You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							304 lines
						
					
					
						
							12 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							304 lines
						
					
					
						
							12 KiB
						
					
					
				| // Public rational number operations. | |
|  | |
| #ifndef _CL_RATIONAL_H | |
| #define _CL_RATIONAL_H | |
|  | |
| #include "cln/number.h" | |
| #include "cln/rational_class.h" | |
| #include "cln/integer_class.h" | |
|  | |
| namespace cln { | |
| 
 | |
| CL_DEFINE_AS_CONVERSION(cl_RA) | |
| 
 | |
| 
 | |
| // numerator(r) liefert den Zähler der rationalen Zahl r. | |
| extern const cl_I numerator (const cl_RA& r); | |
| 
 | |
| // denominator(r) liefert den Nenner (> 0) der rationalen Zahl r. | |
| extern const cl_I denominator (const cl_RA& r); | |
| 
 | |
| 
 | |
| // Liefert (- r), wo r eine rationale Zahl ist. | |
| extern const cl_RA operator- (const cl_RA& r); | |
| 
 | |
| // (+ r s), wo r und s rationale Zahlen sind. | |
| extern const cl_RA operator+ (const cl_RA& r, const cl_RA& s); | |
| // Dem C++-Compiler muß man auch das Folgende sagen: | |
| inline const cl_RA operator+ (const int x, const cl_RA& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_RA operator+ (const unsigned int x, const cl_RA& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_RA operator+ (const long x, const cl_RA& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_RA operator+ (const unsigned long x, const cl_RA& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_RA operator+ (const cl_RA& x, const int y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_RA operator+ (const cl_RA& x, const unsigned int y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_RA operator+ (const cl_RA& x, const long y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_RA operator+ (const cl_RA& x, const unsigned long y) | |
| 	{ return x + cl_I(y); } | |
| 
 | |
| // (- r s), wo r und s rationale Zahlen sind. | |
| extern const cl_RA operator- (const cl_RA& r, const cl_RA& s); | |
| // Dem C++-Compiler muß man auch das Folgende sagen: | |
| inline const cl_RA operator- (const int x, const cl_RA& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_RA operator- (const unsigned int x, const cl_RA& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_RA operator- (const long x, const cl_RA& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_RA operator- (const unsigned long x, const cl_RA& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_RA operator- (const cl_RA& x, const int y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_RA operator- (const cl_RA& x, const unsigned int y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_RA operator- (const cl_RA& x, const long y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_RA operator- (const cl_RA& x, const unsigned long y) | |
| 	{ return x - cl_I(y); } | |
| 
 | |
| // (1+ r), wo r eine rationale Zahl ist. | |
| extern const cl_RA plus1 (const cl_RA& r); | |
| 
 | |
| // (1- r), wo r eine rationale Zahl ist. | |
| extern const cl_RA minus1 (const cl_RA& r); | |
| 
 | |
| // (abs r), wo r eine rationale Zahl ist. | |
| extern const cl_RA abs (const cl_RA& r); | |
| 
 | |
| // equal(r,s) vergleicht zwei rationale Zahlen r und s auf Gleichheit. | |
| extern cl_boolean equal (const cl_RA& r, const cl_RA& s); | |
| // equal_hashcode(r) liefert einen equal-invarianten Hashcode für r. | |
