You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							82 lines
						
					
					
						
							1.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							82 lines
						
					
					
						
							1.9 KiB
						
					
					
				
								// Check whether a mersenne number is prime,
							 | 
						|
								// using the Lucas-Lehmer test.
							 | 
						|
								// [Donald Ervin Knuth: The Art of Computer Programming, Vol. II:
							 | 
						|
								//  Seminumerical Algorithms, second edition. Section 4.5.4, p. 391.]
							 | 
						|
								
							 | 
						|
								// We work with integers.
							 | 
						|
								#include <cln/integer.h>
							 | 
						|
								
							 | 
						|
								using namespace std;
							 | 
						|
								using namespace cln;
							 | 
						|
								
							 | 
						|
								// Checks whether 2^q-1 is prime, q an odd prime.
							 | 
						|
								bool mersenne_prime_p (int q)
							 | 
						|
								{
							 | 
						|
									cl_I m = ((cl_I)1 << q) - 1;
							 | 
						|
									int i;
							 | 
						|
									cl_I L_i;
							 | 
						|
									for (i = 0, L_i = 4; i < q-2; i++)
							 | 
						|
										L_i = mod(L_i*L_i - 2, m);
							 | 
						|
									return (L_i==0);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// Same thing, but optimized.
							 | 
						|
								bool mersenne_prime_p_opt (int q)
							 | 
						|
								{
							 | 
						|
									cl_I m = ((cl_I)1 << q) - 1;
							 | 
						|
									int i;
							 | 
						|
									cl_I L_i;
							 | 
						|
									for (i = 0, L_i = 4; i < q-2; i++) {
							 | 
						|
										L_i = square(L_i) - 2;
							 | 
						|
										L_i = ldb(L_i,cl_byte(q,q)) + ldb(L_i,cl_byte(q,0));
							 | 
						|
										if (L_i >= m)
							 | 
						|
											L_i = L_i - m;
							 | 
						|
									}
							 | 
						|
									return (L_i==0);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// Now we work with modular integers.
							 | 
						|
								#include <cln/modinteger.h>
							 | 
						|
								
							 | 
						|
								// Same thing, but using modular integers.
							 | 
						|
								bool mersenne_prime_p_modint (int q)
							 | 
						|
								{
							 | 
						|
									cl_I m = ((cl_I)1 << q) - 1;
							 | 
						|
									cl_modint_ring R = find_modint_ring(m); // Z/mZ
							 | 
						|
									int i;
							 | 
						|
									cl_MI L_i;
							 | 
						|
									for (i = 0, L_i = R->canonhom(4); i < q-2; i++)
							 | 
						|
										L_i = R->minus(R->square(L_i),R->canonhom(2));
							 | 
						|
									return R->equal(L_i,R->zero());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#include <cln/io.h> // we do I/O
							 | 
						|
								#include <stdlib.h> // declares exit()
							 | 
						|
								#include <cln/timing.h>
							 | 
						|
								
							 | 
						|
								int main (int argc, char* argv[])
							 | 
						|
								{
							 | 
						|
									if (!(argc == 2)) {
							 | 
						|
										cerr << "Usage: lucaslehmer exponent" << endl;
							 | 
						|
										exit(1);
							 | 
						|
									}
							 | 
						|
									int q = atoi(argv[1]);
							 | 
						|
									if (!(q >= 2 && ((q % 2)==1))) {
							 | 
						|
										cerr << "Usage: lucaslehmer q  with q odd prime" << endl;
							 | 
						|
										exit(1);
							 | 
						|
									}
							 | 
						|
									bool isprime;
							 | 
						|
									{ CL_TIMING; isprime = mersenne_prime_p(q); }
							 | 
						|
									{ CL_TIMING; isprime = mersenne_prime_p_opt(q); }
							 | 
						|
									{ CL_TIMING; isprime = mersenne_prime_p_modint(q); }
							 | 
						|
									cout << "2^" << q << "-1 is ";
							 | 
						|
									if (isprime)
							 | 
						|
										cout << "prime" << endl;
							 | 
						|
									else
							 | 
						|
										cout << "composite" << endl;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// Computing time on a i486, 33 MHz:
							 | 
						|
								//  1279: 2.02 s
							 | 
						|
								//  2281: 8.74 s
							 | 
						|
								// 44497: 14957 s
							 |