You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							773 lines
						
					
					
						
							26 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							773 lines
						
					
					
						
							26 KiB
						
					
					
				| // Public float operations. | |
|  | |
| #ifndef _CL_FLOAT_H | |
| #define _CL_FLOAT_H | |
|  | |
| #include "cln/number.h" | |
| #include "cln/float_class.h" | |
| #include "cln/floatformat.h" | |
| #include "cln/random.h" | |
| #include "cln/integer_class.h" | |
| #include "cln/sfloat_class.h" | |
| #include "cln/ffloat_class.h" | |
| #include "cln/dfloat_class.h" | |
| #include "cln/lfloat_class.h" | |
| #include "cln/exception.h" | |
|  | |
| namespace cln { | |
| 
 | |
| CL_DEFINE_AS_CONVERSION(cl_F) | |
| 
 | |
| 
 | |
| // Return type for integer_decode_float: | |
| struct cl_idecoded_float { | |
| 	cl_I mantissa; | |
| 	cl_I exponent; | |
| 	cl_I sign; | |
| // Constructor. | |
| 	cl_idecoded_float () {} | |
| 	cl_idecoded_float (const cl_I& m, const cl_I& e, const cl_I& s) : mantissa(m), exponent(e), sign(s) {} | |
| }; | |
| 
 | |
| 
 | |
| // zerop(x) testet, ob (= x 0). | |
| extern bool zerop (const cl_F& x); | |
| 
 | |
| // minusp(x) testet, ob (< x 0). | |
| extern bool minusp (const cl_F& x); | |
| 
 | |
| // plusp(x) testet, ob (> x 0). | |
| extern bool plusp (const cl_F& x); | |
| 
 | |
| 
 | |
| // cl_F_to_SF(x) wandelt ein Float x in ein Short-Float um und rundet dabei. | |
| extern const cl_SF cl_F_to_SF (const cl_F& x); | |
| 
 | |
| // cl_F_to_FF(x) wandelt ein Float x in ein Single-Float um und rundet dabei. | |
| extern const cl_FF cl_F_to_FF (const cl_F& x); | |
| 
 | |
| // cl_F_to_DF(x) wandelt ein Float x in ein Double-Float um und rundet dabei. | |
| extern const cl_DF cl_F_to_DF (const cl_F& x); | |
| 
 | |
| // cl_F_to_LF(x,len) wandelt ein Float x in ein Long-Float mit len Digits um | |
| // und rundet dabei. | |
| // > uintC len: gewünschte Anzahl Digits, >=LF_minlen | |
| extern const cl_LF cl_F_to_LF (const cl_F& x, uintC len); | |
| 
 | |
| 
 | |
| // The default float format used when converting rational numbers to floats. | |
| extern float_format_t default_float_format; | |
| 
 | |
| // Returns the smallest float format which guarantees at least n decimal digits | |
| // in the mantissa (after the decimal point). | |
| extern float_format_t float_format (uintE n); | |
| 
 | |
| // cl_float(x,y) wandelt ein Float x in das Float-Format des Floats y um | |
| // und rundet dabei nötigenfalls. | |
| // > x,y: Floats | |
| // < ergebnis: (float x y) | |
| extern const cl_F cl_float (const cl_F& x, const cl_F& y); | |
| 
 | |
| // cl_float(x,f) wandelt ein Float x in das Float-Format f um | |
| // und rundet dabei nötigenfalls. | |
| // > x: ein Float | |
| // > f: eine Float-Format-Spezifikation | |
| // < ergebnis: (float x f) | |
| extern const cl_F cl_float (const cl_F& x, float_format_t f); | |
| 
 | |
| // cl_float(x) wandelt eine reelle Zahl x in ein Float um | |
| // und rundet dabei nötigenfalls. | |
| // > x: eine reelle Zahl | |
| // < ergebnis: (float x) | |
| // Abhängig von default_float_format. | |
| inline const cl_F cl_float (const cl_F& x) { return x; } | |
| 
 | |
| // cl_float(x,y) wandelt ein Integer x in das Float-Format des Floats y um | |
| // und rundet dabei nötigenfalls. | |
| // > x: ein Integer | |
| // > y: ein Float | |
| // < ergebnis: (float x y) | |
| extern const cl_F cl_float (const cl_I& x, const cl_F& y); | |
| 
 | |
| // cl_float(x,y) wandelt ein Integer x in das Float-Format f um | |
| // und rundet dabei nötigenfalls. | |
| // > x: ein Integer | |
| // > f: eine Float-Format-Spezifikation | |
| // < ergebnis: (float x f) | |
| extern const cl_F cl_float (const cl_I& x, float_format_t f); | |
| 
 | |
| // cl_float(x) wandelt ein Integer x in ein Float um und rundet dabei. | |
| // > x: ein Integer | |
| // < ergebnis: (float x) | |
| // Abhängig von default_float_format. | |
