You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3784 lines
129 KiB

25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename cln.info
  4. @settitle CLN, a Class Library for Numbers
  5. @c @setchapternewpage off
  6. @c For `info' only.
  7. @paragraphindent 0
  8. @c For TeX only.
  9. @iftex
  10. @c I hate putting "@noindent" in front of every paragraph.
  11. @parindent=0pt
  12. @end iftex
  13. @c %**end of header
  14. @c My own index.
  15. @defindex my
  16. @c Don't need the other types of indices.
  17. @synindex cp my
  18. @synindex fn my
  19. @synindex vr my
  20. @synindex ky my
  21. @synindex pg my
  22. @synindex tp my
  23. @c For `info' only.
  24. @ifinfo
  25. This file documents @sc{cln}, a Class Library for Numbers.
  26. Published by Bruno Haible, @code{<haible@@clisp.cons.org>} and
  27. Richard Kreckel, @code{<kreckel@@ginac.de>}.
  28. Copyright (C) Bruno Haible 1995, 1996, 1997, 1998, 1999, 2000.
  29. Permission is granted to make and distribute verbatim copies of
  30. this manual provided the copyright notice and this permission notice
  31. are preserved on all copies.
  32. @ignore
  33. Permission is granted to process this file through TeX and print the
  34. results, provided the printed document carries copying permission
  35. notice identical to this one except for the removal of this paragraph
  36. (this paragraph not being relevant to the printed manual).
  37. @end ignore
  38. Permission is granted to copy and distribute modified versions of this
  39. manual under the conditions for verbatim copying, provided that the entire
  40. resulting derived work is distributed under the terms of a permission
  41. notice identical to this one.
  42. Permission is granted to copy and distribute translations of this manual
  43. into another language, under the above conditions for modified versions,
  44. except that this permission notice may be stated in a translation approved
  45. by the author.
  46. @end ifinfo
  47. @c For TeX only.
  48. @c prevent ugly black rectangles on overfull hbox lines:
  49. @finalout
  50. @titlepage
  51. @title CLN, a Class Library for Numbers
  52. @author by Bruno Haible
  53. @page
  54. @vskip 0pt plus 1filll
  55. Copyright @copyright{} Bruno Haible 1995, 1996, 1997, 1998, 1999, 2000.
  56. @sp 2
  57. Published by Bruno Haible, @code{<haible@@clisp.cons.org>} and
  58. Richard Kreckel, @code{<kreckel@@ginac.de>}.
  59. Permission is granted to make and distribute verbatim copies of
  60. this manual provided the copyright notice and this permission notice
  61. are preserved on all copies.
  62. Permission is granted to copy and distribute modified versions of this
  63. manual under the conditions for verbatim copying, provided that the entire
  64. resulting derived work is distributed under the terms of a permission
  65. notice identical to this one.
  66. Permission is granted to copy and distribute translations of this manual
  67. into another language, under the above conditions for modified versions,
  68. except that this permission notice may be stated in a translation approved
  69. by the author.
  70. @end titlepage
  71. @page
  72. @node Top, Introduction, (dir), (dir)
  73. @c @menu
  74. @c * Introduction:: Introduction
  75. @c @end menu
  76. @node Introduction, Top, Top, Top
  77. @comment node-name, next, previous, up
  78. @chapter Introduction
  79. @noindent
  80. CLN is a library for computations with all kinds of numbers.
  81. It has a rich set of number classes:
  82. @itemize @bullet
  83. @item
  84. Integers (with unlimited precision),
  85. @item
  86. Rational numbers,
  87. @item
  88. Floating-point numbers:
  89. @itemize @minus
  90. @item
  91. Short float,
  92. @item
  93. Single float,
  94. @item
  95. Double float,
  96. @item
  97. Long float (with unlimited precision),
  98. @end itemize
  99. @item
  100. Complex numbers,
  101. @item
  102. Modular integers (integers modulo a fixed integer),
  103. @item
  104. Univariate polynomials.
  105. @end itemize
  106. @noindent
  107. The subtypes of the complex numbers among these are exactly the
  108. types of numbers known to the Common Lisp language. Therefore
  109. @code{CLN} can be used for Common Lisp implementations, giving
  110. @samp{CLN} another meaning: it becomes an abbreviation of
  111. ``Common Lisp Numbers''.
