You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							361 lines
						
					
					
						
							7.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							361 lines
						
					
					
						
							7.0 KiB
						
					
					
				| #This file was created by <bruno> Sun Feb 16 14:24:48 1997 | |
| #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team | |
| \lyxformat 2.10 | |
| \textclass article | |
| \begin_preamble | |
| \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe | |
| \def\mod#1{\allowbreak \mkern8mu \mathop{\operator@font mod}\,\,{#1}} | |
| \def\pmod#1{\allowbreak \mkern8mu \left({\mathop{\operator@font mod}\,\,{#1}}\right)} | |
| \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen | |
| 
 | |
| \end_preamble | |
| \language default | |
| \inputencoding latin1 | |
| \fontscheme default | |
| \epsfig dvips | |
| \papersize a4paper  | |
| \paperfontsize 12  | |
| \baselinestretch 1.00  | |
| \secnumdepth 3  | |
| \tocdepth 3  | |
| \paragraph_separation indent  | |
| \quotes_language english  | |
| \quotes_times 2  | |
| \paperorientation portrait  | |
| \papercolumns 0  | |
| \papersides 1  | |
| \paperpagestyle plain  | |
| 
 | |
| \layout Standard | |
| \cursor 47  | |
| The Legendre polynomials  | |
| \begin_inset Formula  \( P_{n}(x) \) | |
| \end_inset  | |
| 
 | |
|  are defined through  | |
| \begin_inset Formula  | |
| \[ | |
| P_{n}(x)=\frac{1}{2^{n}n!}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{2}-1)^{n}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| (For a motivation of the  | |
| \begin_inset Formula  \( 2^{n} \) | |
| \end_inset  | |
| 
 | |
|  in the denominator, look at  | |
| \begin_inset Formula  \( P_{n}(x) \) | |
| \end_inset  | |
| 
 | |
|  modulo an odd prime  | |
| \begin_inset Formula  \( p \) | |
| \end_inset  | |
| 
 | |
| , and observe that  | |
| \begin_inset Formula  \( P_{n}(x)\equiv P_{p-1-n}(x)\mod p \) | |
| \end_inset  | |
| 
 | |
|  for  | |
| \begin_inset Formula  \( 0\leq n\leq p-1 \) | |
| \end_inset  | |
| 
 | |
| . | |
|  This wouldn't hold if the  | |
| \begin_inset Formula  \( 2^{n} \) | |
| \end_inset  | |
| 
 | |
|  factor in the denominator weren't present. | |
| ) | |
| \layout Description | |
| 
 | |
| Theorem: | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  \( P_{n}(x) \) | |
| \end_inset  | |
| 
 | |
|  satisfies the recurrence relation | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| P_{0}(x)=1\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| (n+1)\cdot P_{n+1}(x)=(2n+1)x\cdot P_{n}(x)-n\cdot P_{n-1}(x)\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| for  | |
| \begin_inset Formula  \( n\geq 0 \) | |
| \end_inset  | |
| 
 | |
|  and the differential equation  | |
| \begin_inset Formula  \( (1-x^{2})\cdot P_{n}^{''}(x)-2x\cdot P_{n}^{'}(x)+(n^{2}+n)\cdot P_{n}(x)=0 \) | |
| \end_inset  | |
| 
 | |
|  for all  | |
| \begin_inset Formula  \( n\geq 0 \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Description | |
| 
 | |
| Proof: | |
| \layout Standard | |
| 
 | |
| Let  | |
| \begin_inset Formula  \( F:=\sum ^{\infty }_{n=0}P_{n}(x)\cdot z^{n} \) | |
| \end_inset  | |
| 
 | |
|  be the generating function of the sequence of polynomials. | |
|  It is the diagonal series of the power series | |
| \begin_inset Formula  | |
| \[ | |
| G:=\sum _{m,n=0}^{\infty }\frac{1}{2^{n}m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{2}-1)^{n}\cdot y^{m}\cdot z^{n}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| Because the Taylor series development theorem holds in formal power series | |
|  rings (see [1], section 2. | |
| 16), we can simplify | |
| \begin_inset Formula  | |
| \begin{eqnarray*} | |
| G & = & \sum _{n=0}^{\infty }\frac{1}{2^{n}}\cdot \left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{2}-1)^{n}\cdot y^{m}\right) \cdot z^{n}\\ | |
|  & = & \sum _{n=0}^{\infty }\frac{1}{2^{n}}\cdot \left( (x+y)^{2}-1\right) ^{n}\cdot z^{n}\\ | |
|  & = & \frac{1}{1-\frac{1}{2}\left( (x+y)^{2}-1\right) z} | |
| \end{eqnarray*} | |
| 
 | |
| \end_inset  | |
| 
 | |
| We take over the terminology from the  | |
| \begin_inset Quotes eld | |
| \end_inset  | |
| 
 | |
| diag_rational | |
| \begin_inset Quotes erd | |
| \end_inset  | |
| 
 | |
|  paper; here  | |
| \begin_inset Formula  \( R=Q[x] \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( M=Q[[x]] \) | |
| \end_inset  | |
| 
 | |
|  (or, if you like it better,  | |
| \begin_inset Formula  \( M=H(C) \) | |
| \end_inset  | |
| 
 | |
| , the algebra of functions holomorphic in the entire complex plane). | |
|   | |
| \begin_inset Formula  \( G\in M[[y,z]] \) | |