| extern const cl_F cl_float (const cl_I& x); | |
| 
 | |
| // cl_float(x,y) wandelt eine rationale Zahl x in das Float-Format des | |
| // Floats y um und rundet dabei nötigenfalls. | |
| // > x: eine rationale Zahl | |
| // > y: ein Float | |
| // < ergebnis: (float x y) | |
| extern const cl_F cl_float (const cl_RA& x, const cl_F& y); | |
| 
 | |
| // cl_float(x,y) wandelt eine rationale Zahl x in das Float-Format f um | |
| // und rundet dabei nötigenfalls. | |
| // > x: eine rationale Zahl | |
| // > f: eine Float-Format-Spezifikation | |
| // < ergebnis: (float x f) | |
| extern const cl_F cl_float (const cl_RA& x, float_format_t f); | |
| 
 | |
| // cl_float(x) wandelt eine rationale Zahl x in ein Float um und rundet dabei. | |
| // > x: eine rationale Zahl | |
| // < ergebnis: (float x) | |
| // Abhängig von default_float_format. | |
| extern const cl_F cl_float (const cl_RA& x); | |
| 
 | |
| // The C++ compilers are not clever enough to guess this: | |
| inline const cl_F cl_float (int x, const cl_F& y) | |
| 	{ return cl_float(cl_I(x),y); } | |
| inline const cl_F cl_float (unsigned int x, const cl_F& y) | |
| 	{ return cl_float(cl_I(x),y); } | |
| inline const cl_F cl_float (int x, float_format_t y) | |
| 	{ return cl_float(cl_I(x),y); } | |
| inline const cl_F cl_float (unsigned int x, float_format_t y) | |
| 	{ return cl_float(cl_I(x),y); } | |
| inline const cl_F cl_float (int x) | |
| 	{ return cl_float(cl_I(x)); } | |
| inline const cl_F cl_float (unsigned int x) | |
| 	{ return cl_float(cl_I(x)); } | |
| // The C++ compilers could hardly guess the following: | |
| inline const cl_F cl_float (float x, const cl_F& y) | |
| 	{ return cl_float(cl_FF(x),y); } | |
| inline const cl_F cl_float (double x, const cl_F& y) | |
| 	{ return cl_float(cl_DF(x),y); } | |
| inline const cl_F cl_float (float x, float_format_t y) | |
| 	{ return cl_float(cl_FF(x),y); } | |
| inline const cl_F cl_float (double x, float_format_t y) | |
| 	{ return cl_float(cl_DF(x),y); } | |
| inline const cl_F cl_float (float x) | |
| 	{ return cl_float(cl_FF(x)); } | |
| inline const cl_F cl_float (double x) | |
| 	{ return cl_float(cl_DF(x)); } | |
| 
 | |
| 
 | |
| // Liefert (- x), wo x ein Float ist. | |
| extern const cl_F operator- (const cl_F& x); | |
| 
 | |
| // Liefert (+ x y), wo x und y Floats sind. | |
| extern const cl_F operator+ (const cl_F& x, const cl_F& y); | |
| // The C++ compilers could hardly guess the following: | |
| inline const cl_F operator+ (const cl_RA& x, const cl_F& y) | |
| 	{ return cl_float(x,y) + y; } | |
| inline const cl_F operator+ (const cl_I& x, const cl_F& y) | |
| 	{ return cl_float(x,y) + y; } | |
| inline const cl_F operator+ (const cl_F& x, const cl_RA& y) | |
| 	{ return x + cl_float(y,x); } | |
| inline const cl_F operator+ (const cl_F& x, const cl_I& y) | |
| 	{ return x + cl_float(y,x); } | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_F operator+ (const int x, const cl_F& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_F operator+ (const unsigned int x, const cl_F& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_F operator+ (const long x, const cl_F& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_F operator+ (const unsigned long x, const cl_F& y) | |
| 	{ return cl_I(x) + y; } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_F operator+ (const long long x, const cl_F& y) | |
| 	{ return cl_I(x) + y; } | |
| inline const cl_F operator+ (const unsigned long long x, const cl_F& y) | |
| 	{ return cl_I(x) + y; } | |
| #endif | |
| inline const cl_F operator+ (const float x, const cl_F& y) | |
| 	{ return cl_F(x) + y; } | |
| inline const cl_F operator+ (const double x, const cl_F& y) | |
| 	{ return cl_F(x) + y; } | |
| inline const cl_F operator+ (const cl_F& x, const int y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_F operator+ (const cl_F& x, const unsigned int y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_F operator+ (const cl_F& x, const long y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_F operator+ (const cl_F& x, const unsigned long y) | |