  112. @noindent
  113. The CLN package implements
  114. @itemize @bullet
  115. @item
  116. Elementary functions (@code{+}, @code{-}, @code{*}, @code{/}, @code{sqrt},
  117. comparisons, @dots{}),
  118. @item
  119. Logical functions (logical @code{and}, @code{or}, @code{not}, @dots{}),
  120. @item
  121. Transcendental functions (exponential, logarithmic, trigonometric, hyperbolic
  122. functions and their inverse functions).
  123. @end itemize
  124. @noindent
  125. CLN is a C++ library. Using C++ as an implementation language provides
  126. @itemize @bullet
  127. @item
  128. efficiency: it compiles to machine code,
  129. @item
  130. type safety: the C++ compiler knows about the number types and complains
  131. if, for example, you try to assign a float to an integer variable.
  132. @item
  133. algebraic syntax: You can use the @code{+}, @code{-}, @code{*}, @code{=},
  134. @code{==}, @dots{} operators as in C or C++.
  135. @end itemize
  136. @noindent
  137. CLN is memory efficient:
  138. @itemize @bullet
  139. @item
  140. Small integers and short floats are immediate, not heap allocated.
  141. @item
  142. Heap-allocated memory is reclaimed through an automatic, non-interruptive
  143. garbage collection.
  144. @end itemize
  145. @noindent
  146. CLN is speed efficient:
  147. @itemize @bullet
  148. @item
  149. The kernel of CLN has been written in assembly language for some CPUs
  150. (@code{i386}, @code{m68k}, @code{sparc}, @code{mips}, @code{arm}).
  151. @item
  152. @cindex GMP
  153. On all CPUs, CLN may be configured to use the superefficient low-level
  154. routines from GNU GMP version 3.
  155. @item
  156. It uses Karatsuba multiplication, which is significantly faster
  157. for large numbers than the standard multiplication algorithm.
  158. @item
  159. For very large numbers (more than 12000 decimal digits), it uses
  160. @iftex
  161. Sch{@"o}nhage-Strassen
  162. @cindex Sch{@"o}nhage-Strassen multiplication
  163. @end iftex
  164. @ifinfo
  165. Sch�nhage-Strassen
  166. @cindex Sch�nhage-Strassen multiplication
  167. @end ifinfo
  168. multiplication, which is an asymptotically optimal multiplication
  169. algorithm, for multiplication, division and radix conversion.
  170. @end itemize
  171. @noindent
  172. CLN aims at being easily integrated into larger software packages:
  173. @itemize @bullet
  174. @item
  175. The garbage collection imposes no burden on the main application.
  176. @item
  177. The library provides hooks for memory allocation and exceptions.
  178. @item
  179. @cindex namespace
  180. All non-macro identifiers are hidden in namespace @code{cln} in
  181. order to avoid name clashes.
  182. @end itemize
  183. @chapter Installation
  184. This section describes how to install the CLN package on your system.
  185. @section Prerequisites
  186. @subsection C++ compiler
  187. To build CLN, you need a C++ compiler.
  188. Actually, you need GNU @code{g++ 2.90} or newer, the EGCS compilers will
  189. do.
  190. I recommend GNU @code{g++ 2.95} or newer.
  191. The following C++ features are used:
  192. classes, member functions, overloading of functions and operators,
  193. constructors and destructors, inline, const, multiple inheritance,
  194. templates and namespaces.
  195. The following C++ features are not used:
  196. @code{new}, @code{delete}, virtual inheritance, exceptions.
  197. CLN relies on semi-automatic ordering of initializations
  198. of static and global variables, a feature which I could
  199. implement for GNU g++ only.
  200. @ignore
  201. @comment cl_modules.h requires g++
  202. Therefore nearly any C++ compiler will do.
  203. The following C++ compilers are known to compile CLN:
  204. @itemize @minus
  205. @item
  206. GNU @code{g++ 2.7.0}, @code{g++ 2.7.2}
  207. @item
  208. SGI @code{CC 4}
  209. @end itemize
  210. The following C++ compilers are known to be unusable for CLN:
  211. @itemize @minus
  212. @item
  213. On SunOS 4, @code{CC 2.1}, because it doesn't grok @code{//} comments
  214. in lines containing @code{#if} or @code{#elif} preprocessor commands.
