You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							671 lines
						
					
					
						
							23 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							671 lines
						
					
					
						
							23 KiB
						
					
					
				| // Public integer operations. | |
|  | |
| #ifndef _CL_INTEGER_H | |
| #define _CL_INTEGER_H | |
|  | |
| #include "cln/number.h" | |
| #include "cln/integer_class.h" | |
| #include "cln/exception.h" | |
| #include "cln/random.h" | |
|  | |
| namespace cln { | |
| 
 | |
| CL_DEFINE_AS_CONVERSION(cl_I) | |
| 
 | |
| 
 | |
| // Konversion Integer >=0, <2^32 nach uintL. | |
| // Wandelt Integer >=0 in Unsigned Longword um. | |
| // cl_I_to_UL(obj) | |
| // > obj: Integer, sollte >=0, <2^32 sein | |
| // < ergebnis: der Wert des Integer als 32-Bit-Zahl. | |
|   extern uint32 cl_I_to_UL (const cl_I& obj); | |
| 
 | |
| // Konversion Integer >=-2^31, <2^31 nach sintL. | |
| // Wandelt Integer in Signed Longword um. | |
| // cl_I_to_L(obj) | |
| // > obj: Integer, sollte >=-2^31, <2^31 sein | |
| // < ergebnis: der Wert des Integer als 32-Bit-Zahl. | |
|   extern sint32 cl_I_to_L (const cl_I& obj); | |
| 
 | |
| // Convert an integer to a C `int' or `unsigned int'. | |
| #if (int_bitsize==32) | |
|   inline int          cl_I_to_int  (const cl_I& x) { return cl_I_to_L(x);  } | |
|   inline unsigned int cl_I_to_uint (const cl_I& x) { return cl_I_to_UL(x); } | |
| #endif | |
|  | |
| // Convert an integer to a 64-bit 'quad' type. | |
| #ifdef intQsize | |
|  extern uint64 cl_I_to_UQ (const cl_I& obj); | |
|  extern sint64 cl_I_to_Q (const cl_I& obj); | |
| #endif | |
|  | |
| // Convert an integer to a C `long' or `unsigned long'. | |
| #if (long_bitsize==32) | |
|   inline long          cl_I_to_long  (const cl_I& x) { return cl_I_to_L(x);  } | |
|   inline unsigned long cl_I_to_ulong (const cl_I& x) { return cl_I_to_UL(x); } | |
| #elif (long_bitsize==64) | |
|   inline long          cl_I_to_long  (const cl_I& x) { return cl_I_to_Q(x);  } | |
|   inline unsigned long cl_I_to_ulong (const cl_I& x) { return cl_I_to_UQ(x); } | |
| #endif | |
|  | |
| // Convert an integer to a counter type. | |
| #if (intCsize==long_bitsize) | |
|   inline uintC cl_I_to_UC (const cl_I& x) { return cl_I_to_ulong(x); } | |
|   inline sintC cl_I_to_C  (const cl_I& x) { return cl_I_to_long(x);  } | |
| #elif (intCsize==int_bitsize) | |
|   inline uintC cl_I_to_UC (const cl_I& x) { return cl_I_to_uint(x); } | |
|   inline sintC cl_I_to_C  (const cl_I& x) { return cl_I_to_int(x);  } | |
| #endif | |
|  | |
| // Convert an integer to an exponent type. | |
| #if (intEsize==intLsize) | |
|   inline uintE cl_I_to_UE (const cl_I& x) { return cl_I_to_UL(x); } | |
|   inline sintE cl_I_to_E  (const cl_I& x) { return cl_I_to_L(x);  } | |
| #elif (intEsize==intQsize) | |
|   inline uintE cl_I_to_UE (const cl_I& x) { return cl_I_to_UQ(x); } | |
|   inline sintE cl_I_to_E  (const cl_I& x) { return cl_I_to_Q(x);  } | |
| #endif | |
|  | |
| 
 | |
| // Logische Operationen auf Integers: | |
|  | |
| // (LOGIOR x y), wenn x, y Integers sind. | |
| // Ergebnis Integer. | |
| extern const cl_I logior (const cl_I& x, const cl_I& y); | |
| 
 | |
| // (LOGXOR x y), wenn x, y Integers sind. | |
| // Ergebnis Integer. | |
| extern const cl_I logxor (const cl_I& x, const cl_I& y); | |
| 
 | |
| // (LOGAND x y), wenn x, y Integers sind. | |
| // Ergebnis Integer. | |
| extern const cl_I logand (const cl_I& x, const cl_I& y); | |
| 
 | |
| // (LOGEQV x y), wenn x, y Integers sind. | |
