Browse Source

Small update to model checking reward formulae over MDPs.

tempestpy_adaptions
dehnert 12 years ago
parent
commit
cbf4a2ff3b
  1. 2
      src/modelchecker/GmmxxDtmcPrctlModelChecker.h
  2. 69
      src/modelchecker/GmmxxMdpPrctlModelChecker.h

2
src/modelchecker/GmmxxDtmcPrctlModelChecker.h

@ -225,7 +225,7 @@ public:
totalRewardVector = new std::vector<Type>(*this->getModel().getStateRewardVector());
}
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
std::vector<Type>* result = new std::vector<Type>(*this->getModel().getStateRewardVector());
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
std::vector<Type>* swap = nullptr;

69
src/modelchecker/GmmxxMdpPrctlModelChecker.h

@ -234,6 +234,10 @@ public:
throw storm::exceptions::InvalidPropertyException() << "Missing reward model for formula.";
}
// Get the starting row indices for the non-deterministic choices to reduce the resulting
// vector properly.
std::shared_ptr<std::vector<uint_fast64_t>> nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices();
// Transform the transition probability matrix to the gmm++ format to use its arithmetic.
gmm::csr_matrix<Type>* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<Type>(*this->getModel().getTransitionMatrix());
@ -248,23 +252,27 @@ public:
totalRewardVector = new std::vector<Type>(*this->getModel().getStateRewardVector());
}
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
std::vector<Type>* result = new std::vector<Type>(*this->getModel().getStateRewardVector());
// Create vector for result of multiplication, which is reduced to the result vector after
// each multiplication.
std::vector<Type>* multiplyResult = new std::vector<Type>(this->getModel().getTransitionMatrix()->getRowCount(), 0);
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
std::vector<Type>* swap = nullptr;
std::vector<Type>* tmpResult = new std::vector<Type>(this->getModel().getNumberOfStates());
for (uint_fast64_t i = 0; i < formula.getBound(); ++i) {
gmm::mult(*gmmxxMatrix, *result, *tmpResult);
swap = tmpResult;
tmpResult = result;
result = swap;
gmm::mult(*gmmxxMatrix, *result, *multiplyResult);
if (this->minimumOperatorStack.top()) {
storm::utility::reduceVectorMin(*multiplyResult, result, *nondeterministicChoiceIndices);
} else {
storm::utility::reduceVectorMax(*multiplyResult, result, *nondeterministicChoiceIndices);
}
// Add the reward vector to the result.
gmm::add(*totalRewardVector, *result);
}
delete multiplyResult;
// Delete temporary variables and return result.
delete tmpResult;
delete gmmxxMatrix;
delete totalRewardVector;
return result;
@ -283,8 +291,11 @@ public:
// Determine which states have a reward of infinity by definition.
storm::storage::BitVector infinityStates(this->getModel().getNumberOfStates());
storm::storage::BitVector trueStates(this->getModel().getNumberOfStates(), true);
// TODO: just commented out to make it compile
//storm::utility::GraphAnalyzer::performProb1(this->getModel(), trueStates, *targetStates, &infinityStates);
if (this->minimumOperatorStack.top()) {
storm::utility::GraphAnalyzer::performProb1A(this->getModel(), *trueStates, *targetStates, &infinityStates);
} else {
storm::utility::GraphAnalyzer::performProb1E(this->getModel(), *trueStates, *targetStates, &infinityStates);
}
infinityStates.complement();
// Create resulting vector.
@ -294,22 +305,24 @@ public:
storm::storage::BitVector maybeStates = ~(*targetStates) & ~infinityStates;
const int maybeStatesSetBitCount = maybeStates.getNumberOfSetBits();
if (maybeStatesSetBitCount > 0) {
// Now we can eliminate the rows and columns from the original transition probability matrix.
storm::storage::SparseMatrix<Type>* submatrix = this->getModel().getTransitionMatrix()->getSubmatrix(maybeStates);
// Converting the matrix from the fixpoint notation to the form needed for the equation
// system. That is, we go from x = A*x + b to (I-A)x = b.
submatrix->convertToEquationSystem();
// First, we can eliminate the rows and columns from the original transition probability matrix for states
// whose probabilities are already known.
storm::storage::SparseMatrix<Type>* submatrix = this->getModel().getTransitionMatrix()->getSubmatrix(maybeStates, *this->getModel().getNondeterministicChoiceIndices());
// Get the "new" nondeterministic choice indices for the submatrix.
std::shared_ptr<std::vector<uint_fast64_t>> subNondeterministicChoiceIndices = this->computeNondeterministicChoiceIndicesForConstraint(maybeStates);
// Transform the submatrix to the gmm++ format to use its solvers.
// Transform the submatrix to the gmm++ format to use its capabilities.
gmm::csr_matrix<Type>* gmmxxMatrix = storm::adapters::GmmxxAdapter::toGmmxxSparseMatrix<Type>(*submatrix);
delete submatrix;
// Initialize the x vector with 1 for each element. This is the initial guess for
// the iterative solvers.
std::vector<Type> x(maybeStatesSetBitCount, storm::utility::constGetOne<Type>());
// Create vector for results for maybe states.
std::vector<Type>* x = new std::vector<Type>(maybeStatesSetBitCount);
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some 'yes' state.
std::vector<Type> b(submatrix->getRowCount());
delete submatrix;
// Prepare the right-hand side of the equation system.
std::vector<Type>* b = new std::vector<Type>(maybeStatesSetBitCount);
if (this->getModel().hasTransitionRewards()) {
// If a transition-based reward model is available, we initialize the right-hand
// side to the vector resulting from summing the rows of the pointwise product
@ -336,16 +349,12 @@ public:
storm::utility::setVectorValues(b, maybeStates, *this->getModel().getStateRewardVector());
}
// Solve the corresponding system of linear equations.
// TODO: just commented out to make it compile
// this->solveEquationSystem(*gmmxxMatrix, x, *b);
// Solve the corresponding system of equations.
this->solveEquationSystem(*gmmxxMatrix, x, b, *subNondeterministicChoiceIndices);
// Set values of resulting vector according to result.
storm::utility::setVectorValues<Type>(result, maybeStates, x);
// Delete temporary matrix and right-hand side.
delete gmmxxMatrix;
delete b;
storm::utility::setVectorValues<Type>(result, maybeStates, *x);
delete x;
}
// Set values of resulting vector that are known exactly.

Loading…
Cancel
Save