| \end_inset  | |
| 
 | |
|  is rational; hence  | |
| \begin_inset Formula  \( F \) | |
| \end_inset  | |
| 
 | |
|  is algebraic over  | |
| \begin_inset Formula  \( R[z] \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Let's proceed exactly as in the  | |
| \begin_inset Quotes eld | |
| \end_inset  | |
| 
 | |
| diag_series | |
| \begin_inset Quotes erd | |
| \end_inset  | |
| 
 | |
|  paper. | |
|   | |
| \begin_inset Formula  \( F(z^{2}) \) | |
| \end_inset  | |
| 
 | |
|  is the coefficient of  | |
| \begin_inset Formula  \( t^{0} \) | |
| \end_inset  | |
| 
 | |
|  in | |
| \begin_inset Formula  | |
| \[ | |
| G(zt,\frac{z}{t})=\frac{2t}{2t-\left( (x+zt)^{2}-1\right) z}=\frac{2t}{-z^{3}\cdot t^{2}+2(1-xz^{2})\cdot t+(z-x^{2}z)}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| The splitting field of the denominator is  | |
| \begin_inset Formula  \( L=Q(x)(z)(\alpha ) \) | |
| \end_inset  | |
| 
 | |
|  where  | |
| \begin_inset Formula  | |
| \[ | |
| \alpha _{1/2}=\frac{1-xz^{2}\pm \sqrt{1-2xz^{2}+z^{4}}}{z^{3}}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \alpha =\alpha _{1}=\frac{2}{z^{3}}-\frac{2x}{z}+\frac{1-x^{2}}{2}z+\cdots \in Q(x)[[z]][\frac{1}{z}]\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \alpha _{2}=\frac{x^{2}-1}{2}z+\cdots \in Q(x)[[z]][\frac{1}{z}]\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| The partial fraction decomposition of  | |
| \begin_inset Formula  \( G(zt,\frac{z}{t}) \) | |
| \end_inset  | |
| 
 | |
|  reads | |
| \begin_inset Formula  | |
| \[ | |
| G(zt,\frac{z}{t})=-\frac{2}{z^{3}}\cdot \frac{1}{\alpha _{1}-\alpha _{2}}\cdot \left( \frac{\alpha _{1}}{t-\alpha _{1}}-\frac{\alpha _{2}}{t-\alpha _{2}}\right) \] | |
| 
 | |
| \end_inset  | |
| 
 | |
| It follows that | |
| \begin_inset Formula  | |
| \[ | |
| F(z^{2})=-\frac{2}{z^{3}}\cdot \frac{1}{\alpha _{1}-\alpha _{2}}\cdot \left( \frac{\alpha _{1}}{0-\alpha _{1}}-0\right) =\frac{1}{\sqrt{1-2xz^{2}+z^{4}}}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| hence | |
| \begin_inset Formula  | |
| \[ | |
| F(z)=\frac{1}{\sqrt{1-2xz+z^{2}}}\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \layout Standard | |
| 
 | |
| It follows that  | |
| \begin_inset Formula  \( (1-2xz+z^{2})\cdot \frac{d}{dz}F+(z-x)\cdot F=0 \) | |
| \end_inset  | |
| 
 | |
| . | |
|  This is equivalent to the claimed recurrence. | |
| 
 | |
| \layout Standard | |
| 
 | |
| Starting from the closed form for  | |
| \begin_inset Formula  \( F \) | |
| \end_inset  | |
| 
 | |
| , we compute a linear relation for the partial derivatives of  | |
| \begin_inset Formula  \( F \) | |
| \end_inset  | |
| 
 | |
| . | |
|  Write  | |
| \begin_inset Formula  \( \partial _{x}=\frac{d}{dx} \) | |
| \end_inset  | |
| 
 | |
|  and  | |
| \begin_inset Formula  \( \Delta _{z}=z\frac{d}{dz} \) | |
| \end_inset  | |
| 
 | |
| . | |
|  One computes | |
| \begin_inset Formula  | |
| \[ | |
| F=1\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) \cdot \partial _{x}F=z\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}^{2}F=3z^{2}\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) \cdot \Delta _{z}F=(xz-z^{2})\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}\Delta _{z}F=(z+xz^{2}-2z^{3})\cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| 
 | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}^{2}F=\left( xz+(x^{2}-2)z^{2}-xz^{3}+z^{4}\right) \cdot F\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| Solve a homogeneous  | |
| \begin_inset Formula  \( 5\times 6 \) | |
| \end_inset  | |
| 
 | |
|  system of linear equations over  | |
| \begin_inset Formula  \( Q(x) \) | |
| \end_inset  | |
| 
 | |
|  to get  | |
| \begin_inset Formula  | |
| \[ | |
| \left( 1-2xz+z^{2}\right) ^{2}\cdot \left( (-2x)\cdot \partial _{x}F+(1-x^{2})\cdot \partial _{x}^{2}F+\Delta _{z}F+\Delta _{z}^{2}F\right) =0\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| Divide by the first factor to get | |
| \begin_inset Formula  | |
| \[ | |
| (-2x)\cdot \partial _{x}F+(1-x^{2})\cdot \partial _{x}^{2}F+\Delta _{z}F+\Delta _{z}^{2}F=0\] | |
| 
 | |
| \end_inset  | |
| 
 | |
| This is equivalent to the claimed equation  | |
| \begin_inset Formula  \( (1-x^{2})\cdot P_{n}^{''}(x)-2x\cdot P_{n}^{'}(x)+(n^{2}+n)\cdot P_{n}(x)=0 \) | |
| \end_inset  | |
| 
 | |
| . | |
| 
 | |
| \layout Bibliography | |
| 
 | |
| [1] Bruno Haible: D-finite power series in several variables. | |
|   | |
| \shape italic  | |
| Diploma thesis, University of Karlsruhe, June 1989 | |
| \shape default  | |
| . | |
|  Sections 2. | |
| 14, 2. | |
| 15 and 2. | |
| 22. | |
| 
 |