== (const cl_R& x, const cl_R& y) | |
| 	{ return equal(x,y); } | |
| inline bool operator!= (const cl_R& x, const cl_R& y) | |
| 	{ return !equal(x,y); } | |
| inline bool operator<= (const cl_R& x, const cl_R& y) | |
| 	{ return compare(x,y)<=0; } | |
| inline bool operator< (const cl_R& x, const cl_R& y) | |
| 	{ return compare(x,y)<0; } | |
| inline bool operator>= (const cl_R& x, const cl_R& y) | |
| 	{ return compare(x,y)>=0; } | |
| inline bool operator> (const cl_R& x, const cl_R& y) | |
| 	{ return compare(x,y)>0; } | |
| 
 | |
| // max(x,y) liefert (max x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R max (const cl_R& x, const cl_R& y); | |
| 
 | |
| // min(x,y) liefert (min x y), wo x und y reelle Zahlen sind. | |
| extern const cl_R min (const cl_R& x, const cl_R& y); | |
| 
 | |
| // signum(x) liefert (signum x), wo x eine reelle Zahl ist. | |
| extern const cl_R signum (const cl_R& x); | |
| 
 | |
| // sqrt(x) = (sqrt x) zieht die Wurzel aus einer reellen Zahl x >=0. | |
| extern const cl_R sqrt (const cl_R& x); | |
| // sqrt(x) = (sqrt x) zieht die Wurzel aus einer rationalen Zahl x >=0. | |
| extern const cl_R sqrt (const cl_RA& x); | |
| 
 | |
| // (expt x y), wo x eine reelle Zahl und y ein Integer ist. | |
| extern const cl_R expt (const cl_R& x, sintL y); | |
| extern const cl_R expt (const cl_R& x, const cl_I& y); | |
| 
 | |
| // rationalize(x) liefert (rationalize x), wo x eine reelle Zahl ist. | |
| extern const cl_RA rationalize (const cl_R& x); | |
| 
 | |
| 
 | |
| // Konversion zu einem C "float". | |
| extern float float_approx (const cl_R& x); | |
| 
 | |
| // Konversion zu einem C "double". | |
| extern double double_approx (const cl_R& x); | |
| 
 | |
| 
 | |
| // Transcendental functions | |
|  | |
| 
 | |
| // atan(x,y) liefert zu zwei reellen Zahlen x, y den Winkel von (x,y) | |
| // in Polarkoordinaten. Ergebnis rational nur, wenn x>0 und y=0. | |
| extern const cl_R atan (const cl_R& x, const cl_R& y); | |
| // Spezialfall: y Float -> Ergebnis Float | |
| inline const cl_F atan (const cl_R& x, const cl_F& y) | |
| 	{ return The(cl_F)(atan(x,The(cl_R)(y))); } | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R atan (const cl_R& x, const int y) | |
| 	{ return atan(x,cl_I(y)); } | |
| inline const cl_R atan (const cl_R& x, const unsigned int y) | |
| 	{ return atan(x,cl_I(y)); } | |
| inline const cl_R atan (const cl_R& x, const long y) | |
| 	{ return atan(x,cl_I(y)); } | |
| inline const cl_R atan (const cl_R& x, const unsigned long y) | |
| 	{ return atan(x,cl_I(y)); } | |
| 
 | |
| // atan(x) liefert den Arctan einer reellen Zahl x. | |
| // Ergebnis rational nur, wenn x=0. | |
| extern const cl_R atan (const cl_R& x); | |
| // Spezialfall: x Float -> Ergebnis Float | |
| inline const cl_F atan (const cl_F& x) { return The(cl_F)(atan(The(cl_R)(x))); } | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R atan (const int x) { return atan(cl_I(x)); } | |
| inline const cl_R atan (const unsigned int x) { return atan(cl_I(x)); } | |
| inline const cl_R atan (const long x) { return atan(cl_I(x)); } | |
| inline const cl_R atan (const unsigned long x) { return atan(cl_I(x)); } | |
| 
 | |
| // sin(x) liefert den Sinus (sin x) einer reellen Zahl x. | |
| extern const cl_R sin (const cl_R& x); | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R sin (const int x) { return sin(cl_I(x)); } | |
| inline const cl_R sin (const unsigned int x) { return sin(cl_I(x)); } | |
| inline const cl_R sin (const long x) { return sin(cl_I(x)); } | |
| inline const cl_R sin (const unsigned long x) { return sin(cl_I(x)); } | |
| 
 | |
| // cos(x) liefert den Cosinus (cos x) einer reellen Zahl x. | |
| extern const cl_R cos (const cl_R& x); | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R cos (const int x) { return cos(cl_I(x)); } | |
