Browse Source

Added missing EigenDtmcPrctlModelChecker.h

Refactored solver to use iterative deepening for convergence :P
tempestpy_adaptions
PBerger 12 years ago
parent
commit
b50d906ae3
  1. 56
      src/exceptions/NoConvergence.h
  2. 267
      src/modelChecker/EigenDtmcPrctlModelChecker.h
  3. 14
      src/mrmc.cpp

56
src/exceptions/NoConvergence.h

@ -0,0 +1,56 @@
#ifndef MRMC_EXCEPTIONS_NO_CONVERGENCE_H_
#define MRMC_EXCEPTIONS_NO_CONVERGENCE_H_
#include <exception>
namespace mrmc {
namespace exceptions {
//!This exception is thrown when an iterative solver failed to converge with the given maxIterations
class NoConvergence : public std::exception
{
public:
/* The Visual C++-Version of the exception class has constructors accepting
* a char*-constant; The GCC version does not have these
*
* As the "extended" constructor is used in the sparse matrix code, a dummy
* constructor is used under linux (which will ignore the parameter)
*/
#ifdef _WIN32
NoConvergence() : exception("::mrmc::NoConvergence"){
iterations = -1;
maxIterations = -1;
}
NoConvergence(const char * const s, int iterations, int maxIterations): exception(s) {
this->iterations = iterations;
this->maxIterations = maxIterations;
}
#else
InvalidSettings() : exception() {
iterations = -1;
maxIterations = -1;
}
InvalidSettings(const char * const s, int iterations, int maxIterations): exception() {
this->iterations = iterations;
this->maxIterations = maxIterations;
}
#endif
virtual const char* what() const throw()
{ return "mrmc::NoConvergence"; }
int getIterationCount() const {
return iterations;
}
int getMaxIterationCount() const {
return maxIterations;
}
private:
int iterations;
int maxIterations;
};
} // namespace exceptions
} // namespace mrmc
#endif // MRMC_EXCEPTIONS_NO_CONVERGENCE_H_

