You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
323 lines
11 KiB
323 lines
11 KiB
<HTML>
|
|
<HEAD>
|
|
<!-- Created by texi2html 1.56k from cln.texi on 14 January 2000 -->
|
|
|
|
<TITLE>CLN, a Class Library for Numbers - 9. Univariate polynomials</TITLE>
|
|
</HEAD>
|
|
<BODY>
|
|
Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_8.html">previous</A>, <A HREF="cln_10.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>.
|
|
<P><HR><P>
|
|
|
|
|
|
<H1><A NAME="SEC54" HREF="cln_toc.html#TOC54">9. Univariate polynomials</A></H1>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC55" HREF="cln_toc.html#TOC55">9.1 Univariate polynomial rings</A></H2>
|
|
|
|
<P>
|
|
CLN implements univariate polynomials (polynomials in one variable) over an
|
|
arbitrary ring. The indeterminate variable may be either unnamed (and will be
|
|
printed according to <CODE>cl_default_print_flags.univpoly_varname</CODE>, which
|
|
defaults to <SAMP>`x'</SAMP>) or carry a given name. The base ring and the
|
|
indeterminate are explicitly part of every polynomial. CLN doesn't allow you to
|
|
(accidentally) mix elements of different polynomial rings, e.g.
|
|
<CODE>(a^2+1) * (b^3-1)</CODE> will result in a runtime error. (Ideally this should
|
|
return a multivariate polynomial, but they are not yet implemented in CLN.)
|
|
|
|
|
|
<P>
|
|
The classes of univariate polynomial rings are
|
|
|
|
|
|
|
|
<PRE>
|
|
Ring
|
|
cl_ring
|
|
<cl_ring.h>
|
|
|
|
|
|
|
|
Univariate polynomial ring
|
|
cl_univpoly_ring
|
|
<cl_univpoly.h>
|
|
|
|
|
+----------------+-------------------+
|
|
| | |
|
|
Complex polynomial ring | Modular integer polynomial ring
|
|
cl_univpoly_complex_ring | cl_univpoly_modint_ring
|
|
<cl_univpoly_complex.h> | <cl_univpoly_modint.h>
|
|
|
|
|
+----------------+
|
|
| |
|
|
Real polynomial ring |
|
|
cl_univpoly_real_ring |
|
|
<cl_univpoly_real.h> |
|
|
|
|
|
+----------------+
|
|
| |
|
|
Rational polynomial ring |
|
|
cl_univpoly_rational_ring |
|
|
<cl_univpoly_rational.h> |
|
|
|
|
|
+----------------+
|
|
|
|
|
Integer polynomial ring
|
|
cl_univpoly_integer_ring
|
|
<cl_univpoly_integer.h>
|
|
</PRE>
|
|
|
|
<P>
|
|
and the corresponding classes of univariate polynomials are
|
|
|
|
|
|
|
|
<PRE>
|
|
Univariate polynomial
|
|
cl_UP
|
|
<cl_univpoly.h>
|
|
|
|
|
+----------------+-------------------+
|
|
| | |
|
|
Complex polynomial | Modular integer polynomial
|
|
cl_UP_N | cl_UP_MI
|
|
<cl_univpoly_complex.h> | <cl_univpoly_modint.h>
|
|
|
|
|
+----------------+
|
|
| |
|
|
Real polynomial |
|
|
cl_UP_R |
|
|
<cl_univpoly_real.h> |
|
|
|
|
|
+----------------+
|
|
| |
|
|
Rational polynomial |
|
|
cl_UP_RA |
|
|
<cl_univpoly_rational.h> |
|
|
|
|
|
+----------------+
|
|
|
|
|
Integer polynomial
|
|
cl_UP_I
|
|
<cl_univpoly_integer.h>
|
|
</PRE>
|
|
|
|
<P>
|
|
Univariate polynomial rings are constructed using the functions
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_univpoly_ring cl_find_univpoly_ring (const cl_ring& R)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_ring cl_find_univpoly_ring (const cl_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
This function returns the polynomial ring <SAMP>`R[X]'</SAMP>, unnamed or named.
|
|
<CODE>R</CODE> may be an arbitrary ring. This function takes care of finding out
|
|
about special cases of <CODE>R</CODE>, such as the rings of complex numbers,
|
|
real numbers, rational numbers, integers, or modular integer rings.