| // Ergebnis Integer. | |
| extern const cl_I logeqv (const cl_I& x, const cl_I& y); | |
| 
 | |
| // (LOGNAND x y), wenn x, y Integers sind. | |
| // Ergebnis Integer. | |
| extern const cl_I lognand (const cl_I& x, const cl_I& y); | |
| 
 | |
| // (LOGNOR x y), wenn x, y Integers sind. | |
| // Ergebnis Integer. | |
| extern const cl_I lognor (const cl_I& x, const cl_I& y); | |
| 
 | |
| // (LOGANDC2 x y), wenn x, y Integers sind. | |
| // Ergebnis Integer. | |
| extern const cl_I logandc2 (const cl_I& x, const cl_I& y); | |
| 
 | |
| // (LOGANDC1 x y), wenn x, y Integers sind. | |
| // Ergebnis Integer. | |
| inline const cl_I logandc1 (const cl_I& x, const cl_I& y) | |
| { | |
| 	return logandc2(y,x); | |
| } | |
| 
 | |
| // (LOGORC2 x y), wenn x, y Integers sind. | |
| // Ergebnis Integer. | |
| extern const cl_I logorc2 (const cl_I& x, const cl_I& y); | |
| 
 | |
| // (LOGORC1 x y), wenn x, y Integers sind. | |
| // Ergebnis Integer. | |
| inline const cl_I logorc1 (const cl_I& x, const cl_I& y) | |
| { | |
| 	return logorc2(y,x); | |
| } | |
| 
 | |
| // (LOGNOT x), wenn x ein Integer sind. | |
| // Ergebnis Integer. | |
| extern const cl_I lognot (const cl_I& x); | |
| 
 | |
| // Konstanten für BOOLE: | |
| typedef enum { | |
| 	boole_clr, | |
| 	boole_set, | |
| 	boole_1, | |
| 	boole_2, | |
| 	boole_c1, | |
| 	boole_c2, | |
| 	boole_and, | |
| 	boole_ior, | |
| 	boole_xor, | |
| 	boole_eqv, | |
| 	boole_nand, | |
| 	boole_nor, | |
| 	boole_andc1, | |
| 	boole_andc2, | |
| 	boole_orc1, | |
| 	boole_orc2 | |
| } cl_boole; | |
| 
 | |
| // (BOOLE op x y), wenn x und y Integers und op ein Objekt sind. | |
| // Ergebnis Integer. | |
| extern const cl_I boole (cl_boole op, const cl_I& x, const cl_I& y); | |
| 
 | |
| // Prüft, ob (LOGTEST x y), wo x und y Integers sind. | |
| // (LOGTEST x y) = (NOT (ZEROP (LOGAND x y))). | |
| // < ergebnis: /=0, falls ja; =0, falls nein. | |
| extern bool logtest (const cl_I& x, const cl_I& y); | |
| 
 | |
| // Prüft, ob (LOGBITP x y), wo x und y Integers sind. | |
| // Ergebnis: /=0, wenn ja; =0, wenn nein. | |
| extern bool logbitp (uintC x, const cl_I& y); | |
| extern bool logbitp (const cl_I& x, const cl_I& y); | |
| 
 | |
| // Prüft, ob (ODDP x), wo x ein Integer ist. | |
| // Ergebnis: /=0, falls ja; =0, falls nein. | |
| extern bool oddp (const cl_I& x); | |
| 
 | |
| // Prüft, ob (EVENP x), wo x ein Integer ist. | |
| // Ergebnis: /=0, falls ja; =0, falls nein. | |
| inline bool evenp (const cl_I& x) | |
| 	{ return !oddp(x); } | |
| 
 | |
| // (ASH x y), wo x und y Integers sind. Ergebnis Integer. | |
| extern const cl_I ash (const cl_I& x, sintC y); | |
| extern const cl_I ash (const cl_I& x, const cl_I& y); | |
| 
 | |
| // Thrown when shift amount is too large. | |
| class ash_exception : public runtime_exception { | |
| public: | |
| 	explicit ash_exception (const cl_I& badamount); | |
| }; | |
| 
 | |
| // (LOGCOUNT x), wo x ein Integer ist. Ergebnis uintC. | |
| extern uintC logcount (const cl_I& x); | |
| 
 | |
| // (INTEGER-LENGTH x), wo x ein Integer ist. Ergebnis uintC. | |
| extern uintC integer_length (const cl_I& x); | |
| 
 | |
| // (ORD2 x) = max{n>=0: 2^n | x }, wo x ein Integer /=0 ist. Ergebnis uintC. | |
| extern uintC ord2 (const cl_I& x); | |
| 
 | |
| // power2p(x) stellt fest, ob ein Integer x>0 eine Zweierpotenz ist. | |
| // Ergebnis: n>0, wenn x=2^(n-1), 0 sonst. | |
| extern uintC power2p (const cl_I& x); | |
| 
 | |
| inline const cl_I operator| (const cl_I& x, const cl_I& y) | |