| inline const cl_R cos (const unsigned int x) { return cos(cl_I(x)); } | |
| inline const cl_R cos (const long x) { return cos(cl_I(x)); } | |
| inline const cl_R cos (const unsigned long x) { return cos(cl_I(x)); } | |
| 
 | |
| // cos_sin(x) liefert ((cos x),(sin x)), beide Werte. | |
| extern const cos_sin_t cos_sin (const cl_R& x); | |
| 
 | |
| // tan(x) liefert den Tangens (tan x) einer reellen Zahl x. | |
| extern const cl_R tan (const cl_R& x); | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R tan (const int x) { return tan(cl_I(x)); } | |
| inline const cl_R tan (const unsigned int x) { return tan(cl_I(x)); } | |
| inline const cl_R tan (const long x) { return tan(cl_I(x)); } | |
| inline const cl_R tan (const unsigned long x) { return tan(cl_I(x)); } | |
| 
 | |
| // ln(x) liefert zu einer reellen Zahl x>0 die Zahl ln(x). | |
| extern const cl_R ln (const cl_R& x); | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R ln (const int x) { return ln(cl_I(x)); } | |
| inline const cl_R ln (const unsigned int x) { return ln(cl_I(x)); } | |
| inline const cl_R ln (const long x) { return ln(cl_I(x)); } | |
| inline const cl_R ln (const unsigned long x) { return ln(cl_I(x)); } | |
| 
 | |
| // log(a,b) liefert zu reellen Zahlen a>0, b>0 die Zahl | |
| // log(a,b)=ln(a)/ln(b). | |
| // Ergebnis rational nur, wenn a=1 oder a und b rational. | |
| extern const cl_R log (const cl_R& a, const cl_R& b); | |
| 
 | |
| // exp(x) liefert zu einer reellen Zahl x die Zahl exp(x). | |
| extern const cl_R exp (const cl_R& x); | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R exp (const int x) { return exp(cl_I(x)); } | |
| inline const cl_R exp (const unsigned int x) { return exp(cl_I(x)); } | |
| inline const cl_R exp (const long x) { return exp(cl_I(x)); } | |
| inline const cl_R exp (const unsigned long x) { return exp(cl_I(x)); } | |
| 
 | |
| // sinh(x) liefert zu einer reellen Zahl x die Zahl sinh(x). | |
| extern const cl_R sinh (const cl_R& x); | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R sinh (const int x) { return sinh(cl_I(x)); } | |
| inline const cl_R sinh (const unsigned int x) { return sinh(cl_I(x)); } | |
| inline const cl_R sinh (const long x) { return sinh(cl_I(x)); } | |
| inline const cl_R sinh (const unsigned long x) { return sinh(cl_I(x)); } | |
| 
 | |
| // cosh(x) liefert zu einer reellen Zahl x die Zahl cosh(x). | |
| extern const cl_R cosh (const cl_R& x); | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R cosh (const int x) { return cosh(cl_I(x)); } | |
| inline const cl_R cosh (const unsigned int x) { return cosh(cl_I(x)); } | |
| inline const cl_R cosh (const long x) { return cosh(cl_I(x)); } | |
| inline const cl_R cosh (const unsigned long x) { return cosh(cl_I(x)); } | |
| 
 | |
| // cosh_sinh(x) liefert ((cosh x),(sinh x)), beide Werte. | |
| extern const cosh_sinh_t cosh_sinh (const cl_R& x); | |
| 
 | |
| // tanh(x) liefert zu einer reellen Zahl x die Zahl tanh(x). | |
| extern const cl_R tanh (const cl_R& x); | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R tanh (const int x) { return tanh(cl_I(x)); } | |
| inline const cl_R tanh (const unsigned int x) { return tanh(cl_I(x)); } | |
| inline const cl_R tanh (const long x) { return tanh(cl_I(x)); } | |
| inline const cl_R tanh (const unsigned long x) { return tanh(cl_I(x)); } | |
| 
 | |
| 
 | |
| // random_R(randomstate,n) liefert zu einer reellen Zahl n>0 eine Zufallszahl | |
| // x mit 0 <= x < n. | |
| extern const cl_R random_R (random_state& randomstate, const cl_R& n); | |
| 
 | |
| inline const cl_R random_R (const cl_R& n) | |
| 	{ return random_R(default_random_state,n); } | |
| 
 | |
| 
 | |
| #ifdef WANT_OBFUSCATING_OPERATORS | |
| // This could be optimized to use in-place operations. | |
| inline cl_R& operator+= (cl_R& x, const cl_R& y) { return x = x + y; } | |