267
src/modelChecker/EigenDtmcPrctlModelChecker.h

@ -0,0 +1,267 @@
/*
* EigenDtmcPrctlModelChecker.h
*
* Created on: 07.12.2012
* Author:
*/
#ifndef EIGENDTMCPRCTLMODELCHECKER_H_
#define EIGENDTMCPRCTLMODELCHECKER_H_
#include "src/utility/vector.h"
#include "src/models/Dtmc.h"
#include "src/modelChecker/DtmcPrctlModelChecker.h"
#include "src/solver/GraphAnalyzer.h"
#include "src/utility/const_templates.h"
#include "src/exceptions/NoConvergence.h"
#include "Eigen/Sparse"
#include "Eigen/src/IterativeLinearSolvers/BiCGSTAB.h"
#include "gmm/gmm_matrix.h"
#include "gmm/gmm_iter_solvers.h"
#include "log4cplus/logger.h"
#include "log4cplus/loggingmacros.h"
extern log4cplus::Logger logger;
namespace mrmc {
namespace modelChecker {
/*
* A model checking engine that makes use of the eigen backend.
*/
template <class Type>
class EigenDtmcPrctlModelChecker : public DtmcPrctlModelChecker<Type> {
public:
explicit EigenDtmcPrctlModelChecker(mrmc::models::Dtmc<Type>& dtmc) : DtmcPrctlModelChecker<Type>(dtmc) { }
virtual ~EigenDtmcPrctlModelChecker() { }
virtual mrmc::storage::BitVector* checkProbabilisticOperator(const mrmc::formula::ProbabilisticOperator<Type>& formula) const {
std::vector<Type>* probabilisticResult = this->checkPathFormula(formula.getPathFormula());
mrmc::storage::BitVector* result = new mrmc::storage::BitVector(this->getModel().getNumberOfStates());
Type bound = formula.getBound();
for (uint_fast64_t i = 0; i < this->getModel().getNumberOfStates(); ++i) {
if ((*probabilisticResult)[i] == bound) result->set(i, true);
}
delete probabilisticResult;
return result;
}
virtual mrmc::storage::BitVector* checkProbabilisticIntervalOperator(const mrmc::formula::ProbabilisticIntervalOperator<Type>& formula) const {
std::vector<Type>* probabilisticResult = this->checkPathFormula(formula.getPathFormula());
mrmc::storage::BitVector* result = new mrmc::storage::BitVector(this->getModel().getNumberOfStates());
Type lower = formula.getLowerBound();
Type upper = formula.getUpperBound();
for (uint_fast64_t i = 0; i < this->getModel().getNumberOfStates(); ++i) {
if ((*probabilisticResult)[i] >= lower && (*probabilisticResult)[i] <= upper) result->set(i, true);
}
delete probabilisticResult;
return result;
}
virtual std::vector<Type>* checkBoundedUntil(const mrmc::formula::BoundedUntil<Type>& formula) const {
// First, we need to compute the states that satisfy the sub-formulas of the until-formula.
mrmc::storage::BitVector* leftStates = this->checkStateFormula(formula.getLeft());
mrmc::storage::BitVector* rightStates = this->checkStateFormula(formula.getRight());
// Copy the matrix before we make any changes.
mrmc::storage::SquareSparseMatrix<Type> tmpMatrix(*this->getModel().getTransitionProbabilityMatrix());
// Make all rows absorbing that violate both sub-formulas or satisfy the second sub-formula.
tmpMatrix.makeRowsAbsorbing((~*leftStates & *rightStates) | *rightStates);
// Transform the transition probability matrix to the eigen format to use its arithmetic.
Eigen::SparseMatrix<Type, 1, int_fast32_t>* eigenMatrix = tmpMatrix.toEigenSparseMatrix();
// Create the vector with which to multiply.
uint_fast64_t stateCount = this->getModel().getNumberOfStates();
typedef Eigen::Matrix<Type, -1, 1, 0, -1, 1> VectorType;
typedef Eigen::Map<VectorType> MapType;
std::vector<Type>* result = new std::vector<Type>(stateCount);
// Dummy Type variable for const templates
Type dummy;
mrmc::utility::setVectorValues(result, *rightStates, mrmc::utility::constGetOne(dummy));
Type *p = &((*result)[0]); // get the address storing the data for result
MapType vectorMap(p, result->size()); // vectorMap shares data
// Now perform matrix-vector multiplication as long as we meet the bound of the formula.
for (uint_fast64_t i = 0, bound = formula.getBound(); i < bound; ++i) {
vectorMap = (*eigenMatrix) * vectorMap;
}
// Delete intermediate results.
delete leftStates;
delete rightStates;
delete eigenMatrix;
return result;
}
virtual std::vector<Type>* checkNext(const mrmc::formula::Next<Type>& formula) const {
// First, we need to compute the states that satisfy the sub-formula of the next-formula.
mrmc::storage::BitVector* nextStates = this->checkStateFormula(formula.getChild());
// Transform the transition probability matrix to the gmm++ format to use its arithmetic.
Eigen::SparseMatrix<Type, 1, int_fast32_t>* eigenMatrix = this->getModel().getTransitionProbabilityMatrix()->toEigenSparseMatrix();
// Create the vector with which to multiply and initialize it correctly.
std::vector<Type> x(this->getModel().getNumberOfStates());
Type dummy;
mrmc::utility::setVectorValues(&x, *nextStates, mrmc::utility::constGetOne(dummy));
// Delete not needed next states bit vector.
delete nextStates;
typedef Eigen::Matrix<Type, -1, 1, 0, -1, 1> VectorType;
typedef Eigen::Map<VectorType> MapType;
Type *px = &(x[0]); // get the address storing the data for x
MapType vectorX(px, x.size()); // vectorX shares data
// Create resulting vector.
std::vector<Type>* result = new std::vector<Type>(this->getModel().getNumberOfStates());
Type *pr = &((*result)[0]); // get the address storing the data for result
MapType vectorResult(px, result->size()); // vectorResult shares data
// Perform the actual computation.
