// Univariate Polynomials over the rational numbers. #ifndef _CL_UNIVPOLY_RATIONAL_H #define _CL_UNIVPOLY_RATIONAL_H #include "cln/ring.h" #include "cln/univpoly.h" #include "cln/number.h" #include "cln/rational_class.h" #include "cln/integer_class.h" #include "cln/rational_ring.h" namespace cln { // Normal univariate polynomials with stricter static typing: // `cl_RA' instead of `cl_ring_element'. #ifdef notyet typedef cl_UP_specialized cl_UP_RA; typedef cl_univpoly_specialized_ring cl_univpoly_rational_ring; //typedef cl_heap_univpoly_specialized_ring cl_heap_univpoly_rational_ring; #else class cl_heap_univpoly_rational_ring; class cl_univpoly_rational_ring : public cl_univpoly_ring { public: // Default constructor. cl_univpoly_rational_ring () : cl_univpoly_ring () {} // Copy constructor. cl_univpoly_rational_ring (const cl_univpoly_rational_ring&); // Assignment operator. cl_univpoly_rational_ring& operator= (const cl_univpoly_rational_ring&); // Automatic dereferencing. cl_heap_univpoly_rational_ring* operator-> () const { return (cl_heap_univpoly_rational_ring*)heappointer; } }; // Copy constructor and assignment operator. CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_rational_ring,cl_univpoly_ring) CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_rational_ring,cl_univpoly_rational_ring) class cl_UP_RA : public cl_UP { public: const cl_univpoly_rational_ring& ring () const { return The(cl_univpoly_rational_ring)(_ring); } // Conversion. CL_DEFINE_CONVERTER(cl_ring_element) // Destructive modification. void set_coeff (uintL index, const cl_RA& y); void finalize(); // Evaluation. const cl_RA operator() (const cl_RA& y) const; public: // Ability to place an object at a given address. void* operator new (size_t size) { return malloc_hook(size); } void* operator new (size_t size, cl_UP_RA* ptr) { (void)size; return ptr; } void operator delete (void* ptr) { free_hook(ptr); } }; class cl_heap_univpoly_rational_ring : public cl_heap_univpoly_ring { SUBCLASS_cl_heap_univpoly_ring() // High-level operations. void fprint (cl_ostream stream, const cl_UP_RA& x) { cl_heap_univpoly_ring::fprint(stream,x); } cl_boolean equal (const cl_UP_RA& x, const cl_UP_RA& y) { return cl_heap_univpoly_ring::equal(x,y); } const cl_UP_RA zero () { return The2(cl_UP_RA)(cl_heap_univpoly_ring::zero()); } cl_boolean zerop (const cl_UP_RA& x) { return cl_heap_univpoly_ring::zerop(x); } const cl_UP_RA plus (const cl_UP_RA& x, const cl_UP_RA& y) { return The2(cl_UP_RA)(cl_heap_univpoly_ring::plus(x,y)); } const cl_UP_RA minus (const cl_UP_RA& x, const cl_UP_RA& y) { return The2(cl_UP_RA)(cl_heap_univpoly_ring::minus(x,y)); } const cl_UP_RA uminus (const cl_UP_RA& x) { return The2(cl_UP_RA)(cl_heap_univpoly_ring::uminus(x)); } const cl_UP_RA one () { return The2(cl_UP_RA)(cl_heap_univpoly_ring::one()); } const cl_UP_RA canonhom (const cl_I& x) { return The2(cl_UP_RA)(cl_heap_univpoly_ring::canonhom(x)); } const cl_UP_RA mul (const cl_UP_RA& x, const cl_UP_RA& y) { return The2(cl_UP_RA)(cl_heap_univpoly_ring::mul(x,y)); } const cl_UP_RA square (const cl_UP_RA& x) { return The2(cl_UP_RA)(cl_heap_univpoly_ring::square(x)); } const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y) { return The2(cl_UP_RA)(cl_heap_univpoly_ring::expt_pos(x,y)); } const cl_UP_RA scalmul (const cl_RA& x, const cl_UP_RA& y) { return The2(cl_UP_RA)(cl_heap_univpoly_ring::scalmul(cl_ring_element(cl_RA_ring,x),y)); } sintL degree (const cl_UP_RA& x) { return cl_heap_univpoly_ring::degree(x); } const cl_UP_RA monomial (const cl_RA& x, uintL e) { return The2(cl_UP_RA)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_RA_ring,x),e)); } const cl_RA coeff (const cl_UP_RA& x, uintL index) { return The(cl_RA)(cl_heap_univpoly_ring::coeff(x,index)); } const cl_UP_RA create (sintL deg) { return The2(cl_UP_RA)(cl_heap_univpoly_ring::create(deg)); } void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y) { cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_RA_ring,y)); } void finalize (cl_UP_RA& x) { cl_heap_univpoly_ring::finalize(x); } const cl_RA eval (const cl_UP_RA& x, const cl_RA& y) { return The(cl_RA)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_RA_ring,y))); } private: // No need for any constructors. cl_heap_univpoly_rational_ring (); }; // Lookup of polynomial rings. inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r) { return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r)); } inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r, const cl_symbol& varname) { return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r,varname)); } // Operations on polynomials. // Add. inline const cl_UP_RA operator+ (const cl_UP_RA& x, const cl_UP_RA& y) { return x.ring()->plus(x,y); } // Negate. inline const cl_UP_RA operator- (const cl_UP_RA& x) { return x.ring()->uminus(x); } // Subtract. inline const cl_UP_RA operator- (const cl_UP_RA& x, const cl_UP_RA& y) { return x.ring()->minus(x,y); } // Multiply. inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_UP_RA& y) { return x.ring()->mul(x,y); } // Squaring. inline const cl_UP_RA square (const cl_UP_RA& x) { return x.ring()->square(x); } // Exponentiation x^y, where y > 0. inline const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y) { return x.ring()->expt_pos(x,y); } // Scalar multiplication. #if 0 // less efficient inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y) { return y.ring()->mul(y.ring()->canonhom(x),y); } inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y) { return x.ring()->mul(x.ring()->canonhom(y),x); } #endif inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y) { return y.ring()->scalmul(x,y); } inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y) { return x.ring()->scalmul(y,x); } inline const cl_UP_RA operator* (const cl_RA& x, const cl_UP_RA& y) { return y.ring()->scalmul(x,y); } inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_RA& y) { return x.ring()->scalmul(y,x); } // Coefficient. inline const cl_RA coeff (const cl_UP_RA& x, uintL index) { return x.ring()->coeff(x,index); } // Destructive modification. inline void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y) { x.ring()->set_coeff(x,index,y); } inline void finalize (cl_UP_RA& x) { x.ring()->finalize(x); } inline void cl_UP_RA::set_coeff (uintL index, const cl_RA& y) { ring()->set_coeff(*this,index,y); } inline void cl_UP_RA::finalize () { ring()->finalize(*this); } // Evaluation. (No extension of the base ring allowed here for now.) inline const cl_RA cl_UP_RA::operator() (const cl_RA& y) const { return ring()->eval(*this,y); } // Derivative. inline const cl_UP_RA deriv (const cl_UP_RA& x) { return The2(cl_UP_RA)(deriv((const cl_UP&)x)); } #endif CL_REQUIRE(cl_RA_ring) // Returns the n-th Legendre polynomial (n >= 0). extern const cl_UP_RA legendre (sintL n); } // namespace cln #endif /* _CL_UNIVPOLY_RATIONAL_H */