  215. @item
  216. On AIX 3.2.5, @code{xlC}, because it doesn't grok the template syntax
  217. in @code{cl_SV.h} and @code{cl_GV.h}, because it forces most class types
  218. to have default constructors, and because it probably miscompiles the
  219. integer multiplication routines.
  220. @item
  221. On AIX 4.1.4.0, @code{xlC}, because when optimizing, it sometimes converts
  222. @code{short}s to @code{int}s by zero-extend.
  223. @item
  224. GNU @code{g++ 2.5.8}
  225. @item
  226. On HPPA, GNU @code{g++ 2.7.x}, because the semi-automatic ordering of
  227. initializations will not work.
  228. @end itemize
  229. @end ignore
  230. @subsection Make utility
  231. @cindex @code{make}
  232. To build CLN, you also need to have GNU @code{make} installed.
  233. @subsection Sed utility
  234. @cindex @code{sed}
  235. To build CLN on HP-UX, you also need to have GNU @code{sed} installed.
  236. This is because the libtool script, which creates the CLN library, relies
  237. on @code{sed}, and the vendor's @code{sed} utility on these systems is too
  238. limited.
  239. @section Building the library
  240. As with any autoconfiguring GNU software, installation is as easy as this:
  241. @example
  242. $ ./configure
  243. $ make
  244. $ make check
  245. @end example
  246. If on your system, @samp{make} is not GNU @code{make}, you have to use
  247. @samp{gmake} instead of @samp{make} above.
  248. The @code{configure} command checks out some features of your system and
  249. C++ compiler and builds the @code{Makefile}s. The @code{make} command
  250. builds the library. This step may take 4 hours on an average workstation.
  251. The @code{make check} runs some test to check that no important subroutine
  252. has been miscompiled.
  253. The @code{configure} command accepts options. To get a summary of them, try
  254. @example
  255. $ ./configure --help
  256. @end example
  257. Some of the options are explained in detail in the @samp{INSTALL.generic} file.
  258. You can specify the C compiler, the C++ compiler and their options through
  259. the following environment variables when running @code{configure}:
  260. @table @code
  261. @item CC
  262. Specifies the C compiler.
  263. @item CFLAGS
  264. Flags to be given to the C compiler when compiling programs (not when linking).
  265. @item CXX
  266. Specifies the C++ compiler.
  267. @item CXXFLAGS
  268. Flags to be given to the C++ compiler when compiling programs (not when linking).
  269. @end table
  270. Examples:
  271. @example
  272. $ CC="gcc" CFLAGS="-O" CXX="g++" CXXFLAGS="-O" ./configure
  273. $ CC="gcc -V egcs-2.91.60" CFLAGS="-O -g" \
  274. CXX="g++ -V egcs-2.91.60" CXXFLAGS="-O -g" ./configure
  275. $ CC="gcc -V 2.95.2" CFLAGS="-O2 -fno-exceptions" \
  276. CXX="g++ -V 2.95.2" CFLAGS="-O2 -fno-exceptions" ./configure
  277. @end example
  278. @ignore
  279. @comment cl_modules.h requires g++
  280. You should not mix GNU and non-GNU compilers. So, if @code{CXX} is a non-GNU
  281. compiler, @code{CC} should be set to a non-GNU compiler as well. Examples:
  282. @example
  283. $ CC="cc" CFLAGS="-O" CXX="CC" CXXFLAGS="-O" ./configure
  284. $ CC="gcc -V 2.7.0" CFLAGS="-g" CXX="g++ -V 2.7.0" CXXFLAGS="-g" ./configure
  285. @end example
  286. On SGI Irix 5, if you wish not to use @code{g++}:
  287. @example
  288. $ CC="cc" CFLAGS="-O" CXX="CC" CXXFLAGS="-O -Olimit 16000" ./configure
  289. @end example
  290. On SGI Irix 6, if you wish not to use @code{g++}:
  291. @example
  292. $ CC="cc -32" CFLAGS="-O" CXX="CC -32" CXXFLAGS="-O -Olimit 34000" \
  293. ./configure --without-gmp
  294. $ CC="cc -n32" CFLAGS="-O" CXX="CC -n32" CXXFLAGS="-O \
  295. -OPT:const_copy_limit=32400 -OPT:global_limit=32400 -OPT:fprop_limit=4000" \
  296. ./configure --without-gmp
  297. @end example
  298. @end ignore
  299. Note that for these environment variables to take effect, you have to set
  300. them (assuming a Bourne-compatible shell) on the same line as the
  301. @code{configure} command. If you made the settings in earlier shell
  302. commands, you have to @code{export} the environment variables before
  303. calling @code{configure}. In a @code{csh} shell, you have to use the
  304. @samp{setenv} command for setting each of the environment variables.