| 	{ return x + cl_I(y); } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_F operator+ (const cl_F& x, const long long y) | |
| 	{ return x + cl_I(y); } | |
| inline const cl_F operator+ (const cl_F& x, const unsigned long long y) | |
| 	{ return x + cl_I(y); } | |
| #endif | |
| inline const cl_F operator+ (const cl_F& x, const float y) | |
| 	{ return x + cl_F(y); } | |
| inline const cl_F operator+ (const cl_F& x, const double y) | |
| 	{ return x + cl_F(y); } | |
| 
 | |
| // Liefert (- x y), wo x und y Floats sind. | |
| extern const cl_F operator- (const cl_F& x, const cl_F& y); | |
| // The C++ compilers could hardly guess the following: | |
| inline const cl_F operator- (const cl_RA& x, const cl_F& y) | |
| 	{ return cl_float(x,y) - y; } | |
| inline const cl_F operator- (const cl_I& x, const cl_F& y) | |
| 	{ return cl_float(x,y) - y; } | |
| inline const cl_F operator- (const cl_F& x, const cl_RA& y) | |
| 	{ return x - cl_float(y,x); } | |
| inline const cl_F operator- (const cl_F& x, const cl_I& y) | |
| 	{ return x - cl_float(y,x); } | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_F operator- (const int x, const cl_F& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_F operator- (const unsigned int x, const cl_F& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_F operator- (const long x, const cl_F& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_F operator- (const unsigned long x, const cl_F& y) | |
| 	{ return cl_I(x) - y; } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_F operator- (const long long x, const cl_F& y) | |
| 	{ return cl_I(x) - y; } | |
| inline const cl_F operator- (const unsigned long long x, const cl_F& y) | |
| 	{ return cl_I(x) - y; } | |
| #endif | |
| inline const cl_F operator- (const float x, const cl_F& y) | |
| 	{ return cl_F(x) - y; } | |
| inline const cl_F operator- (const double x, const cl_F& y) | |
| 	{ return cl_F(x) - y; } | |
| inline const cl_F operator- (const cl_F& x, const int y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_F operator- (const cl_F& x, const unsigned int y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_F operator- (const cl_F& x, const long y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_F operator- (const cl_F& x, const unsigned long y) | |
| 	{ return x - cl_I(y); } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_F operator- (const cl_F& x, const long long y) | |
| 	{ return x - cl_I(y); } | |
| inline const cl_F operator- (const cl_F& x, const unsigned long long y) | |
| 	{ return x - cl_I(y); } | |
| #endif | |
| inline const cl_F operator- (const cl_F& x, const float y) | |
| 	{ return x - cl_F(y); } | |
| inline const cl_F operator- (const cl_F& x, const double y) | |
| 	{ return x - cl_F(y); } | |
| 
 | |
| // Liefert (* x y), wo x und y Floats sind. | |
| extern const cl_F operator* (const cl_F& x, const cl_F& y); | |
| // Spezialfall x oder y Integer oder rationale Zahl. | |
| inline const cl_R operator* (const cl_F& x, const cl_I& y) | |
| { | |
| 	extern const cl_R cl_F_I_mul (const cl_F&, const cl_I&); | |
| 	return cl_F_I_mul(x,y); | |
| } | |
| inline const cl_R operator* (const cl_I& x, const cl_F& y) | |
| { | |
| 	extern const cl_R cl_F_I_mul (const cl_F&, const cl_I&); | |
| 	return cl_F_I_mul(y,x); | |
| } | |
| inline const cl_R operator* (const cl_F& x, const cl_RA& y) | |
| { | |
| 	extern const cl_R cl_F_RA_mul (const cl_F&, const cl_RA&); | |
| 	return cl_F_RA_mul(x,y); | |
| } | |
| inline const cl_R operator* (const cl_RA& x, const cl_F& y) | |
| { | |
| 	extern const cl_R cl_F_RA_mul (const cl_F&, const cl_RA&); | |
| 	return cl_F_RA_mul(y,x); | |
| } | |
| // Dem C++-Compiler muß man nun auch das Folgende sagen: | |