| 	{ return logior(x,y); } | |
| inline const cl_I operator^ (const cl_I& x, const cl_I& y) | |
| 	{ return logxor(x,y); } | |
| inline const cl_I operator& (const cl_I& x, const cl_I& y) | |
| 	{ return logand(x,y); } | |
| inline const cl_I operator~ (const cl_I& x) | |
| 	{ return lognot(x); } | |
| #ifdef WANT_OBFUSCATING_OPERATORS | |
| // This could be optimized to use in-place operations. | |
| inline cl_I& operator|= (cl_I& x, const cl_I& y) { return x = x | y; } | |
| inline cl_I& operator^= (cl_I& x, const cl_I& y) { return x = x ^ y; } | |
| inline cl_I& operator&= (cl_I& x, const cl_I& y) { return x = x & y; } | |
| #endif | |
|  | |
| 
 | |
| // Addition/Subtraktion von Integers | |
|  | |
| // (1+ x), wo x ein Integer ist. Ergebnis Integer. | |
| extern const cl_I plus1 (const cl_I& x); | |
| 
 | |
| // (1- x), wo x ein Integer ist. Ergebnis Integer. | |
| extern const cl_I minus1 (const cl_I& x); | |
| 
 | |
| // (+ x y), wo x und y Integers sind. Ergebnis Integer. | |
| extern const cl_I operator+ (const cl_I& x, const cl_I& y); | |
| // Dem C++-Compiler muß man auch das Folgende sagen: | |
| inline const cl_I operator+ (const int x, const cl_I& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_I operator+ (const unsigned int x, const cl_I& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_I operator+ (const long x, const cl_I& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_I operator+ (const unsigned long x, const cl_I& y) | |
| 	{ return cl_I(x) + y; } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_I operator+ (const long long x, const cl_I& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_I operator+ (const unsigned long long x, const cl_I& y) | |
| 	{ return cl_I(x) + y; } | |
| #endif | |
| inline const cl_I operator+ (const cl_I& x, const int y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_I operator+ (const cl_I& x, const unsigned int y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_I operator+ (const cl_I& x, const long y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_I operator+ (const cl_I& x, const unsigned long y) | |
| 	{ return x + cl_I(y); } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_I operator+ (const cl_I& x, const long long y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_I operator+ (const cl_I& x, const unsigned long long y) | |
| 	{ return x + cl_I(y); } | |
| #endif | |
|  | |
| // (- x), wenn x ein Integer ist. Ergebnis Integer. | |
| extern const cl_I operator- (const cl_I& x); | |
| 
 | |
| // (- x y), wo x und y Integers sind. Ergebnis Integer. | |
| extern const cl_I operator- (const cl_I& x, const cl_I& y); | |
| // Dem C++-Compiler muß man auch das Folgende sagen: | |
| inline const cl_I operator- (const int x, const cl_I& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_I operator- (const unsigned int x, const cl_I& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_I operator- (const long x, const cl_I& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_I operator- (const unsigned long x, const cl_I& y) | |
| 	{ return cl_I(x) - y; } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_I operator- (const long long x, const cl_I& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_I operator- (const unsigned long long x, const cl_I& y) | |
| 	{ return cl_I(x) - y; } | |
| #endif | |
