You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							214 lines
						
					
					
						
							6.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							214 lines
						
					
					
						
							6.0 KiB
						
					
					
				| %% This LaTeX-file was created by <bruno> Sun Feb 16 14:06:08 1997 | |
| %% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team | |
|  | |
| %% Don't edit this file unless you are sure what you are doing. | |
| \documentclass[12pt,a4paper,oneside,onecolumn]{article} | |
| \usepackage[]{fontenc} | |
| \usepackage[latin1]{inputenc} | |
| \usepackage[dvips]{epsfig} | |
| 
 | |
| %% | |
| %% BEGIN The lyx specific LaTeX commands. | |
| %% | |
|  | |
| \makeatletter | |
| \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}% | |
| \newcommand{\lyxtitle}[1] {\thispagestyle{empty} | |
| \global\@topnum\z@ | |
| \section*{\LARGE \centering \sffamily \bfseries \protect#1 } | |
| } | |
| \newcommand{\lyxline}[1]{ | |
| {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}} | |
| } | |
| \newenvironment{lyxsectionbibliography} | |
| { | |
| \section*{\refname} | |
| \@mkboth{\uppercase{\refname}}{\uppercase{\refname}} | |
| \begin{list}{}{ | |
| \itemindent-\leftmargin | |
| \labelsep 0pt | |
| \renewcommand{\makelabel}{} | |
| } | |
| } | |
| {\end{list}} | |
| \newenvironment{lyxchapterbibliography} | |
| { | |
| \chapter*{\bibname} | |
| \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}} | |
| \begin{list}{}{ | |
| \itemindent-\leftmargin | |
| \labelsep 0pt | |
| \renewcommand{\makelabel}{} | |
| } | |
| } | |
| {\end{list}} | |
| \def\lxq{"} | |
| \newenvironment{lyxcode} | |
| {\list{}{ | |
| \rightmargin\leftmargin | |
| \raggedright | |
| \itemsep 0pt | |
| \parsep 0pt | |
| \ttfamily | |
| }% | |
| \item[] | |
| } | |
| {\endlist} | |
| \newcommand{\lyxlabel}[1]{#1 \hfill} | |
| \newenvironment{lyxlist}[1] | |
| {\begin{list}{} | |
| {\settowidth{\labelwidth}{#1} | |
| \setlength{\leftmargin}{\labelwidth} | |
| \addtolength{\leftmargin}{\labelsep} | |
| \renewcommand{\makelabel}{\lyxlabel}}} | |
| {\end{list}} | |
| \newcommand{\lyxletterstyle}{ | |
| \setlength\parskip{0.7em} | |
| \setlength\parindent{0pt} | |
| } | |
| \newcommand{\lyxaddress}[1]{ | |
| \par {\raggedright #1  | |
| \vspace{1.4em} | |
| \noindent\par} | |
| } | |
| \newcommand{\lyxrightaddress}[1]{ | |
| \par {\raggedleft \begin{tabular}{l}\ignorespaces | |
| #1 | |
| \end{tabular} | |
| \vspace{1.4em} | |
| \par} | |
| } | |
| \newcommand{\lyxformula}[1]{ | |
| \begin{eqnarray*} | |
| #1 | |
| \end{eqnarray*} | |
| } | |
| \newcommand{\lyxnumberedformula}[1]{ | |
| \begin{eqnarray} | |
| #1 | |
| \end{eqnarray} | |
| } | |
| \makeatother | |
| 
 | |
| %% | |
| %% END The lyx specific LaTeX commands. | |
| %% | |
|  | |
| \pagestyle{plain} | |
| \setcounter{secnumdepth}{3} | |
| \setcounter{tocdepth}{3} | |
| 
 | |
| %% Begin LyX user specified preamble: | |
| \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe | |
| \def\ll{\langle\!\langle} | |
| \def\gg{\rangle\!\rangle} | |
| \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen | |
|  | |
| 
 | |
| %% End LyX user specified preamble. | |
| \begin{document} | |
| 
 | |
| The Laguerre polynomials  \( L_{n}(x) \) are defined through  | |
| \[ | |
| L_{n}(x)=e^{x}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{n}e^{-x})\] | |
| 
 | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Theorem:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
|  \( L_{n}(x) \) satisfies the recurrence relation | |
| 
 | |
| 
 | |
| \[ | |
| L_{0}(x)=1\] | |
| 
 | |
| 
 | |
| 
 | |
| \[ | |
| L_{n+1}(x)=(2n+1-x)\cdot L_{n}(x)-n^{2}\cdot L_{n-1}(x)\] | |
| for  \( n\geq 0 \) and the differential equation  \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \) for all  \( n\geq 0 \). | |