| inline const cl_R operator* (const int x, const cl_F& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_R operator* (const unsigned int x, const cl_F& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_R operator* (const long x, const cl_F& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_R operator* (const unsigned long x, const cl_F& y) | |
| 	{ return cl_I(x) * y; } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_R operator* (const long long x, const cl_F& y) | |
| 	{ return cl_I(x) * y; } | |
| inline const cl_R operator* (const unsigned long long x, const cl_F& y) | |
| 	{ return cl_I(x) * y; } | |
| #endif | |
| inline const cl_F operator* (const float x, const cl_F& y) | |
| 	{ return cl_F(x) * y; } | |
| inline const cl_F operator* (const double x, const cl_F& y) | |
| 	{ return cl_F(x) * y; } | |
| inline const cl_R operator* (const cl_F& x, const int y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_R operator* (const cl_F& x, const unsigned int y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_R operator* (const cl_F& x, const long y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_R operator* (const cl_F& x, const unsigned long y) | |
| 	{ return x * cl_I(y); } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_R operator* (const cl_F& x, const long long y) | |
| 	{ return x * cl_I(y); } | |
| inline const cl_R operator* (const cl_F& x, const unsigned long long y) | |
| 	{ return x * cl_I(y); } | |
| #endif | |
| inline const cl_F operator* (const cl_F& x, const float y) | |
| 	{ return x * cl_F(y); } | |
| inline const cl_F operator* (const cl_F& x, const double y) | |
| 	{ return x * cl_F(y); } | |
| 
 | |
| // Liefert (* x x), wo x ein Float ist. | |
| extern const cl_F square (const cl_F& x); | |
| 
 | |
| // Liefert (/ x y), wo x und y Floats sind. | |
| extern const cl_F operator/ (const cl_F& x, const cl_F& y); | |
| // Liefert (/ x y), wo x und y ein Float und eine rationale Zahl sind. | |
| extern const cl_F operator/ (const cl_F& x, const cl_RA& y); | |
| extern const cl_F operator/ (const cl_F& x, const cl_I& y); | |
| extern const cl_R operator/ (const cl_RA& x, const cl_F& y); | |
| extern const cl_R operator/ (const cl_I& x, const cl_F& y); | |
| // The C++ compilers could hardly guess the following: | |
| inline const cl_F operator/ (const cl_F& x, const int y) | |
| 	{ return x / cl_I(y); } | |
| inline const cl_F operator/ (const cl_F& x, const unsigned int y) | |
| 	{ return x / cl_I(y); } | |
| inline const cl_F operator/ (const cl_F& x, const long y) | |
| 	{ return x / cl_I(y); } | |
| inline const cl_F operator/ (const cl_F& x, const unsigned long y) | |
| 	{ return x / cl_I(y); } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_F operator/ (const cl_F& x, const long long y) | |
| 	{ return x / cl_I(y); } | |
| inline const cl_F operator/ (const cl_F& x, const unsigned long long y) | |
| 	{ return x / cl_I(y); } | |
| #endif | |
| inline const cl_F operator/ (const cl_F& x, const float y) | |
| 	{ return x / cl_F(y); } | |
| inline const cl_F operator/ (const cl_F& x, const double y) | |
| 	{ return x / cl_F(y); } | |
| inline const cl_R operator/ (const int x, const cl_F& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_R operator/ (const unsigned int x, const cl_F& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_R operator/ (const long x, const cl_F& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_R operator/ (const unsigned long x, const cl_F& y) | |
| 	{ return cl_I(x) / y; } | |
| #ifdef HAVE_LONGLONG | |
| inline const cl_R operator/ (const long long x, const cl_F& y) | |
| 	{ return cl_I(x) / y; } | |
| inline const cl_R operator/ (const unsigned long long x, const cl_F& y) | |
| 	{ return cl_I(x) / y; } | |
| #endif | |
| inline const cl_F operator/ (const float x, const cl_F& y) | |
| 	{ return cl_F(x) / y; } | |
| inline const cl_F operator/ (const double x, const cl_F& y) | |
| 	{ return cl_F(x) / y; } | |
| 
 | |
| // Liefert (abs x), wo x ein Float ist. | |
| extern const cl_F abs (const cl_F& x); | |
| 
 | |
