// Simple vectors. #ifndef _CL_SV_H #define _CL_SV_H #include "cln/object.h" #include "cln/V.h" #include "cln/abort.h" #include <cstdlib> namespace cln { // A simple vector has the same operations as a vector, but it can store // _only_ cl_gcobject's. // This class is here because the general vectors always need a function // call for getting/setting the element of a vector. Our main application // of the general vectors are the bit vectors, needed for implementing // polynomials over modular integer rings. I don't want that polynomials // over other rings (in particular cl_I) be penalized by the mere existence // of polynomials over modular integer rings. // When the vectors were implemented like this: // // cl_GV<cl_I> --> cl_GV<cl_RA> --> cl_GV<cl_R> --> cl_GV<cl_N> // // a bit/byte-vector (of integers with limited range) could actually be // treated correctly by all the functions which manipulate vectors of cl_N. // This is not crucial, however. Here, we'll have disjoint sets // // cl_SV<cl_I> --> cl_SV<cl_RA> --> cl_SV<cl_R> --> cl_SV<cl_N> // // cl_GV<cl_I> // // i.e. the functions which manipulate a (simple!) vector of cl_N cannot // deal with a bit/byte-vector. // (This is the same issue as UPGRADED-ARRAY-ELEMENT-TYPE in Common Lisp.) template <class T> class cl_SV_inner; template <class T> class cl_SV_inner { protected: uintL len; // number of elements private: // T data[]; // the elements T * data() { return (T *) (this+1); } const T * data() const { return (const T *) (this+1); } public: uintL length () const { return len; } // number of elements const T & operator[] (unsigned long index) const { #ifndef CL_SV_NO_RANGECHECKS if (!(index < length())) cl_abort(); #endif return data()[index]; } T & operator[] (unsigned long index) { #ifndef CL_SV_NO_RANGECHECKS if (!(index < length())) cl_abort(); #endif return data()[index]; } // New ANSI C++ compilers also want the following. const T & operator[] (unsigned int index) const { return operator[]((unsigned long)index); } T & operator[] (unsigned int index) { return operator[]((unsigned long)index); } const T & operator[] (long index) const { return operator[]((unsigned long)index); } T & operator[] (long index) { return operator[]((unsigned long)index); } const T & operator[] (int index) const { return operator[]((unsigned long)index); } T & operator[] (int index) { return operator[]((unsigned long)index); } public: /* ugh */ // Constructor. cl_SV_inner (uintL l) : len (l) {} public: // Destructor. ~cl_SV_inner (); // Ability to place an object at a given address. void* operator new (size_t size, void* ptr) { (void)size; return ptr; } private: // No default constructor, copy constructor, assignment operator, new. cl_SV_inner (); cl_SV_inner (const cl_SV_inner&); cl_SV_inner& operator= (const cl_SV_inner&); void* operator new (size_t size); }; // All member functions are inline. template <class T> inline cl_SV_inner<T>::~cl_SV_inner () { uintL i = len; while (i > 0) { i--; data()[i].~T(); } } // In memory, a simple vector looks like this: template <class T> struct cl_heap_SV : cl_heap { cl_SV_inner<T> v; // here room for the elements }; template <class T, class BASE> struct cl_SV : public BASE { public: // Length. uintL length () const { return ((const cl_heap_SV<T> *) this->pointer)->v.length(); } // Reference. Forbid modification of `const cl_SV&' arguments. const T & operator[] (unsigned long index) const { return ((const cl_heap_SV<T> *) this->pointer)->v[index]; } T & operator[] (unsigned long index) { return ((cl_heap_SV<T> *) this->pointer)->v[index]; } // New ANSI C++ compilers also want the following. const T & operator[] (unsigned int index) const { return operator[]((unsigned long)index); } T & operator[] (unsigned int index) { return operator[]((unsigned long)index); } const T & operator[] (long index) const { return operator[]((unsigned long)index); } T & operator[] (long index) { return operator[]((unsigned long)index); } const T & operator[] (int index) const { return operator[]((unsigned long)index); } T & operator[] (int index) { return operator[]((unsigned long)index); } // Constructors. cl_SV (const cl_SV&); // Assignment operators. cl_SV& operator= (const cl_SV&); // Private pointer manipulations. cl_SV (cl_heap_SV<T>* p) : BASE ((cl_private_thing)p) {} cl_SV (cl_private_thing p) : BASE (p) {} protected: // Forbid use of default constructor. cl_SV (); }; #define CL_SV(T,BASE) cl_SV<T,BASE> // Define copy constructor. template <class T, class BASE> _CL_DEFINE_COPY_CONSTRUCTOR2(CL_SV(T,BASE),cl_SV,BASE) // Define assignment operator. template <class T, class BASE> CL_DEFINE_ASSIGNMENT_OPERATOR(CL_SV(T,BASE),CL_SV(T,BASE)) #undef CL_SV // The "generic" simple vector type. typedef cl_heap_SV<cl_gcobject> cl_heap_SV_any; typedef cl_SV<cl_gcobject,cl_V_any> cl_SV_any; // Copy a simple vector. extern const cl_SV_any copy (const cl_SV_any&); // Hack section. // Conversions to subtypes without checking: #define The(type) *(const type *) & cl_identity // This inline function is for type checking purposes only. inline const cl_SV_any& cl_identity (const cl_SV_any& x) { return x; } } // namespace cln #endif /* _CL_SV_H */