| 
 | |
| \begin{description} | |
| 
 | |
| \item [Proof:]~ | |
| 
 | |
| \end{description} | |
| 
 | |
| Let  \( F:=\sum ^{\infty }_{n=0}\frac{L_{n}(x)}{n!}\cdot z^{n} \) be the exponential generating function of the sequence of polynomials. | |
| It is the diagonal series of the power series | |
| \[ | |
| G:=\sum _{m,n=0}^{\infty }\frac{1}{m!}\cdot e^{x}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\cdot z^{n}\] | |
| Because the Taylor series | |
| development theorem holds in formal power series rings (see [1], section | |
| 2.16), we can simplify | |
| \begin{eqnarray*} | |
| G & = & e^{x}\cdot \sum _{n=0}^{\infty }\left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\right) \cdot z^{n}\\ | |
|  & = & e^{x}\cdot \sum _{n=0}^{\infty }(x+y)^{n}e^{-(x+y)}\cdot z^{n}\\ | |
|  & = & \frac{e^{-y}}{1-(x+y)z} | |
| \end{eqnarray*} | |
| We take over the terminology from the ``diag\_rational'' | |
| paper; here  \( R=Q[x] \) and  \( M=Q[[x]] \) (or, if you like it better,  \( M=H(C) \), the algebra of | |
| functions holomorphic in the entire complex plane).  \( G\in M[[y,z]] \) is not rational; | |
| nevertheless we can proceed similarly to the ``diag\_series'' paper. | |
|  \( F(z^{2}) \) is the coefficient of  \( t^{0} \) in | |
| \[ | |
| G(zt,\frac{z}{t})=\frac{e^{-zt}}{1-z^{2}-\frac{xz}{t}}\in M[[zt,\frac{z}{t},z]]=M\ll z,t\gg \] | |
| The denominator's only zero is  \( t=\frac{xz}{1-z^{2}} \). We | |
| can write | |
| \[ | |
| e^{-zt}=e^{-\frac{xz^{2}}{1-z^{2}}}+\left( zt-\frac{xz^{2}}{1-z^{2}}\right) \cdot P(z,t)\] | |
| with  \( P(z,t)\in Q[[zt,\frac{xz^{2}}{1-z^{2}}]]\subset Q[[zt,x,z]]=M[[zt,z]]\subset M\ll z,t\gg  \). This yields -- all computations being done in  \( M\ll z,t\gg  \) | |
| -- | |
| \begin{eqnarray*} | |
| G(zt,\frac{z}{t}) & = & \frac{e^{-\frac{xz^{2}}{1-z^{2}}}}{1-z^{2}-\frac{xz}{t}}+\frac{zt}{1-z^{2}}\cdot P(z,t)\\ | |
|  & = & \frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\cdot \sum _{j=0}^{\infty }\left( \frac{x}{1-z^{2}}\frac{z}{t}\right) ^{j}+\frac{zt}{1-z^{2}}\cdot P(z,t) | |
| \end{eqnarray*} | |
| Here, the coefficient of  \( t^{0} \) is | |
| \[ | |
| F(z^{2})=\frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\] | |
| hence | |
| \[ | |
| F(z)=\frac{1}{1-z}\cdot e^{-\frac{xz}{1-z}}\] | |
| 
 | |
| 
 | |
| It follows that  \( (1-z)^{2}\cdot \frac{d}{dz}F-(1-x-z)\cdot F=0 \). This is equivalent to the claimed recurrence. | |
| 
 | |
| Starting from the closed form for  \( F \), we compute a linear relation | |
| for the partial derivatives of  \( F \). Write  \( \partial _{x}=\frac{d}{dx} \) and  \( \Delta _{z}=z\frac{d}{dz} \). One computes | |
| \[ | |
| F=1\cdot F\] | |
| 
 | |
| \[ | |
| \left( 1-z\right) \cdot \partial _{x}F=-z\cdot F\] | |
| 
 | |
| \[ | |
| \left( 1-z\right) ^{2}\cdot \partial _{x}^{2}F=z^{2}\cdot F\] | |
| 
 | |
| \[ | |
| \left( 1-z\right) ^{2}\cdot \Delta _{z}F=((1-x)z-z^{2})\cdot F\] | |
| 
 | |
| \[ | |
| \left( 1-z\right) ^{3}\cdot \partial _{x}\Delta _{z}F=(-z+xz^{2}+z^{3})\cdot F\] | |
| Solve | |
| a homogeneous  \( 4\times 5 \) system of linear equations over  \( Q(x) \) to get  | |
| \[ | |
| \left( 1-z\right) ^{3}\cdot \left( (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F\right) =0\] | |
| Divide by | |
| the first factor to get | |
| \[ | |
| (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F=0\] | |
| This is equivalent to the claimed equation | |
|  \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \). | |
| 
 | |
| \begin{lyxsectionbibliography} | |
| 
 | |
| \item [1] Bruno Haible: D-finite power series in several variables. \em Diploma | |
| thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and | |
| 2.22. | |
| 
 | |
| \end{lyxsectionbibliography} | |
| 
 | |
| \end{document}
 |