| inline cl_F& operator+= (cl_F& x, const cl_R& y) { return x = x + y; } | |
| inline cl_F& operator+= (cl_F& x, const cl_RA& y) { return x = x + y; } | |
| inline cl_F& operator+= (cl_F& x, const cl_I& y) { return x = x + y; } | |
| inline cl_R& operator+= (cl_R& x, const int y) { return x = x + y; } | |
| inline cl_R& operator+= (cl_R& x, const unsigned int y) { return x = x + y; } | |
| inline cl_R& operator+= (cl_R& x, const long y) { return x = x + y; } | |
| inline cl_R& operator+= (cl_R& x, const unsigned long y) { return x = x + y; } | |
| inline cl_F& operator+= (cl_F& x, const int y) { return x = x + y; } | |
| inline cl_F& operator+= (cl_F& x, const unsigned int y) { return x = x + y; } | |
| inline cl_F& operator+= (cl_F& x, const long y) { return x = x + y; } | |
| inline cl_F& operator+= (cl_F& x, const unsigned long y) { return x = x + y; } | |
| inline cl_R& operator++ /* prefix */ (cl_R& x) { return x = plus1(x); } | |
| inline void operator++ /* postfix */ (cl_R& x, int dummy) { (void)dummy; x = plus1(x); } | |
| inline cl_R& operator-= (cl_R& x, const cl_R& y) { return x = x - y; } | |
| inline cl_F& operator-= (cl_F& x, const cl_R& y) { return x = x - y; } | |
| inline cl_F& operator-= (cl_F& x, const cl_RA& y) { return x = x - y; } | |
| inline cl_F& operator-= (cl_F& x, const cl_I& y) { return x = x - y; } | |
| inline cl_R& operator-= (cl_R& x, const int y) { return x = x - y; } | |
| inline cl_R& operator-= (cl_R& x, const unsigned int y) { return x = x - y; } | |
| inline cl_R& operator-= (cl_R& x, const long y) { return x = x - y; } | |
| inline cl_R& operator-= (cl_R& x, const unsigned long y) { return x = x - y; } | |
| inline cl_F& operator-= (cl_F& x, const int y) { return x = x - y; } | |
| inline cl_F& operator-= (cl_F& x, const unsigned int y) { return x = x - y; } | |
| inline cl_F& operator-= (cl_F& x, const long y) { return x = x - y; } | |
| inline cl_F& operator-= (cl_F& x, const unsigned long y) { return x = x - y; } | |
| inline cl_R& operator-- /* prefix */ (cl_R& x) { return x = minus1(x); } | |
| inline void operator-- /* postfix */ (cl_R& x, int dummy) { (void)dummy; x = minus1(x); } | |
| inline cl_R& operator*= (cl_R& x, const cl_R& y) { return x = x * y; } | |
| inline cl_R& operator/= (cl_R& x, const cl_R& y) { return x = x / y; } | |
| inline cl_F& operator/= (cl_F& x, const cl_R& y) { return x = x / y; } | |
| inline cl_F& operator/= (cl_F& x, const cl_RA& y) { return x = x / y; } | |
| inline cl_F& operator/= (cl_F& x, const cl_I& y) { return x = x / y; } | |
| inline cl_R& operator/= (cl_R& x, const int y) { return x = x / y; } | |
| inline cl_R& operator/= (cl_R& x, const unsigned int y) { return x = x / y; } | |
| inline cl_R& operator/= (cl_R& x, const long y) { return x = x / y; } | |
| inline cl_R& operator/= (cl_R& x, const unsigned long y) { return x = x / y; } | |
| inline cl_F& operator/= (cl_F& x, const int y) { return x = x / y; } | |
| inline cl_F& operator/= (cl_F& x, const unsigned int y) { return x = x / y; } | |
| inline cl_F& operator/= (cl_F& x, const long y) { return x = x / y; } | |
| inline cl_F& operator/= (cl_F& x, const unsigned long y) { return x = x / y; } | |
| #endif | |
|  | |
| 
 | |
| // Complex operations, trivial for reals | |
|  | |
| inline const cl_R realpart (const cl_R& x) | |
| { | |
| 	return x; | |
| } | |
| inline const cl_R imagpart (const cl_R& x) | |
| { | |
| 	(void)x; // unused x | |
| 	return 0; | |
| } | |
| inline const cl_R conjugate (const cl_R& x) | |
| { | |
| 	return x; | |
| } | |
| 
 | |
| 
 | |
| // Debugging support. | |
| #ifdef CL_DEBUG | |
| extern int cl_R_debug_module; | |
| static void* const cl_R_debug_dummy[] = { &cl_R_debug_dummy, | |
| 	&cl_R_debug_module | |
| }; | |
| #endif | |
|  | |
| }  // namespace cln | |
|  | |
| #endif /* _CL_REAL_H */
 |