| // Liefert zu einem Float x>=0 : (sqrt x), ein Float. | |
| extern const cl_F sqrt (const cl_F& x); | |
| 
 | |
| // recip(x) liefert (/ x), wo x ein Float ist. | |
| extern const cl_F recip (const cl_F& x); | |
| 
 | |
| // (1+ x), wo x ein Float ist. | |
| inline const cl_F plus1 (const cl_F& x) // { return x + cl_I(1); } | |
| { | |
| 	return x + cl_float(1,x); | |
| } | |
| 
 | |
| // (1- x), wo x ein Float ist. | |
| inline const cl_F minus1 (const cl_F& x) // { return x + cl_I(-1); } | |
| { | |
| 	return x + cl_float(-1,x); | |
| } | |
| 
 | |
| // compare(x,y) vergleicht zwei Floats x und y. | |
| // Ergebnis: 0 falls x=y, +1 falls x>y, -1 falls x<y. | |
| extern cl_signean compare (const cl_F& x, const cl_F& y); | |
| 
 | |
| // equal_hashcode(x) liefert einen equal-invarianten Hashcode für x. | |
| extern uint32 equal_hashcode (const cl_F& x); | |
| 
 | |
| inline bool operator== (const cl_F& x, const cl_F& y) | |
| 	{ return compare(x,y)==0; } | |
| inline bool operator!= (const cl_F& x, const cl_F& y) | |
| 	{ return compare(x,y)!=0; } | |
| inline bool operator<= (const cl_F& x, const cl_F& y) | |
| 	{ return compare(x,y)<=0; } | |
| inline bool operator< (const cl_F& x, const cl_F& y) | |
| 	{ return compare(x,y)<0; } | |
| inline bool operator>= (const cl_F& x, const cl_F& y) | |
| 	{ return compare(x,y)>=0; } | |
| inline bool operator> (const cl_F& x, const cl_F& y) | |
| 	{ return compare(x,y)>0; } | |
| 
 | |
| 
 | |
| // ffloor(x) liefert (ffloor x), wo x ein Float ist. | |
| extern const cl_F ffloor (const cl_F& x); | |
| 
 | |
| // fceiling(x) liefert (fceiling x), wo x ein Float ist. | |
| extern const cl_F fceiling (const cl_F& x); | |
| 
 | |
| // ftruncate(x) liefert (ftruncate x), wo x ein Float ist. | |
| extern const cl_F ftruncate (const cl_F& x); | |
| 
 | |
| // fround(x) liefert (fround x), wo x ein Float ist. | |
| extern const cl_F fround (const cl_F& x); | |
| 
 | |
| 
 | |
| // Return type for frounding operators. | |
| // x / y  --> (q,r) with x = y*q+r. | |
| struct cl_F_fdiv_t { | |
| 	cl_F quotient; | |
| 	cl_F remainder; | |
| // Constructor. | |
| 	cl_F_fdiv_t () {} | |
| 	cl_F_fdiv_t (const cl_F& q, const cl_F& r) : quotient(q), remainder(r) {} | |
| }; | |
| 
 | |
| // ffloor2(x) liefert (ffloor x), wo x ein F ist. | |
| extern const cl_F_fdiv_t ffloor2 (const cl_F& x); | |
| 
 | |
| // fceiling2(x) liefert (fceiling x), wo x ein F ist. | |
| extern const cl_F_fdiv_t fceiling2 (const cl_F& x); | |
| 
 | |
| // ftruncate2(x) liefert (ftruncate x), wo x ein F ist. | |
| extern const cl_F_fdiv_t ftruncate2 (const cl_F& x); | |
| 
 | |
| // fround2(x) liefert (fround x), wo x ein F ist. | |
| extern const cl_F_fdiv_t fround2 (const cl_F& x); | |
| 
 | |
| 
 | |
| // Return type for rounding operators. | |
| // x / y  --> (q,r) with x = y*q+r. | |
| struct cl_F_div_t { | |
| 	cl_I quotient; | |
| 	cl_F remainder; | |
| // Constructor. | |
| 	cl_F_div_t () {} | |
| 	cl_F_div_t (const cl_I& q, const cl_F& r) : quotient(q), remainder(r) {} | |
| }; | |
| 
 | |
| // floor2(x) liefert (floor x), wo x ein F ist. | |
| extern const cl_F_div_t floor2 (const cl_F& x); | |
| extern const cl_I floor1 (const cl_F& x); | |
| 
 | |
| // ceiling2(x) liefert (ceiling x), wo x ein F ist. | |
| extern const cl_F_div_t ceiling2 (const cl_F& x); | |
| extern const cl_I ceiling1 (const cl_F& x); | |
| 
 | |
| // truncate2(x) liefert (truncate x), wo x ein F ist. | |
| extern const cl_F_div_t truncate2 (const cl_F& x); | |
| extern const cl_I truncate1 (const cl_F& x); | |
| 
 | |
| // round2(x) liefert (round x), wo x ein F ist. | |
| extern const cl_F_div_t round2 (const cl_F& x); | |
| extern const cl_I round1 (const cl_F& x); | |
| 
 | |
| // floor2(x,y) liefert (floor x y), wo x und y Floats sind. | |
| extern const cl_F_div_t floor2 (const cl_F& x, const cl_F& y); | |
| inline const cl_I floor1 (const cl_F& x, const cl_F& y) { return floor1(x/y); } | |
| 
 | |