| extern uint32 equal_hashcode (const cl_RA& r); | |
| 
 | |
| // compare(r,s) vergleicht zwei rationale Zahlen r und s. | |
| // Ergebnis: 0 falls r=s, +1 falls r>s, -1 falls r<s. | |
| extern cl_signean compare (const cl_RA& r, const cl_RA& s); | |
| 
 | |
| inline bool operator== (const cl_RA& x, const cl_RA& y) | |
| 	{ return equal(x,y); } | |
| inline bool operator!= (const cl_RA& x, const cl_RA& y) | |
| 	{ return !equal(x,y); } | |
| inline bool operator<= (const cl_RA& x, const cl_RA& y) | |
| 	{ return compare(x,y)<=0; } | |
| inline bool operator< (const cl_RA& x, const cl_RA& y) | |
| 	{ return compare(x,y)<0; } | |
| inline bool operator>= (const cl_RA& x, const cl_RA& y) | |
| 	{ return compare(x,y)>=0; } | |
| inline bool operator> (const cl_RA& x, const cl_RA& y) | |
| 	{ return compare(x,y)>0; } | |
| 
 | |
| // minusp(x) == (< x 0) | |
| extern cl_boolean minusp (const cl_RA& x); | |
| 
 | |
| // zerop(x) stellt fest, ob eine rationale Zahl = 0 ist. | |
| extern cl_boolean zerop (const cl_RA& x); | |
| 
 | |
| // plusp(x) == (> x 0) | |
| extern cl_boolean plusp (const cl_RA& x); | |
| 
 | |
| // Kehrwert (/ r), wo r eine rationale Zahl ist. | |
| extern const cl_RA recip (const cl_RA& r); | |
| 
 | |
| // Liefert (* r s), wo r und s rationale Zahlen sind. | |
| extern const cl_RA operator* (const cl_RA& r, const cl_RA& s); | |
| // Dem C++-Compiler muß man auch das Folgende sagen: | |
| inline const cl_RA operator* (const int x, const cl_RA& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_RA operator* (const unsigned int x, const cl_RA& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_RA operator* (const long x, const cl_RA& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_RA operator* (const unsigned long x, const cl_RA& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_RA operator* (const cl_RA& x, const int y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_RA operator* (const cl_RA& x, const unsigned int y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_RA operator* (const cl_RA& x, const long y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_RA operator* (const cl_RA& x, const unsigned long y) | |
| 	{ return x * cl_I(y); } | |
| 
 | |
| // Quadrat (* r r), wo r eine rationale Zahl ist. | |
| extern const cl_RA square (const cl_RA& r); | |
| 
 | |
| // Liefert (/ r s), wo r und s rationale Zahlen sind. | |
| extern const cl_RA operator/ (const cl_RA& r, const cl_RA& s); | |
| // Dem C++-Compiler muß man auch das Folgende sagen: | |
| inline const cl_RA operator/ (const int x, const cl_RA& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_RA operator/ (const unsigned int x, const cl_RA& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_RA operator/ (const long x, const cl_RA& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_RA operator/ (const unsigned long x, const cl_RA& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_RA operator/ (const cl_RA& x, const int y) | |
| 	{ return x / cl_I(y); } | |
| inline const cl_RA operator/ (const cl_RA& x, const unsigned int y) | |
| 	{ return x / cl_I(y); } | |
| inline const cl_RA operator/ (const cl_RA& x, const long y) | |
| 	{ return x / cl_I(y); } | |
| inline const cl_RA operator/ (const cl_RA& x, const unsigned long y) | |
| 	{ return x / cl_I(y); } | |
| 
 | |
| // Return type for rounding operators. | |
| // x / y  --> (q,r) with x = y*q+r. | |