| inline const cl_I operator- (const cl_I& x, const int y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_I operator- (const cl_I& x, const unsigned int y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_I operator- (const cl_I& x, const long y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_I operator- (const cl_I& x, const unsigned long y) | |
| 	{ return x - cl_I(y); } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_I operator- (const cl_I& x, const long long y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_I operator- (const cl_I& x, const unsigned long long y) | |
| 	{ return x - cl_I(y); } | |
| #endif | |
|  | |
| // (abs x), wenn x ein Integer ist. Ergebnis Integer. | |
| extern const cl_I abs (const cl_I& x); | |
| 
 | |
| // Shifts. | |
| inline const cl_I operator<< (const cl_I& x, sintC y) // assume 0 <= y < 2^(intCsize-1) | |
| 	{ return ash(x,y); } | |
| inline const cl_I operator<< (const cl_I& x, const cl_I& y) // assume y >= 0 | |
| 	{ return ash(x,y); } | |
| inline const cl_I operator>> (const cl_I& x, sintC y) // assume 0 <= y < 2^(intCsize-1) | |
| 	{ return ash(x,-y); } | |
| inline const cl_I operator>> (const cl_I& x, const cl_I& y) // assume y >= 0 | |
| 	{ return ash(x,-y); } | |
| 
 | |
| 
 | |
| // Vergleich von Integers | |
|  | |
| // equal(x,y) vergleicht zwei Integers x und y auf Gleichheit. | |
| extern bool equal (const cl_I& x, const cl_I& y); | |
| // equal_hashcode(x) liefert einen equal-invarianten Hashcode für x. | |
| extern uint32 equal_hashcode (const cl_I& x); | |
| 
 | |
| // compare(x,y) vergleicht zwei Integers x und y. | |
| // Ergebnis: 0 falls x=y, +1 falls x>y, -1 falls x<y. | |
| extern cl_signean compare (const cl_I& x, const cl_I& y); | |
| 
 | |
| inline bool operator== (const cl_I& x, const cl_I& y) | |
| 	{ return equal(x,y); } | |
| inline bool operator!= (const cl_I& x, const cl_I& y) | |
| 	{ return !equal(x,y); } | |
| inline bool operator<= (const cl_I& x, const cl_I& y) | |
| 	{ return compare(x,y)<=0; } | |
| inline bool operator< (const cl_I& x, const cl_I& y) | |
| 	{ return compare(x,y)<0; } | |
| inline bool operator>= (const cl_I& x, const cl_I& y) | |
| 	{ return compare(x,y)>=0; } | |
| inline bool operator> (const cl_I& x, const cl_I& y) | |
| 	{ return compare(x,y)>0; } | |
| 
 | |
| // minusp(x) == (< x 0) | |
| extern bool minusp (const cl_I& x); | |
| 
 | |
| // plusp(x) == (> x 0) | |
| extern bool plusp (const cl_I& x); | |
| 
 | |
| // zerop(x) stellt fest, ob ein Integer = 0 ist. | |
| extern bool zerop (const cl_I& x); | |
| 
 | |
| 
 | |
| // BYTE-Operationen auf Integers | |
|  | |
| struct cl_byte { | |
| 	uintC size; | |
| 	uintC position; | |
| // Konstruktor: | |
| 	cl_byte (uintC s, uintC p) : size (s), position (p) {} | |
| }; | |
| 
 | |
| // (LDB byte n), wo n ein Integer ist. | |
| extern const cl_I ldb (const cl_I& n, const cl_byte& b); | |
| 
 | |
| // ldb_test(n,byte) führt (LDB-TEST byte n) aus, wobei n ein Integer ist. | |
| // Ergebnis: false wenn nein (also alle fraglichen Bits =0), true wenn ja. | |
| extern bool ldb_test (const cl_I& n, const cl_byte& b); | |
| 
 | |
| // (MASK-FIELD byte n), wo n ein Integer ist. | |
| extern const cl_I mask_field (const cl_I& n, const cl_byte& b); | |
| 
 | |
| // (DEPOSIT-FIELD newbyte byte n), wo n und newbyte Integers sind. | |
| extern const cl_I deposit_field (const cl_I& newbyte, const cl_I& n, const cl_byte& b); | |
| 
 | |
| // (DPB newbyte byte n), wo n und newbyte Integers sind. | |
| extern const cl_I dpb (const cl_I& newbyte, const cl_I& n, const cl_byte& b); | |
| 
 | |
| 
 | |
| // Multiplikation ganzer Zahlen | |