vectorResult = (*eigenMatrix) * vectorX;
// Delete temporary matrix and return result.
delete eigenMatrix;
return result;
}
virtual std::vector<Type>* checkUntil(const mrmc::formula::Until<Type>& formula) const {
// First, we need to compute the states that satisfy the sub-formulas of the until-formula.
mrmc::storage::BitVector* leftStates = this->checkStateFormula(formula.getLeft());
mrmc::storage::BitVector* rightStates = this->checkStateFormula(formula.getRight());
// Then, we need to identify the states which have to be taken out of the matrix, i.e.
// all states that have probability 0 and 1 of satisfying the until-formula.
mrmc::storage::BitVector notExistsPhiUntilPsiStates(this->getModel().getNumberOfStates());
mrmc::storage::BitVector alwaysPhiUntilPsiStates(this->getModel().getNumberOfStates());
mrmc::solver::GraphAnalyzer::getPhiUntilPsiStates<double>(this->getModel(), *leftStates, *rightStates, &notExistsPhiUntilPsiStates, &alwaysPhiUntilPsiStates);
notExistsPhiUntilPsiStates.complement();
delete leftStates;
delete rightStates;
LOG4CPLUS_INFO(logger, "Found " << notExistsPhiUntilPsiStates.getNumberOfSetBits() << " 'no' states.");
LOG4CPLUS_INFO(logger, "Found " << alwaysPhiUntilPsiStates.getNumberOfSetBits() << " 'yes' states.");
mrmc::storage::BitVector maybeStates = ~(notExistsPhiUntilPsiStates | alwaysPhiUntilPsiStates);
LOG4CPLUS_INFO(logger, "Found " << maybeStates.getNumberOfSetBits() << " 'maybe' states.");
// Create resulting vector and set values accordingly.
uint_fast64_t stateCount = this->getModel().getNumberOfStates();
std::vector<Type>* result = new std::vector<Type>(stateCount);
// Only try to solve system if there are states for which the probability is unknown.
if (maybeStates.getNumberOfSetBits() > 0) {
typedef Eigen::Matrix<Type, -1, 1, 0, -1, 1> VectorType;
typedef Eigen::Map<VectorType> MapType;
// Now we can eliminate the rows and columns from the original transition probability matrix.
mrmc::storage::SquareSparseMatrix<double>* submatrix = this->getModel().getTransitionProbabilityMatrix()->getSubmatrix(maybeStates);
// Converting the matrix to the form needed for the equation system. That is, we go from
// x = A*x + b to (I-A)x = b.
submatrix->convertToEquationSystem();
// Transform the submatric matrix to the eigen format to use its solvers
Eigen::SparseMatrix<Type, 1, int_fast32_t>* eigenSubMatrix = submatrix->toEigenSparseMatrix();
// Initialize the x vector with 0.5 for each element. This is the initial guess for
// the iterative solvers. It should be safe as for all 'maybe' states we know that the
// probability is strictly larger than 0.
std::vector<Type> x(maybeStates.getNumberOfSetBits(), Type(0.5));
// Map for x
Type *px = &(x[0]); // get the address storing the data for x
MapType vectorX(px, x.size()); // vectorX shares data
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some 'yes' state.
std::vector<double> b(maybeStates.getNumberOfSetBits());
Type *pb = &(b[0]); // get the address storing the data for b
MapType vectorB(pb, b.size()); // vectorB shares data
this->getModel().getTransitionProbabilityMatrix()->getConstrainedRowCountVector(maybeStates, alwaysPhiUntilPsiStates, &x);
Eigen::BiCGSTAB<Eigen::SparseMatrix<Type, 1, int_fast32_t>> solver;
solver.compute(*eigenSubMatrix);
if(solver.info()!= Eigen::ComputationInfo::Success) {
// decomposition failed
LOG4CPLUS_ERROR(logger, "Decomposition of Submatrix failed!");
}
// Now do the actual solving.
LOG4CPLUS_INFO(logger, "Starting iterative solver.");
solver.setTolerance(0.000001);
bool hasConverged = false;
int turns = 6;
while (!hasConverged) {
vectorX = solver.solve(vectorB);
hasConverged = (solver.info() != Eigen::ComputationInfo::NoConvergence) || (turns <= 0);
if (!hasConverged) {
LOG4CPLUS_INFO(logger, "EigenDtmcPrctlModelChecker did not converge with " << solver.iterations() << " of max. " << solver.maxIterations() << "Iterations, restarting ");
solver.setMaxIterations(solver.maxIterations() * 2);
}
--turns;
}
if(solver.info() == Eigen::ComputationInfo::InvalidInput) {
// solving failed
LOG4CPLUS_ERROR(logger, "Solving of Submatrix failed: InvalidInput");
} else if(solver.info() == Eigen::ComputationInfo::NoConvergence) {
// NoConvergence
throw mrmc::exceptions::NoConvergence("Solving of Submatrix with Eigen failed", solver.iterations(), solver.maxIterations());
} else if(solver.info() == Eigen::ComputationInfo::NumericalIssue) {
// NumericalIssue
LOG4CPLUS_ERROR(logger, "Solving of Submatrix failed: NumericalIssue");
} else if(solver.info() == Eigen::ComputationInfo::Success) {
// solving Success
LOG4CPLUS_INFO(logger, "Solving of Submatrix succeeded: Success");
}
// Set values of resulting vector according to result.
mrmc::utility::setVectorValues<Type>(result, maybeStates, x);
// Delete temporary matrix.
delete eigenSubMatrix;
}
// Dummy Type variable for const templates
Type dummy;
mrmc::utility::setVectorValues<Type>(result, notExistsPhiUntilPsiStates, mrmc::utility::constGetZero(dummy));
mrmc::utility::setVectorValues<Type>(result, alwaysPhiUntilPsiStates, mrmc::utility::constGetOne(dummy));
return result;
}
};
} //namespace modelChecker
} //namespace mrmc
#endif /* EIGENDTMCPRCTLMODELCHECKER_H_ */