| struct cl_RA_div_t { | |
| 	cl_I quotient; | |
| 	cl_RA remainder; | |
| // Constructor. | |
| 	cl_RA_div_t () {} | |
| 	cl_RA_div_t (const cl_I& q, const cl_RA& r) : quotient(q), remainder(r) {} | |
| }; | |
| 
 | |
| // Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl. | |
| // (q,r) := (floor x) | |
| // floor2(x) | |
| // > x: rationale Zahl | |
| // < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl | |
|   extern const cl_RA_div_t floor2 (const cl_RA& x); | |
|   extern const cl_I floor1 (const cl_RA& x); | |
| 
 | |
| // Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl. | |
| // (q,r) := (ceiling x) | |
| // ceiling2(x) | |
| // > x: rationale Zahl | |
| // < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl | |
|   extern const cl_RA_div_t ceiling2 (const cl_RA& x); | |
|   extern const cl_I ceiling1 (const cl_RA& x); | |
| 
 | |
| // Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl. | |
| // (q,r) := (truncate x) | |
| // truncate2(x) | |
| // > x: rationale Zahl | |
| // < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl | |
|   extern const cl_RA_div_t truncate2 (const cl_RA& x); | |
|   extern const cl_I truncate1 (const cl_RA& x); | |
| 
 | |
| // Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl. | |
| // (q,r) := (round x) | |
| // round2(x) | |
| // > x: rationale Zahl | |
| // < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl | |
|   extern const cl_RA_div_t round2 (const cl_RA& x); | |
|   extern const cl_I round1 (const cl_RA& x); | |
| 
 | |
| // floor2(x,y) liefert (floor x y). | |
| extern const cl_RA_div_t floor2 (const cl_RA& x, const cl_RA& y); | |
| extern const cl_I floor1 (const cl_RA& x, const cl_RA& y); | |
| 
 | |
| // ceiling2(x,y) liefert (ceiling x y). | |
| extern const cl_RA_div_t ceiling2 (const cl_RA& x, const cl_RA& y); | |
| extern const cl_I ceiling1 (const cl_RA& x, const cl_RA& y); | |
| 
 | |
| // truncate2(x,y) liefert (truncate x y). | |
| extern const cl_RA_div_t truncate2 (const cl_RA& x, const cl_RA& y); | |
| extern const cl_I truncate1 (const cl_RA& x, const cl_RA& y); | |
| 
 | |
| // round2(x,y) liefert (round x y). | |
| extern const cl_RA_div_t round2 (const cl_RA& x, const cl_RA& y); | |
| extern const cl_I round1 (const cl_RA& x, const cl_RA& y); | |
| 
 | |
| // max(x,y) liefert (max x y), wo x und y rationale Zahlen sind. | |
| extern const cl_RA max (const cl_RA& x, const cl_RA& y); | |
| 
 | |
| // min(x,y) liefert (min x y), wo x und y rationale Zahlen sind. | |
| extern const cl_RA min (const cl_RA& x, const cl_RA& y); | |
| 
 | |
| // signum(x) liefert (signum x), wo x eine rationale Zahl ist. | |
| extern const cl_RA signum (const cl_RA& x); | |
| 
 | |
| // (expt x y), wo x eine rationale Zahl und y ein Integer >0 ist. | |
| extern const cl_RA expt_pos (const cl_RA& x, uintL y); | |
| extern const cl_RA expt_pos (const cl_RA& x, const cl_I& y); | |
| 
 | |
| // (expt x y), wo x eine rationale Zahl und y ein Integer ist. | |
| extern const cl_RA expt (const cl_RA& x, sintL y); | |
| extern const cl_RA expt (const cl_RA& x, const cl_I& y); | |
| 
 | |
| // Stellt fest, ob eine rationale Zahl >=0 das Quadrat einer rationalen Zahl | |
| // ist. | |
| // sqrtp(x,&w) | |
| // > x: eine rationale Zahl >=0 | |
| // < w: rationale Zahl (sqrt x) falls x Quadratzahl | |
| // < ergebnis: cl_true   ..................., cl_false sonst | |
|   extern cl_boolean sqrtp (const cl_RA& x, cl_RA* w); | |