|  | |
| // (* x y), wo x und y Integers sind. Ergebnis Integer. | |
| extern const cl_I operator* (const cl_I& x, const cl_I& y); | |
| // Dem C++-Compiler muß man auch das Folgende sagen: | |
| inline const cl_I operator* (const int x, const cl_I& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_I operator* (const unsigned int x, const cl_I& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_I operator* (const long x, const cl_I& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_I operator* (const unsigned long x, const cl_I& y) | |
| 	{ return cl_I(x) * y; } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_I operator* (const long long x, const cl_I& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_I operator* (const unsigned long long x, const cl_I& y) | |
| 	{ return cl_I(x) * y; } | |
| #endif | |
| inline const cl_I operator* (const cl_I& x, const int y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_I operator* (const cl_I& x, const unsigned int y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_I operator* (const cl_I& x, const long y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_I operator* (const cl_I& x, const unsigned long y) | |
| 	{ return x * cl_I(y); } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_I operator* (const cl_I& x, const long long y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_I operator* (const cl_I& x, const unsigned long long y) | |
| 	{ return x * cl_I(y); } | |
| #endif | |
|  | |
| // (EXPT x 2), wo x Integer ist. | |
| extern const cl_I square (const cl_I& x); | |
| 
 | |
| // (EXPT x y), wo x Integer, y Integer >0 ist. | |
| extern const cl_I expt_pos (const cl_I& x, uintL y); | |
| extern const cl_I expt_pos (const cl_I& x, const cl_I& y); | |
| 
 | |
| // Fakultät (! n), wo n Fixnum >=0 ist. Ergebnis Integer. | |
| extern const cl_I factorial (uintL n); | |
| //CL_REQUIRE(cl_I_factorial) | |
|  | |
| // Double factorial (!! n), with n Fixnum >=0.  Returns integer. | |
| extern const cl_I doublefactorial (uintL n); | |
| 
 | |
| // Binomialkoeffizient (n \choose k) = n! / k! (n-k)!, wo n,k >= 0 sind. | |
| extern const cl_I binomial (uintL n, uintL k); | |
| 
 | |
| 
 | |
| // Division ganzer Zahlen | |
|  | |
| // Return type for division operators. | |
| // x / y  --> (q,r) with x = y*q+r. | |
| struct cl_I_div_t { | |
| 	cl_I quotient; | |
| 	cl_I remainder; | |
| // Constructor. | |
| 	cl_I_div_t () {} | |
| 	cl_I_div_t (const cl_I& q, const cl_I& r) : quotient(q), remainder(r) {} | |
| }; | |
| 
 | |
| // Dividiert zwei Integers x,y >=0 und liefert den Quotienten x/y >=0. | |
| // Bei y=0 Error. Die Division muß aufgehen, sonst Error. | |
| // exquopos(x,y) | |
| // > x,y: Integers >=0 | |
| // < ergebnis: Quotient x/y, ein Integer >=0 | |
|   extern const cl_I exquopos (const cl_I& x, const cl_I& y); | |
| 
 | |
| // Dividiert zwei Integers x,y und liefert den Quotienten x/y. | |
| // Bei y=0 Error. Die Division muß aufgehen, sonst Error. | |
| // exquo(x,y) | |
| // > x,y: Integers | |
| // < ergebnis: Quotient x/y, ein Integer | |
|   extern const cl_I exquo (const cl_I& x, const cl_I& y); | |
| 
 | |
| // Thrown when quotient is no integer. | |
| class exquo_exception : public runtime_exception { | |
| public: | |
| 	exquo_exception (const cl_I& x, const cl_I& y); | |
| }; | |
| 
 | |
| // mod(x,y) = (mod x y), wo x,y Integers sind. | |
|   extern const cl_I mod (const cl_I& x, const cl_I& y); | |
| 
 | |
| // rem(x,y) = (rem x y), wo x,y Integers sind. | |
