Browse Source

* Compiler options update.

master
Richard Kreckel 22 years ago
parent
commit
1919643663
  1. 20
      doc/cln.tex

20
doc/cln.tex

@ -402,22 +402,26 @@ or no CXXFLAGS at all. (If CXXFLAGS is not set, CLN will use @code{-O}.)
If you use @code{g++} 3.0.x or 3.1, I recommend adding
@samp{-finline-limit=1000} to the CXXFLAGS. This is essential for good code.
If you use @code{g++} gcc-2.95.x or gcc-3.0.x , I recommend adding
If you use @code{g++} gcc-2.95.x or gcc-3.x , I recommend adding
@samp{-fno-exceptions} to the CXXFLAGS. This will likely generate better code.
If you use @code{g++} from gcc-2.95.x on Sparc, add either @samp{-O},
@samp{-O1} or @samp{-O2 -fno-schedule-insns} to the CXXFLAGS. With full
@samp{-O2}, @code{g++} miscompiles the division routines. If you use
@code{g++} older than 2.95.3 on Sparc you should also specify
@samp{--disable-shared} because of bad code produced in the shared
library.
If you use @code{g++} from gcc-3.0.4 or older on Sparc, add either
@samp{-O}, @samp{-O1} or @samp{-O2 -fno-schedule-insns} to the
CXXFLAGS. With full @samp{-O2}, @code{g++} miscompiles the division
routines. If you use @code{g++} older than 2.95.3 on Sparc you should
also specify @samp{--disable-shared} because of bad code produced in the
shared library. Also, do not use gcc-3.0 on Sparc for compiling CLN, it
won't work at all.
If you use @code{g++} on OSF/1 or Tru64 using gcc-2.95.x, you should
specify @samp{--disable-shared} because of linker problems with
duplicate symbols in shared libraries. If you use @code{g++} from
gcc-3.0.n, with n larger than 1, you should @emph{not} add
@samp{-fno-exceptions} to the CXXFLAGS, since that will generate wrong
code (gcc-3.1.0 is okay again, as is gcc-3.0.0).
code (gcc-3.1 is okay again, as is gcc-3.0).
Also, please do not compile CLN with @code{g++} using the @code{-O3}
optimization level. This leads to inferior code quality.
If you use @code{g++} from gcc-3.1, it will need 235 MB of virtual memory.
You might need some swap space if your machine doesn't have 512 MB of RAM.

Loading…
Cancel
Save