|
|
There is a cache table of rings, indexed by <CODE>R</CODE> and <CODE>varname</CODE>.
|
|
This ensures that two calls of this function with the same arguments will
|
|
return the same polynomial ring.
|
|
|
|
<DT><CODE>cl_univpoly_complex_ring cl_find_univpoly_ring (const cl_complex_ring& R)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_complex_ring cl_find_univpoly_ring (const cl_complex_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& R)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_rational_ring cl_find_univpoly_ring (const cl_rational_ring& R)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_rational_ring cl_find_univpoly_ring (const cl_rational_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& R)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_modint_ring cl_find_univpoly_ring (const cl_modint_ring& R)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_univpoly_modint_ring cl_find_univpoly_ring (const cl_modint_ring& R, const cl_symbol& varname)</CODE>
|
|
<DD>
|
|
These functions are equivalent to the general <CODE>cl_find_univpoly_ring</CODE>,
|
|
only the return type is more specific, according to the base ring's type.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC56" HREF="cln_toc.html#TOC56">9.2 Functions on univariate polynomials</A></H2>
|
|
|
|
<P>
|
|
Given a univariate polynomial ring <CODE>R</CODE>, the following members can be used.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_ring R->basering()</CODE>
|
|
<DD>
|
|
This returns the base ring, as passed to <SAMP>`cl_find_univpoly_ring'</SAMP>.
|
|
|
|
<DT><CODE>cl_UP R->zero()</CODE>
|
|
<DD>
|
|
This returns <CODE>0 in R</CODE>, a polynomial of degree -1.
|
|
|
|
<DT><CODE>cl_UP R->one()</CODE>
|
|
<DD>
|
|
This returns <CODE>1 in R</CODE>, a polynomial of degree <= 0.
|
|
|
|
<DT><CODE>cl_UP R->canonhom (const cl_I& x)</CODE>
|
|
<DD>
|
|
This returns <CODE>x in R</CODE>, a polynomial of degree <= 0.
|
|
|
|
<DT><CODE>cl_UP R->monomial (const cl_ring_element& x, uintL e)</CODE>
|
|
<DD>
|
|
This returns a sparse polynomial: <CODE>x * X^e</CODE>, where <CODE>X</CODE> is the
|
|
indeterminate.
|
|
|
|
<DT><CODE>cl_UP R->create (sintL degree)</CODE>
|
|
<DD>
|
|
Creates a new polynomial with a given degree. The zero polynomial has degree
|
|
<CODE>-1</CODE>. After creating the polynomial, you should put in the coefficients,
|
|
using the <CODE>set_coeff</CODE> member function, and then call the <CODE>finalize</CODE>
|
|
member function.
|
|
</DL>
|
|
|
|
<P>
|
|
The following are the only destructive operations on univariate polynomials.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y)</CODE>
|
|
<DD>
|
|
This changes the coefficient of <CODE>X^index</CODE> in <CODE>x</CODE> to be <CODE>y</CODE>.
|
|
After changing a polynomial and before applying any "normal" operation on it,
|
|
you should call its <CODE>finalize</CODE> member function.
|
|
|
|
<DT><CODE>void finalize (cl_UP& x)</CODE>
|
|
<DD>
|
|
This function marks the endpoint of destructive modifications of a polynomial.
|
|
It normalizes the internal representation so that subsequent computations have
|
|
less overhead. Doing normal computations on unnormalized polynomials may
|
|
produce wrong results or crash the program.
|
|
</DL>
|
|
|
|
<P>
|
|
The following operations are defined on univariate polynomials.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_univpoly_ring x.ring ()</CODE>
|
|
<DD>
|
|
Returns the ring to which the univariate polynomial <CODE>x</CODE> belongs.
|
|
|
|
<DT><CODE>cl_UP operator+ (const cl_UP&, const cl_UP&)</CODE>
|
|
<DD>
|
|
Returns the sum of two univariate polynomials.
|
|
|
|
<DT><CODE>cl_UP operator- (const cl_UP&, const cl_UP&)</CODE>
|
|
<DD>
|
|
Returns the difference of two univariate polynomials.
|
|
|
|
<DT><CODE>cl_UP operator- (const cl_UP&)</CODE>
|
|
<DD>
|
|
Returns the negative of a univariate polynomial.
|
|
|
|
<DT><CODE>cl_UP operator* (const cl_UP&, const cl_UP&)</CODE>
|
|
<DD>
|
|
Returns the product of two univariate polynomials. One of the arguments may
|
|
also be a plain integer or an element of the base ring.