| // ceiling2(x,y) liefert (ceiling x y), wo x und y Floats sind. | |
| extern const cl_F_div_t ceiling2 (const cl_F& x, const cl_F& y); | |
| inline const cl_I ceiling1 (const cl_F& x, const cl_F& y) { return ceiling1(x/y); } | |
| 
 | |
| // truncate2(x,y) liefert (truncate x y), wo x und y Floats sind. | |
| extern const cl_F_div_t truncate2 (const cl_F& x, const cl_F& y); | |
| inline const cl_I truncate1 (const cl_F& x, const cl_F& y) { return truncate1(x/y); } | |
| 
 | |
| // round2(x,y) liefert (round x y), wo x und y Floats sind. | |
| extern const cl_F_div_t round2 (const cl_F& x, const cl_F& y); | |
| inline const cl_I round1 (const cl_F& x, const cl_F& y) { return round1(x/y); } | |
| 
 | |
| 
 | |
| // Return type for decode_float: | |
| struct decoded_float { | |
| 	cl_F mantissa; | |
| 	cl_I exponent; | |
| 	cl_F sign; | |
| // Constructor. | |
| 	decoded_float () {} | |
| 	decoded_float (const cl_F& m, const cl_I& e, const cl_F& s) : mantissa(m), exponent(e), sign(s) {} | |
| }; | |
| 
 | |
| // decode_float(x) liefert zu einem Float x: (decode-float x). | |
| // x = 0.0 liefert (0.0, 0, 1.0). | |
| // x = (-1)^s * 2^e * m liefert ((-1)^0 * 2^0 * m, e als Integer, (-1)^s). | |
| extern const decoded_float decode_float (const cl_F& x); | |
| 
 | |
| // float_exponent(x) liefert zu einem Float x: | |
| // den Exponenten von (decode-float x). | |
| // x = 0.0 liefert 0. | |
| // x = (-1)^s * 2^e * m liefert e. | |
| extern sintE float_exponent (const cl_F& x); | |
| 
 | |
| // float_radix(x) liefert (float-radix x), wo x ein Float ist. | |
| inline sintL float_radix (const cl_F& x) | |
| { | |
| 	(void)x; // unused x | |
| 	return 2; | |
| } | |
| 
 | |
| // float_sign(x) liefert (float-sign x), wo x ein Float ist. | |
| extern const cl_F float_sign (const cl_F& x); | |
| 
 | |
| // float_sign(x,y) liefert (float-sign x y), wo x und y Floats sind. | |
| extern const cl_F float_sign (const cl_F& x, const cl_F& y); | |
| 
 | |
| // float_digits(x) liefert (float-digits x), wo x ein Float ist. | |
| // < ergebnis: ein uintC >0 | |
| extern uintC float_digits (const cl_F& x); | |
| 
 | |
| // float_precision(x) liefert (float-precision x), wo x ein Float ist. | |
| // < ergebnis: ein uintC >=0 | |
| extern uintC float_precision (const cl_F& x); | |
| 
 | |
| // Returns the floating point format of a float. | |
| inline float_format_t float_format (const cl_F& x) | |
| 	{ return (float_format_t) float_digits(x); } | |
| 
 | |
| 
 | |
| // integer_decode_float(x) liefert zu einem Float x: (integer-decode-float x). | |
| // x = 0.0 liefert (0, 0, 1). | |
| // x = (-1)^s * 2^e * m bei Float-Precision p liefert | |
| //   (Mantisse 2^p * m als Integer, e-p als Integer, (-1)^s als Fixnum). | |
| extern const cl_idecoded_float integer_decode_float (const cl_F& x); | |
| 
 | |
| 
 | |
| // rational(x) liefert (rational x), wo x ein Float ist. | |
| extern const cl_RA rational (const cl_F& x); | |
| 
 | |
| 
 | |
| // scale_float(x,delta) liefert x*2^delta, wo x ein Float ist. | |
| extern const cl_F scale_float (const cl_F& x, sintC delta); | |
| extern const cl_F scale_float (const cl_F& x, const cl_I& delta); | |
| 
 | |
| 
 | |
| // max(x,y) liefert (max x y), wo x und y Floats sind. | |
| extern const cl_F max (const cl_F& x, const cl_F& y); | |
| 
 | |
| // min(x,y) liefert (min x y), wo x und y Floats sind. | |
| extern const cl_F min (const cl_F& x, const cl_F& y); | |
| 
 | |
| // signum(x) liefert (signum x), wo x ein Float ist. | |
| extern const cl_F signum (const cl_F& x); | |
| 
 | |
| 
 | |
| // Returns the largest (most positive) floating point number in float format f. | |
| extern const cl_F most_positive_float (float_format_t f); | |
| //CL_REQUIRE(cl_F_mostpos) | |
|  | |
| // Returns the smallest (most negative) floating point number in float format f. | |
| extern const cl_F most_negative_float (float_format_t f); | |
| //CL_REQUIRE(cl_F_mostneg) | |
|  | |
