|
@ -131,6 +131,25 @@ static const _cl_UP num_plus (cl_heap_univpoly_ring* UPR, const _cl_UP& x, const |
|
|
return _cl_UP(UPR, cl_null_SV_number); |
|
|
return _cl_UP(UPR, cl_null_SV_number); |
|
|
}} |
|
|
}} |
|
|
|
|
|
|
|
|
|
|
|
static const _cl_UP num_uminus (cl_heap_univpoly_ring* UPR, const _cl_UP& x) |
|
|
|
|
|
{{ |
|
|
|
|
|
DeclarePoly(cl_SV_number,x); |
|
|
|
|
|
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops; |
|
|
|
|
|
var sintL xlen = x.length(); |
|
|
|
|
|
if (xlen == 0) |
|
|
|
|
|
return _cl_UP(UPR, x); |
|
|
|
|
|
// Now xlen > 0. |
|
|
|
|
|
// Negate. No normalization necessary, since the degree doesn't change. |
|
|
|
|
|
var sintL i = xlen-1; |
|
|
|
|
|
var cl_number hicoeff = ops.uminus(x[i]); |
|
|
|
|
|
if (ops.zerop(hicoeff)) cl_abort(); |
|
|
|
|
|
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(xlen)); |
|
|
|
|
|
init1(cl_number, result[i]) (hicoeff); |
|
|
|
|
|
for (i-- ; i >= 0; i--) |
|
|
|
|
|
init1(cl_number, result[i]) (ops.uminus(x[i])); |
|
|
|
|
|
return _cl_UP(UPR, result); |
|
|
|
|
|
}} |
|
|
|
|
|
|
|
|
static const _cl_UP num_minus (cl_heap_univpoly_ring* UPR, const _cl_UP& x, const _cl_UP& y) |
|
|
static const _cl_UP num_minus (cl_heap_univpoly_ring* UPR, const _cl_UP& x, const _cl_UP& y) |
|
|
{{ |
|
|
{{ |
|
|
DeclarePoly(cl_SV_number,x); |
|
|
DeclarePoly(cl_SV_number,x); |
|
@ -138,10 +157,10 @@ static const _cl_UP num_minus (cl_heap_univpoly_ring* UPR, const _cl_UP& x, cons |
|
|
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops; |
|
|
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops; |
|
|
var sintL xlen = x.length(); |
|
|
var sintL xlen = x.length(); |
|
|
var sintL ylen = y.length(); |
|
|
var sintL ylen = y.length(); |
|
|
if (xlen == 0) |
|
|
|
|
|
return _cl_UP(UPR, y); |
|
|
|
|
|
if (ylen == 0) |
|
|
if (ylen == 0) |
|
|
return _cl_UP(UPR, x); |
|
|
return _cl_UP(UPR, x); |
|
|
|
|
|
if (xlen == 0) |
|
|
|
|
|
return num_uminus(UPR, _cl_UP(UPR, y)); |
|
|
// Now xlen > 0, ylen > 0. |
|
|
// Now xlen > 0, ylen > 0. |
|
|
if (xlen > ylen) { |
|
|
if (xlen > ylen) { |
|
|
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(xlen)); |
|
|
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(xlen)); |
|
@ -175,25 +194,6 @@ static const _cl_UP num_minus (cl_heap_univpoly_ring* UPR, const _cl_UP& x, cons |
|
|
return _cl_UP(UPR, cl_null_SV_number); |
|
|
return _cl_UP(UPR, cl_null_SV_number); |
|
|
}} |
|
|
}} |
|
|
|
|
|
|
|
|
static const _cl_UP num_uminus (cl_heap_univpoly_ring* UPR, const _cl_UP& x) |
|
|
|
|
|
{{ |
|
|
|
|
|
DeclarePoly(cl_SV_number,x); |
|
|
|
|
|
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops; |
|
|
|
|
|
var sintL xlen = x.length(); |
|
|
|
|
|
if (xlen == 0) |
|
|
|
|
|
return _cl_UP(UPR, x); |
|
|
|
|
|
// Now xlen > 0. |
|
|
|
|
|
// Negate. No normalization necessary, since the degree doesn't change. |
|
|
|
|
|
var sintL i = xlen-1; |
|
|
|
|
|
var cl_number hicoeff = ops.uminus(x[i]); |
|
|
|
|
|
if (ops.zerop(hicoeff)) cl_abort(); |
|
|
|
|
|
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(xlen)); |
|
|
|
|
|
init1(cl_number, result[i]) (hicoeff); |
|
|
|
|
|
for (i-- ; i >= 0; i--) |
|
|
|
|
|
init1(cl_number, result[i]) (ops.uminus(x[i])); |
|
|
|
|
|
return _cl_UP(UPR, result); |
|
|
|
|
|
}} |
|
|
|
|
|
|
|
|
|
|
|
static const _cl_UP num_one (cl_heap_univpoly_ring* UPR) |
|
|
static const _cl_UP num_one (cl_heap_univpoly_ring* UPR) |
|
|
{ |
|
|
{ |
|
|
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(1)); |
|
|
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(1)); |
|
|