|
|
|
|
<DT><CODE>cl_UP square (const cl_UP&)</CODE>
|
|
<DD>
|
|
Returns the square of a univariate polynomial.
|
|
|
|
<DT><CODE>cl_UP expt_pos (const cl_UP& x, const cl_I& y)</CODE>
|
|
<DD>
|
|
<CODE>y</CODE> must be > 0. Returns <CODE>x^y</CODE>.
|
|
|
|
<DT><CODE>bool operator== (const cl_UP&, const cl_UP&)</CODE>
|
|
<DD>
|
|
<DT><CODE>bool operator!= (const cl_UP&, const cl_UP&)</CODE>
|
|
<DD>
|
|
Compares two univariate polynomials, belonging to the same univariate
|
|
polynomial ring, for equality.
|
|
|
|
<DT><CODE>cl_boolean zerop (const cl_UP& x)</CODE>
|
|
<DD>
|
|
Returns true if <CODE>x</CODE> is <CODE>0 in R</CODE>.
|
|
|
|
<DT><CODE>sintL degree (const cl_UP& x)</CODE>
|
|
<DD>
|
|
Returns the degree of the polynomial. The zero polynomial has degree <CODE>-1</CODE>.
|
|
|
|
<DT><CODE>cl_ring_element coeff (const cl_UP& x, uintL index)</CODE>
|
|
<DD>
|
|
Returns the coefficient of <CODE>X^index</CODE> in the polynomial <CODE>x</CODE>.
|
|
|
|
<DT><CODE>cl_ring_element x (const cl_ring_element& y)</CODE>
|
|
<DD>
|
|
Evaluation: If <CODE>x</CODE> is a polynomial and <CODE>y</CODE> belongs to the base ring,
|
|
then <SAMP>`x(y)'</SAMP> returns the value of the substitution of <CODE>y</CODE> into
|
|
<CODE>x</CODE>.
|
|
|
|
<DT><CODE>cl_UP deriv (const cl_UP& x)</CODE>
|
|
<DD>
|
|
Returns the derivative of the polynomial <CODE>x</CODE> with respect to the
|
|
indeterminate <CODE>X</CODE>.
|
|
</DL>
|
|
|
|
<P>
|
|
The following output functions are defined (see also the chapter on
|
|
input/output).
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>void fprint (cl_ostream stream, const cl_UP& x)</CODE>
|
|
<DD>
|
|
<DT><CODE>cl_ostream operator<< (cl_ostream stream, const cl_UP& x)</CODE>
|
|
<DD>
|
|
Prints the univariate polynomial <CODE>x</CODE> on the <CODE>stream</CODE>. The output may
|
|
depend on the global printer settings in the variable
|
|
<CODE>cl_default_print_flags</CODE>.
|
|
</DL>
|
|
|
|
|
|
|
|
<H2><A NAME="SEC57" HREF="cln_toc.html#TOC57">9.3 Special polynomials</A></H2>
|
|
|
|
<P>
|
|
The following functions return special polynomials.
|
|
|
|
|
|
<DL COMPACT>
|
|
|
|
<DT><CODE>cl_UP_I cl_tschebychev (sintL n)</CODE>
|
|
<DD>
|
|
Returns the n-th Tchebychev polynomial (n >= 0).
|
|
|
|
<DT><CODE>cl_UP_I cl_hermite (sintL n)</CODE>
|
|
<DD>
|
|
Returns the n-th Hermite polynomial (n >= 0).
|
|
|
|
<DT><CODE>cl_UP_RA cl_legendre (sintL n)</CODE>
|
|
<DD>
|
|
Returns the n-th Legendre polynomial (n >= 0).
|
|
|
|
<DT><CODE>cl_UP_I cl_laguerre (sintL n)</CODE>
|
|
<DD>
|
|
Returns the n-th Laguerre polynomial (n >= 0).
|
|
</DL>
|
|
|
|
<P>
|
|
Information how to derive the differential equation satisfied by each
|
|
of these polynomials from their definition can be found in the
|
|
<CODE>doc/polynomial/</CODE> directory.
|
|
|
|
|
|
<P><HR><P>
|
|
Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_8.html">previous</A>, <A HREF="cln_10.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>.
|
|
</BODY>
|
|
</HTML>
|