|   extern const cl_I rem (const cl_I& x, const cl_I& y); | |
| 
 | |
| // Dividiert zwei Integers x,y und liefert Quotient und Rest | |
| // (q,r) := (floor x y) | |
| // floor2(x,y) | |
| // > x,y: Integers | |
| // < q,r: Quotient q, Rest r | |
|   extern const cl_I_div_t floor2 (const cl_I& x, const cl_I& y); | |
|   extern const cl_I floor1 (const cl_I& x, const cl_I& y); | |
| 
 | |
| // Dividiert zwei Integers x,y und liefert Quotient und Rest | |
| // (q,r) := (ceiling x y) | |
| // ceiling2(x,y) | |
| // > x,y: Integers | |
| // < q,r: Quotient q, Rest r | |
|   extern const cl_I_div_t ceiling2 (const cl_I& x, const cl_I& y); | |
|   extern const cl_I ceiling1 (const cl_I& x, const cl_I& y); | |
| 
 | |
| // Dividiert zwei Integers x,y und liefert Quotient und Rest | |
| // (q,r) := (truncate x y) | |
| // truncate2(x,y) | |
| // > x,y: Integers | |
| // < q,r: Quotient q, Rest r | |
|   extern const cl_I_div_t truncate2 (const cl_I& x, const cl_I& y); | |
|   extern const cl_I truncate1 (const cl_I& x, const cl_I& y); | |
| 
 | |
| // Dividiert zwei Integers x,y und liefert Quotient und Rest | |
| // (q,r) := (round x y) | |
| // round2(x,y) | |
| // > x,y: Integers | |
| // < q,r: Quotient q, Rest r | |
|   extern const cl_I_div_t round2 (const cl_I& x, const cl_I& y); | |
|   extern const cl_I round1 (const cl_I& x, const cl_I& y); | |
| 
 | |
| 
 | |
| // ggT und kgV von Integers | |
|  | |
| // Liefert den ggT zweier Integers. | |
| // gcd(a,b) | |
| // > a,b: zwei Integers | |
| // < ergebnis: (gcd a b), ein Integer >=0 | |
|   extern const cl_I gcd (const cl_I& a, const cl_I& b); | |
|   extern uintV gcd (uintV a, uintV b); | |
| 
 | |
| // Liefert den ggT zweier Integers samt Beifaktoren. | |
| // g = xgcd(a,b,&u,&v) | |
| // > a,b: zwei Integers | |
| // < u, v, g: Integers mit u*a+v*b = g >= 0 | |
|   extern const cl_I xgcd (const cl_I& a, const cl_I& b, cl_I* u, cl_I* v); | |
| // Im Fall A/=0, B/=0 genügt das Ergebnis (g,u,v) den Ungleichungen: | |
| //   Falls |A| = |B| : g = |A|, u = (signum A), v = 0. | |
| //   Falls |B| | |A|, |B| < |A| : g = |B|, u = 0, v = (signum B). | |
| //   Falls |A| | |B|, |A| < |B| : g = |A|, u = (signum A), v = 0. | |
| //   Sonst: |u| <= |B| / (2*g), |v| <= |A| / (2*g). | |
| //   In jedem Fall |u| <= |B|/g, |v| < |A|/g. | |
| // (Beweis: Im Prinzip macht man ja mehrere Euklid-Schritte auf einmal. Im | |
| // letzten Fall - oBdA |A| > |B| - braucht man mindestens zwei Euklid-Schritte, | |
| // also gilt im Euklid-Tableau | |
| //                 i         |A|            |B|         Erg. | |
| //                -------------------------------------------- | |
| //                 0          1              0          |A| | |
| //                 1          0              1          |B| | |
| //                ...        ...            ...         ... | |
| //                n-1  -(-1)^n*x[n-1]  (-1)^n*y[n-1]   z[n-1] | |
| //                 n    (-1)^n*x[n]    -(-1)^n*y[n]     z[n] | |
| //                n+1  -(-1)^n*x[n+1]  (-1)^n*y[n+1]   z[n+1] = 0 | |
| //                -------------------------------------------- | |
| //                       g = z[n], |u|=x[n], |v|=y[n] | |
| // n>=2, z[0] > ... > z[n-1] > z[n] = g, g | z[n-1], also z[n-1] >= 2*g. | |
| // Da aber mit  (-1)^i*x[i]*|A| - (-1)^i*y[i]*|B| = z[i]  für i=0..n+1 | |
| // und            x[i]*y[i+1] - x[i+1]*y[i] = (-1)^i  für i=0..n, | |
| //                x[i]*z[i+1] - x[i+1]*z[i] = (-1)^i*|B|  für i=0..n, | |