14
src/mrmc.cpp

@ -30,6 +30,7 @@
#include "src/solver/GraphAnalyzer.h"
#include "src/utility/settings.h"
#include "src/formula/Formulas.h"
#include "src/exceptions/NoConvergence.h"
#include "log4cplus/logger.h"
#include "log4cplus/loggingmacros.h"
@ -111,7 +112,15 @@ int main(const int argc, const char* argv[]) {
mrmc::formula::AP<double>* trueFormula = new mrmc::formula::AP<double>(std::string("true"));
mrmc::formula::AP<double>* ap = new mrmc::formula::AP<double>(std::string("observe0Greater1"));
mrmc::formula::Until<double>* until = new mrmc::formula::Until<double>(trueFormula, ap);
std::vector<double>* eigenResult = mc.checkPathFormula(*until);
std::vector<double>* eigenResult = NULL;
try {
eigenResult = mc.checkPathFormula(*until);
} catch (mrmc::exceptions::NoConvergence& nce) {
// solver did not converge
LOG4CPLUS_ERROR(logger, "EigenDtmcPrctlModelChecker did not converge with " << nce.getIterationCount() << " of max. " << nce.getMaxIterationCount() << "Iterations!");
return -1;
}
delete until;
mrmc::modelChecker::GmmxxDtmcPrctlModelChecker<double> mcG(dtmc);
@ -129,6 +138,9 @@ int main(const int argc, const char* argv[]) {
if (std::abs((eigenResult->at(i) - gmmResult->at(i))) > 0) {
LOG4CPLUS_ERROR(logger, "Warning: Eigen and GMM produced different results in entry " << i << " (Eigen: " << eigenResult->at(i) << ", Gmm: " << gmmResult->at(i) << ")!");
}
if (eigenResult->at(i) != 0.0) {
LOG4CPLUS_INFO(logger, "Non zero entry " << eigenResult->at(i) << " at " << i);
}
}
}
Loading…
Cancel
Save