You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							234 lines
						
					
					
						
							7.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							234 lines
						
					
					
						
							7.1 KiB
						
					
					
				| // Univariate Polynomials over the rational numbers. | |
|  | |
| #ifndef _CL_UNIVPOLY_RATIONAL_H | |
| #define _CL_UNIVPOLY_RATIONAL_H | |
|  | |
| #include "cln/ring.h" | |
| #include "cln/univpoly.h" | |
| #include "cln/number.h" | |
| #include "cln/rational_class.h" | |
| #include "cln/integer_class.h" | |
| #include "cln/rational_ring.h" | |
|  | |
| namespace cln { | |
| 
 | |
| // Normal univariate polynomials with stricter static typing: | |
| // `cl_RA' instead of `cl_ring_element'. | |
|  | |
| #ifdef notyet | |
|  | |
| typedef cl_UP_specialized<cl_RA> cl_UP_RA; | |
| typedef cl_univpoly_specialized_ring<cl_RA> cl_univpoly_rational_ring; | |
| //typedef cl_heap_univpoly_specialized_ring<cl_RA> cl_heap_univpoly_rational_ring; | |
|  | |
| #else | |
|  | |
| class cl_heap_univpoly_rational_ring; | |
| 
 | |
| class cl_univpoly_rational_ring : public cl_univpoly_ring { | |
| public: | |
| 	// Default constructor. | |
| 	cl_univpoly_rational_ring () : cl_univpoly_ring () {} | |
| 	// Copy constructor. | |
| 	cl_univpoly_rational_ring (const cl_univpoly_rational_ring&); | |
| 	// Assignment operator. | |
| 	cl_univpoly_rational_ring& operator= (const cl_univpoly_rational_ring&); | |
| 	// Automatic dereferencing. | |
| 	cl_heap_univpoly_rational_ring* operator-> () const | |
| 	{ return (cl_heap_univpoly_rational_ring*)heappointer; } | |
| }; | |
| // Copy constructor and assignment operator. | |
| CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_rational_ring,cl_univpoly_ring) | |
| CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_rational_ring,cl_univpoly_rational_ring) | |
| 
 | |
| class cl_UP_RA : public cl_UP { | |
| public: | |
| 	const cl_univpoly_rational_ring& ring () const { return The(cl_univpoly_rational_ring)(_ring); } | |
| 	// Conversion. | |
| 	CL_DEFINE_CONVERTER(cl_ring_element) | |
| 	// Destructive modification. | |
| 	void set_coeff (uintL index, const cl_RA& y); | |
| 	void finalize(); | |
| 	// Evaluation. | |
| 	const cl_RA operator() (const cl_RA& y) const; | |
| public:	// Ability to place an object at a given address. | |
| 	void* operator new (size_t size) { return malloc_hook(size); } | |
| 	void* operator new (size_t size, void* ptr) { (void)size; return ptr; } | |
| 	void operator delete (void* ptr) { free_hook(ptr); } | |
| }; | |
| 
 | |
| class cl_heap_univpoly_rational_ring : public cl_heap_univpoly_ring { | |
| 	SUBCLASS_cl_heap_univpoly_ring() | |
| 	// High-level operations. | |
| 	void fprint (std::ostream& stream, const cl_UP_RA& x) | |
| 	{ | |
| 		cl_heap_univpoly_ring::fprint(stream,x); | |
| 	} | |
| 	bool equal (const cl_UP_RA& x, const cl_UP_RA& y) | |
| 	{ | |
| 		return cl_heap_univpoly_ring::equal(x,y); | |
| 	} | |
| 	const cl_UP_RA zero () | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::zero()); | |
| 	} | |
| 	bool zerop (const cl_UP_RA& x) | |
| 	{ | |
| 		return cl_heap_univpoly_ring::zerop(x); | |
| 	} | |
| 	const cl_UP_RA plus (const cl_UP_RA& x, const cl_UP_RA& y) | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::plus(x,y)); | |
| 	} | |
| 	const cl_UP_RA minus (const cl_UP_RA& x, const cl_UP_RA& y) | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::minus(x,y)); | |
| 	} | |
| 	const cl_UP_RA uminus (const cl_UP_RA& x) | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::uminus(x)); | |
| 	} | |
| 	const cl_UP_RA one () | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::one()); | |
| 	} | |
| 	const cl_UP_RA canonhom (const cl_I& x) | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::canonhom(x)); | |
| 	} | |
| 	const cl_UP_RA mul (const cl_UP_RA& x, const cl_UP_RA& y) | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::mul(x,y)); | |
| 	} | |
| 	const cl_UP_RA square (const cl_UP_RA& x) | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::square(x)); | |
| 	} | |
| 	const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y) | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::expt_pos(x,y)); | |
| 	} | |
| 	const cl_UP_RA scalmul (const cl_RA& x, const cl_UP_RA& y) | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::scalmul(cl_ring_element(cl_RA_ring,x),y)); | |