| //                y[i]*z[i+1] - y[i+1]*z[i] = -(-1)^i*|A|  für i=0..n | |
| // auch |A| = y[i+1]*z[i] + y[i]*z[i+1], |B| = x[i+1]*z[i] + x[i]*z[i+1] | |
| // für i=0..n (Cramersche Regel), folgt | |
| // |A| = y[n]*z[n-1] + y[n-1]*z[n] >= y[n]*2*g + 0 = |v|*2*g, | |
| // |B| = x[n]*z[n-1] + x[n-1]*z[n] >= x[n]*2*g + 0 = |u|*2*g.) | |
|  | |
| // Liefert den kgV zweier Integers. | |
| // lcm(a,b) | |
| // > a,b: zwei Integers | |
| // < ergebnis: (lcm a b), ein Integer >=0 | |
|   extern const cl_I lcm (const cl_I& a, const cl_I& b); | |
| 
 | |
| 
 | |
| // Wurzel aus ganzen Zahlen | |
|  | |
| // Zieht die Wurzel (ISQRT x) aus einem Integer. | |
| // isqrt(x,&w) | |
| // > x: Integer (sollte >=0 sein) | |
| // < w: (isqrt x) | |
| // < ergebnis: true falls x Quadratzahl, false sonst | |
|   extern bool isqrt (const cl_I& x, cl_I* w); | |
| // Wenn das boolesche Ergebnis uninteressant ist: | |
|   inline const cl_I isqrt (const cl_I& x) { cl_I w; isqrt(x,&w); return w; } | |
| 
 | |
| // Stellt fest, ob ein Integer >=0 eine Quadratzahl ist. | |
| // sqrtp(x,&w) | |
| // > x: ein Integer >=0 | |
| // < w: Integer (sqrt x) falls x Quadratzahl | |
| // < ergebnis: true      ..................., false sonst | |
|   extern bool sqrtp (const cl_I& x, cl_I* w); | |
| 
 | |
| // Stellt fest, ob ein Integer >=0 eine n-te Potenz ist. | |
| // rootp(x,n,&w) | |
| // > x: ein Integer >=0 | |
| // > n: ein Integer >0 | |
| // < w: Integer (expt x (/ n)) falls x eine n-te Potenz | |
| // < ergebnis: true            ........................, false sonst | |
|   extern bool rootp (const cl_I& x, uintL n, cl_I* w); | |
|   extern bool rootp (const cl_I& x, const cl_I& n, cl_I* w); | |
| 
 | |
| 
 | |
| // max(x,y) liefert (max x y), wo x und y ganze Zahlen sind. | |
| extern const cl_I max (const cl_I& x, const cl_I& y); | |
| 
 | |
| // min(x,y) liefert (min x y), wo x und y ganze Zahlen sind. | |
| extern const cl_I min (const cl_I& x, const cl_I& y); | |
| 
 | |
| // signum(x) liefert (signum x), wo x eine ganze Zahl ist. | |
| extern const cl_I signum (const cl_I& x); | |
| 
 | |
| 
 | |
| // Multipliziert ein Integer mit 10 und addiert eine weitere Ziffer. | |
| // mul_10_plus_x(y,x) | |
| // > y: Integer Y (>=0) | |
| // > x: Ziffernwert X (>=0,<10) | |
| // < ergebnis: Integer Y*10+X (>=0) | |
| extern const cl_I mul_10_plus_x (const cl_I& y, unsigned char x); | |
| 
 | |
| 
 | |
| // 2-adische Inverse. | |
| // cl_recip2adic(n,x) | |
| // > n: >0 | |
| // > x: Integer, ungerade | |
| // < ergebnis: n-Bit-Zahl y == (x mod 2^n)^-1, d.h. y*x == 1 mod 2^n | |
| extern const cl_I cl_recip2adic (uintL n, const cl_I& x); | |
| 
 | |
| // 2-adische Division. | |
| // cl_div2adic(n,x,y) | |
| // > n: >0 | |
| // > x: Integer | |
| // > y: Integer, ungerade | |
| // < ergebnis: n-Bit-Zahl z == (x mod 2^n)/(y mod 2^n), d.h. z*y == x mod 2^n | |
| extern const cl_I cl_div2adic (uintL n, const cl_I& x, const cl_I& y); | |
| 
 | |
| 
 | |
| // numerator(r) liefert den Zähler des Integer r. | |
| inline const cl_I numerator (const cl_I& r) | |
| 	{ return r; } | |
| // denominator(r) liefert den Nenner (> 0) des Integer r. | |
| inline const cl_I denominator (const cl_I& r) | |
| 	{ (void)r; return 1; } | |
| 
 | |
| 
 | |
| // Konversion zu einem C "float". | |
| extern float float_approx (const cl_I& x); | |
| 
 | |
| // Konversion zu einem C "double". | |
| extern double double_approx (const cl_I& x); | |
| 
 | |
| 
 | |
| // random_I(randomstate,n) liefert zu einem Integer n>0 ein zufälliges | |