| // Returns the least positive floating point number (i.e. > 0 but closest to 0) | |
| // in float format f. | |
| extern const cl_F least_positive_float (float_format_t f); | |
| //CL_REQUIRE(cl_F_leastpos) | |
|  | |
| // Returns the least negative floating point number (i.e. < 0 but closest to 0) | |
| // in float format f. | |
| extern const cl_F least_negative_float (float_format_t f); | |
| //CL_REQUIRE(cl_F_leastneg) | |
|  | |
| // Returns the smallest floating point number e > 0 such that 1+e != 1. | |
| extern const cl_F float_epsilon (float_format_t f); | |
| //CL_REQUIRE(cl_F_epspos) | |
|  | |
| // Returns the smallest floating point number e > 0 such that 1-e != 1. | |
| extern const cl_F float_negative_epsilon (float_format_t f); | |
| //CL_REQUIRE(cl_F_epsneg) | |
|  | |
| 
 | |
| // Konversion zu einem C "float". | |
| extern float float_approx (const cl_F& x); | |
| 
 | |
| // Konversion zu einem C "double". | |
| extern double double_approx (const cl_F& x); | |
| 
 | |
| 
 | |
| // Transcendental functions | |
|  | |
| 
 | |
| // pi(y) liefert die Zahl pi im selben Float-Format wie y. | |
| // > y: ein Float | |
| extern const cl_F pi (const cl_F& y); | |
| 
 | |
| // pi(y) liefert die Zahl pi im Float-Format f. | |
| // > f: eine Float-Format-Spezifikation | |
| extern const cl_F pi (float_format_t f); | |
| 
 | |
| // pi() liefert die Zahl pi im Default-Float-Format. | |
| extern const cl_F pi (void); | |
| 
 | |
| //CL_REQUIRE(cl_F_pi_var) | |
|  | |
| 
 | |
| // sin(x) liefert den Sinus (sin x) eines Float x. | |
| extern const cl_F sin (const cl_F& x); | |
| 
 | |
| // cos(x) liefert den Cosinus (cos x) eines Float x. | |
| extern const cl_F cos (const cl_F& x); | |
| 
 | |
| // Return type for cos_sin(): | |
| struct cos_sin_t { | |
| 	cl_R cos; | |
| 	cl_R sin; | |
| // Constructor: | |
| 	cos_sin_t () {} | |
| 	cos_sin_t (const cl_R& u, const cl_R& v) : cos (u), sin (v) {} | |
| }; | |
| 
 | |
| // cos_sin(x) liefert ((cos x),(sin x)), beide Werte. | |
| extern const cos_sin_t cos_sin (const cl_F& x); | |
| 
 | |
| // tan(x) liefert den Tangens (tan x) eines Float x. | |
| extern const cl_F tan (const cl_F& x); | |
| 
 | |
| 
 | |
| // exp1(y) liefert die Zahl e = exp(1) im selben Float-Format wie y. | |
| // > y: ein Float | |
| extern const cl_F exp1 (const cl_F& y); | |
| 
 | |
| // exp1(y) liefert die Zahl e = exp(1) im Float-Format f. | |
| // > f: eine Float-Format-Spezifikation | |
| extern const cl_F exp1 (float_format_t f); | |
| 
 | |
| // exp1() liefert die Zahl e = exp(1) im Default-Float-Format. | |
| extern const cl_F exp1 (void); | |
| 
 | |
| //CL_REQUIRE(cl_F_exp1_var) | |
|  | |
| 
 | |
| // ln(x) liefert zu einem Float x>0 die Zahl ln(x). | |
| extern const cl_F ln (const cl_F& x); | |
| // Spezialfall: x Long-Float -> Ergebnis Long-Float | |
| inline const cl_LF ln (const cl_LF& x) { return The(cl_LF)(ln(The(cl_F)(x))); } | |
| 
 | |
| // exp(x) liefert zu einem Float x die Zahl exp(x). | |
| extern const cl_F exp (const cl_F& x); | |
| 
 | |
| // sinh(x) liefert zu einem Float x die Zahl sinh(x). | |
| extern const cl_F sinh (const cl_F& x); | |
| 
 | |
| // cosh(x) liefert zu einem Float x die Zahl cosh(x). | |
| extern const cl_F cosh (const cl_F& x); | |
| 
 | |
| // Return type for cosh_sinh(): | |
| struct cosh_sinh_t { | |
| 	cl_R cosh; | |
| 	cl_R sinh; | |
| // Constructor: | |
| 	cosh_sinh_t () {} | |
| 	cosh_sinh_t (const cl_R& u, const cl_R& v) : cosh (u), sinh (v) {} | |
| }; | |
| 
 | |
| // cosh_sinh(x) liefert ((cosh x),(sinh x)), beide Werte. | |
| extern const cosh_sinh_t cosh_sinh (const cl_F& x); | |
| 
 | |
| // tanh(x) liefert zu einem Float x die Zahl tanh(x). | |
| extern const cl_F tanh (const cl_F& x); | |
| 
 | |
| 
 | |
| // eulerconst(y) liefert die Eulersche Konstante | |
| // im selben Float-Format wie y. | |
| // > y: ein Float | |
| extern const cl_F eulerconst (const cl_F& y); | |
| 
 | |
| // eulerconst(y) liefert die Eulersche Konstante im Float-Format f. | |