| 	} | |
| 	sintL degree (const cl_UP_RA& x) | |
| 	{ | |
| 		return cl_heap_univpoly_ring::degree(x); | |
| 	} | |
| 	sintL ldegree (const cl_UP_RA& x) | |
| 	{ | |
| 		return cl_heap_univpoly_ring::ldegree(x); | |
| 	} | |
| 	const cl_UP_RA monomial (const cl_RA& x, uintL e) | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_RA_ring,x),e)); | |
| 	} | |
| 	const cl_RA coeff (const cl_UP_RA& x, uintL index) | |
| 	{ | |
| 		return The(cl_RA)(cl_heap_univpoly_ring::coeff(x,index)); | |
| 	} | |
| 	const cl_UP_RA create (sintL deg) | |
| 	{ | |
| 		return The2(cl_UP_RA)(cl_heap_univpoly_ring::create(deg)); | |
| 	} | |
| 	void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y) | |
| 	{ | |
| 		cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_RA_ring,y)); | |
| 	} | |
| 	void finalize (cl_UP_RA& x) | |
| 	{ | |
| 		cl_heap_univpoly_ring::finalize(x); | |
| 	} | |
| 	const cl_RA eval (const cl_UP_RA& x, const cl_RA& y) | |
| 	{ | |
| 		return The(cl_RA)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_RA_ring,y))); | |
| 	} | |
| private: | |
| 	// No need for any constructors. | |
| 	cl_heap_univpoly_rational_ring (); | |
| }; | |
| 
 | |
| // Lookup of polynomial rings. | |
| inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r) | |
| { return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r)); } | |
| inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r, const cl_symbol& varname) | |
| { return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r,varname)); } | |
| 
 | |
| // Operations on polynomials. | |
|  | |
| // Add. | |
| inline const cl_UP_RA operator+ (const cl_UP_RA& x, const cl_UP_RA& y) | |
| 	{ return x.ring()->plus(x,y); } | |
| 
 | |
| // Negate. | |
| inline const cl_UP_RA operator- (const cl_UP_RA& x) | |
| 	{ return x.ring()->uminus(x); } | |
| 
 | |
| // Subtract. | |
| inline const cl_UP_RA operator- (const cl_UP_RA& x, const cl_UP_RA& y) | |
| 	{ return x.ring()->minus(x,y); } | |
| 
 | |
| // Multiply. | |
| inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_UP_RA& y) | |
| 	{ return x.ring()->mul(x,y); } | |
| 
 | |
| // Squaring. | |
| inline const cl_UP_RA square (const cl_UP_RA& x) | |
| 	{ return x.ring()->square(x); } | |
| 
 | |
| // Exponentiation x^y, where y > 0. | |
| inline const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y) | |
| 	{ return x.ring()->expt_pos(x,y); } | |
| 
 | |
| // Scalar multiplication. | |
| #if 0 // less efficient | |
| inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y) | |
| 	{ return y.ring()->mul(y.ring()->canonhom(x),y); } | |
| inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y) | |
| 	{ return x.ring()->mul(x.ring()->canonhom(y),x); } | |
| #endif | |
| inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y) | |
| 	{ return y.ring()->scalmul(x,y); } | |
| inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y) | |
| 	{ return x.ring()->scalmul(y,x); } | |
| inline const cl_UP_RA operator* (const cl_RA& x, const cl_UP_RA& y) | |
| 	{ return y.ring()->scalmul(x,y); } | |
| inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_RA& y) | |
| 	{ return x.ring()->scalmul(y,x); } | |
| 
 | |
| // Coefficient. | |
| inline const cl_RA coeff (const cl_UP_RA& x, uintL index) | |
| 	{ return x.ring()->coeff(x,index); } | |
| 
 | |
| // Destructive modification. | |
| inline void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y) | |
| 	{ x.ring()->set_coeff(x,index,y); } | |
| inline void finalize (cl_UP_RA& x) | |
| 	{ x.ring()->finalize(x); } | |
| inline void cl_UP_RA::set_coeff (uintL index, const cl_RA& y) | |
| 	{ ring()->set_coeff(*this,index,y); } | |
| inline void cl_UP_RA::finalize () | |
| 	{ ring()->finalize(*this); } | |
| 
 | |
| // Evaluation. (No extension of the base ring allowed here for now.) | |
| inline const cl_RA cl_UP_RA::operator() (const cl_RA& y) const | |
| { | |
| 	return ring()->eval(*this,y); | |
| } | |
| 
 | |
| // Derivative. | |
| inline const cl_UP_RA deriv (const cl_UP_RA& x) | |
| 	{ return The2(cl_UP_RA)(deriv((const cl_UP&)x)); } | |
| 
 | |
| #endif | |
|  | |
| CL_REQUIRE(cl_RA_ring) | |
| 
 | |
| 
 | |
| // Returns the n-th Legendre polynomial (n >= 0). | |
| extern const cl_UP_RA legendre (sintL n); | |
| 
 | |
| }  // namespace cln | |
|  | |
| #endif /* _CL_UNIVPOLY_RATIONAL_H */
 |