| // Integer x mit 0 <= x < n. | |
| // > randomstate: ein Random-State, wird verändert | |
| extern const cl_I random_I (random_state& randomstate, const cl_I& n); | |
| 
 | |
| inline const cl_I random_I (const cl_I& n) | |
| 	{ return random_I(default_random_state,n); } | |
| 
 | |
| // testrandom_I(randomstate) liefert ein zufälliges Integer zum Testen. | |
| // > randomstate: ein Random-State, wird verändert | |
| extern const cl_I testrandom_I (random_state& randomstate); | |
| 
 | |
| inline const cl_I testrandom_I () | |
| 	{ return testrandom_I(default_random_state); } | |
| 
 | |
| 
 | |
| #ifdef WANT_OBFUSCATING_OPERATORS | |
| // This could be optimized to use in-place operations. | |
| inline cl_I& operator+= (cl_I& x, const cl_I& y) { return x = x + y; } | |
| inline cl_I& operator+= (cl_I& x, const int y) { return x = x + y; } | |
| inline cl_I& operator+= (cl_I& x, const unsigned int y) { return x = x + y; } | |
| inline cl_I& operator+= (cl_I& x, const long y) { return x = x + y; } | |
| inline cl_I& operator+= (cl_I& x, const unsigned long y) { return x = x + y; } | |
| inline cl_I& operator++ /* prefix */ (cl_I& x) { return x = plus1(x); } | |
| inline void operator++ /* postfix */ (cl_I& x, int dummy) { (void)dummy; x = plus1(x); } | |
| inline cl_I& operator-= (cl_I& x, const cl_I& y) { return x = x - y; } | |
| inline cl_I& operator-= (cl_I& x, const int y) { return x = x - y; } | |
| inline cl_I& operator-= (cl_I& x, const unsigned int y) { return x = x - y; } | |
| inline cl_I& operator-= (cl_I& x, const long y) { return x = x - y; } | |
| inline cl_I& operator-= (cl_I& x, const unsigned long y) { return x = x - y; } | |
| inline cl_I& operator-- /* prefix */ (cl_I& x) { return x = minus1(x); } | |
| inline void operator-- /* postfix */ (cl_I& x, int dummy) { (void)dummy; x = minus1(x); } | |
| inline cl_I& operator*= (cl_I& x, const cl_I& y) { return x = x * y; } | |
| inline cl_I& operator<<= (cl_I& x, sintC y) // assume 0 <= y < 2^(intCsize-1) | |
| 	{ return x = x << y; } | |
| inline cl_I& operator<<= (cl_I& x, const cl_I& y) // assume y >= 0 | |
| 	{ return x = x << y; } | |
| inline cl_I& operator>>= (cl_I& x, sintC y) // assume 0 <= y < 2^(intCsize-1) | |
| 	{ return x = x >> y; } | |
| inline cl_I& operator>>= (cl_I& x, const cl_I& y) // assume y >= 0 | |
| 	{ return x = x >> y; } | |
| #if 0 // Defining operator/ collides with the operator/ (cl_RA, cl_RA). | |
| // operator/ should perform exquo(x,y), but people believe in the C semantics. | |
| // And it would be wiser to use floor1 and mod instead of truncate1 and rem, | |
| // but again, many C compilers implement / and % like this and people believe | |
| // in it. | |
| inline const cl_I operator/ (const cl_I& x, const cl_I& y) { return truncate1(x,y); } | |
| inline const cl_I operator% (const cl_I& x, const cl_I& y) { return rem(x,y); } | |
| inline cl_I& operator/= (cl_I& x, const cl_I& y) { return x = x / y; } | |
| inline cl_I& operator%= (cl_I& x, const cl_I& y) { return x = x % y; } | |
| #endif | |
| #endif | |
|  | |
| 
 | |
| // Runtime typing support. | |
| extern cl_class cl_class_fixnum; | |
| extern cl_class cl_class_bignum; | |
| CL_FORCE_LINK(cl_I_classes_dummy, cl_class_fixnum) | |
| 
 | |
| 
 | |
| // Debugging support. | |
| #ifdef CL_DEBUG | |
| extern int cl_I_debug_module; | |
| CL_FORCE_LINK(cl_I_debug_dummy, cl_I_debug_module) | |
| #endif | |
|  | |
| }  // namespace cln | |
|  | |
| #endif /* _CL_INTEGER_H */
 |