| 
 | |
| // Stellt fest, ob eine rationale Zahl >=0 die n-te Potenz einer rationalen Zahl | |
| // ist. | |
| // rootp(x,n,&w) | |
| // > x: eine rationale Zahl >=0 | |
| // > n: ein Integer >0 | |
| // < w: exakte n-te Wurzel (expt x (/ n)) falls x eine n-te Potenz | |
| // < ergebnis: cl_true                    ........................, cl_false sonst | |
|   extern cl_boolean rootp (const cl_RA& x, uintL n, cl_RA* w); | |
|   extern cl_boolean rootp (const cl_RA& x, const cl_I& n, cl_RA* w); | |
| 
 | |
| // Liefert zu Integers a>0, b>1 den Logarithmus log(a,b), | |
| // falls er eine rationale Zahl ist. | |
| // logp(a,b,&l) | |
| // > a: ein Integer >0 | |
| // > b: ein Integer >1 | |
| // < l: log(a,b)       falls er eine exakte rationale Zahl ist | |
| // < ergebnis: cl_true ......................................., cl_false sonst | |
|   extern cl_boolean logp (const cl_I& a, const cl_I& b, cl_RA* l); | |
| 
 | |
| // Liefert zu rationalen Zahlen a>0, b>0 den Logarithmus log(a,b), | |
| // falls er eine rationale Zahl ist. | |
| // logp(a,b,&l) | |
| // > a: eine rationale Zahl >0 | |
| // > b: eine rationale Zahl >0, /=1 | |
| // < l: log(a,b)       falls er eine exakte rationale Zahl ist | |
| // < ergebnis: cl_true ......................................., cl_false sonst | |
|   extern cl_boolean logp (const cl_RA& a, const cl_RA& b, cl_RA* l); | |
| 
 | |
| // Konversion zu einem C "float". | |
| extern float float_approx (const cl_RA& x); | |
| 
 | |
| // Konversion zu einem C "double". | |
| extern double double_approx (const cl_RA& x); | |
| 
 | |
| 
 | |
| #ifdef WANT_OBFUSCATING_OPERATORS | |
| // This could be optimized to use in-place operations. | |
| inline cl_RA& operator+= (cl_RA& x, const cl_RA& y) { return x = x + y; } | |
| inline cl_RA& operator+= (cl_RA& x, const int y) { return x = x + y; } | |
| inline cl_RA& operator+= (cl_RA& x, const unsigned int y) { return x = x + y; } | |
| inline cl_RA& operator+= (cl_RA& x, const long y) { return x = x + y; } | |
| inline cl_RA& operator+= (cl_RA& x, const unsigned long y) { return x = x + y; } | |
| inline cl_RA& operator++ /* prefix */ (cl_RA& x) { return x = plus1(x); } | |
| inline void operator++ /* postfix */ (cl_RA& x, int dummy) { (void)dummy; x = plus1(x); } | |
| inline cl_RA& operator-= (cl_RA& x, const cl_RA& y) { return x = x - y; } | |
| inline cl_RA& operator-= (cl_RA& x, const int y) { return x = x - y; } | |
| inline cl_RA& operator-= (cl_RA& x, const unsigned int y) { return x = x - y; } | |
| inline cl_RA& operator-= (cl_RA& x, const long y) { return x = x - y; } | |
| inline cl_RA& operator-= (cl_RA& x, const unsigned long y) { return x = x - y; } | |
| inline cl_RA& operator-- /* prefix */ (cl_RA& x) { return x = minus1(x); } | |
| inline void operator-- /* postfix */ (cl_RA& x, int dummy) { (void)dummy; x = minus1(x); } | |
| inline cl_RA& operator*= (cl_RA& x, const cl_RA& y) { return x = x * y; } | |
| inline cl_RA& operator/= (cl_RA& x, const cl_RA& y) { return x = x / y; } | |
| #endif | |
|  | |
| 
 | |
| // Runtime typing support. | |
| extern cl_class cl_class_ratio; | |
| 
 | |
| 
 | |
| // Debugging support. | |
| #ifdef CL_DEBUG | |
| extern int cl_RA_debug_module; | |
| static void* const cl_RA_debug_dummy[] = { &cl_RA_debug_dummy, | |
| 	&cl_RA_debug_module | |
| }; | |
| #endif | |
|  | |
| }  // namespace cln | |
|  | |
| #endif /* _CL_RATIONAL_H */
 |