| // > f: eine Float-Format-Spezifikation | |
| extern const cl_F eulerconst (float_format_t f); | |
| 
 | |
| // eulerconst() liefert die Eulersche Konstante im Default-Float-Format. | |
| extern const cl_F eulerconst (void); | |
| 
 | |
| //CL_REQUIRE(cl_F_eulerconst_var) | |
|  | |
| 
 | |
| // catalanconst(y) liefert die Catalansche Konstante | |
| // im selben Float-Format wie y. | |
| // > y: ein Float | |
| extern const cl_F catalanconst (const cl_F& y); | |
| 
 | |
| // catalanconst(y) liefert die Catalansche Konstante im Float-Format f. | |
| // > f: eine Float-Format-Spezifikation | |
| extern const cl_F catalanconst (float_format_t f); | |
| 
 | |
| // catalanconst() liefert die Catalansche Konstante im Default-Float-Format. | |
| extern const cl_F catalanconst (void); | |
| 
 | |
| //CL_REQUIRE(cl_F_catalanconst_var) | |
|  | |
| 
 | |
| // zeta(s) returns the Riemann zeta function at s>1. | |
| extern const cl_F zeta (int s, const cl_F& y); | |
| extern const cl_F zeta (int s, float_format_t f); | |
| extern const cl_F zeta (int s); | |
| 
 | |
| 
 | |
| // random_F(randomstate,n) liefert zu einem Float n>0 ein zufälliges | |
| // Float x mit 0 <= x < n. | |
| // > randomstate: ein Random-State, wird verändert | |
| extern const cl_F random_F (random_state& randomstate, const cl_F& n); | |
| 
 | |
| inline const cl_F random_F (const cl_F& n) | |
| 	{ return random_F(default_random_state,n); } | |
| 
 | |
| 
 | |
| #ifdef WANT_OBFUSCATING_OPERATORS | |
| // This could be optimized to use in-place operations. | |
| inline cl_F& operator+= (cl_F& x, const cl_F& y) { return x = x + y; } | |
| inline cl_F& operator+= (cl_F& x, const float y) { return x = x + y; } | |
| inline cl_F& operator+= (cl_F& x, const double y) { return x = x + y; } | |
| inline cl_F& operator++ /* prefix */ (cl_F& x) { return x = plus1(x); } | |
| inline void operator++ /* postfix */ (cl_F& x, int dummy) { (void)dummy; x = plus1(x); } | |
| inline cl_F& operator-= (cl_F& x, const cl_F& y) { return x = x - y; } | |
| inline cl_F& operator-= (cl_F& x, const float y) { return x = x - y; } | |
| inline cl_F& operator-= (cl_F& x, const double y) { return x = x - y; } | |
| inline cl_F& operator-- /* prefix */ (cl_F& x) { return x = minus1(x); } | |
| inline void operator-- /* postfix */ (cl_F& x, int dummy) { (void)dummy; x = minus1(x); } | |
| inline cl_F& operator*= (cl_F& x, const cl_F& y) { return x = x * y; } | |
| inline cl_F& operator*= (cl_F& x, const float y) { return x = x * y; } | |
| inline cl_F& operator*= (cl_F& x, const double y) { return x = x * y; } | |
| inline cl_F& operator/= (cl_F& x, const cl_F& y) { return x = x / y; } | |
| inline cl_F& operator/= (cl_F& x, const float y) { return x = x / y; } | |
| inline cl_F& operator/= (cl_F& x, const double y) { return x = x / y; } | |
| #endif | |
|  | |
| // Thrown when a floating-point exception occurs. | |
| class floating_point_exception : public runtime_exception { | |
| public: | |
| 	explicit floating_point_exception(const std::string & what) | |
| 		: runtime_exception(what) {} | |
| }; | |
| 
 | |
| // Thrown when NaN occurs. | |
| class floating_point_nan_exception : public floating_point_exception { | |
| public: | |
| 	floating_point_nan_exception(); | |
| }; | |
| 
 | |
| // Thrown when overflow occurs. | |
| class floating_point_overflow_exception : public floating_point_exception { | |
| public: | |
| 	floating_point_overflow_exception(); | |
| }; | |
| 
 | |
| // Thrown when underflow occurs. | |
| class floating_point_underflow_exception : public floating_point_exception { | |
| public: | |
| 	floating_point_underflow_exception(); | |
| }; | |
| 
 | |
| 
 | |
| CL_REQUIRE(cl_ieee) | |
| 
 | |
| 
 | |
| // If this is true, floating point underflow returns zero instead of throwing an exception. | |
| extern bool cl_inhibit_floating_point_underflow; | |
| 
 | |
| }  // namespace cln | |
|  | |
| #endif /* _CL_FLOAT_H */
 |