  305. Currently CLN works only with the GNU @code{g++} compiler, and only in
  306. optimizing mode. So you should specify at least @code{-O} in the CXXFLAGS,
  307. or no CXXFLAGS at all. (If CXXFLAGS is not set, CLN will use @code{-O}.)
  308. If you use @code{g++} version 2.8.x or egcs-2.91.x (a.k.a. egcs-1.1) or
  309. gcc-2.95.x, I recommend adding @samp{-fno-exceptions} to the CXXFLAGS.
  310. This will likely generate better code.
  311. If you use @code{g++} version egcs-2.91.x (egcs-1.1) or gcc-2.95.x on Sparc,
  312. add either @samp{-O}, @samp{-O1} or @samp{-O2 -fno-schedule-insns} to the
  313. CXXFLAGS. With full @samp{-O2}, @code{g++} miscompiles the division routines.
  314. Also, if you have @code{g++} version egcs-1.1.1 or older on Sparc, you must
  315. specify @samp{--disable-shared} because @code{g++} would miscompile parts of
  316. the library.
  317. By default, both a shared and a static library are built. You can build
  318. CLN as a static (or shared) library only, by calling @code{configure} with
  319. the option @samp{--disable-shared} (or @samp{--disable-static}). While
  320. shared libraries are usually more convenient to use, they may not work
  321. on all architectures. Try disabling them if you run into linker
  322. problems. Also, they are generally somewhat slower than static
  323. libraries so runtime-critical applications should be linked statically.
  324. @subsection Using the GNU MP Library
  325. @cindex GMP
  326. Starting with version 1.1, CLN may be configured to make use of a
  327. preinstalled @code{gmp} library. Please make sure that you have at
  328. least @code{gmp} version 3.0 installed since earlier versions are
  329. unsupported and likely not to work. Enabling this feature by calling
  330. @code{configure} with the option @samp{--with-gmp} is known to be quite
  331. a boost for CLN's performance.
  332. If you have installed the @code{gmp} library and its header file in
  333. some place where your compiler cannot find it by default, you must help
  334. @code{configure} by setting @code{CPPFLAGS} and @code{LDFLAGS}. Here is
  335. an example:
  336. @example
  337. $ CC="gcc" CFLAGS="-O2" CXX="g++" CXXFLAGS="-O2 -fno-exceptions" \
  338. CPPFLAGS="-I/opt/gmp/include" LDFLAGS="-L/opt/gmp/lib" ./configure --with-gmp
  339. @end example
  340. @section Installing the library
  341. @cindex installation
  342. As with any autoconfiguring GNU software, installation is as easy as this:
  343. @example
  344. $ make install
  345. @end example
  346. The @samp{make install} command installs the library and the include files
  347. into public places (@file{/usr/local/lib/} and @file{/usr/local/include/},
  348. if you haven't specified a @code{--prefix} option to @code{configure}).
  349. This step may require superuser privileges.
  350. If you have already built the library and wish to install it, but didn't
  351. specify @code{--prefix=@dots{}} at configure time, just re-run
  352. @code{configure}, giving it the same options as the first time, plus
  353. the @code{--prefix=@dots{}} option.
  354. @section Cleaning up
  355. You can remove system-dependent files generated by @code{make} through
  356. @example
  357. $ make clean
  358. @end example
  359. You can remove all files generated by @code{make}, thus reverting to a
  360. virgin distribution of CLN, through
  361. @example
  362. $ make distclean
  363. @end example
  364. @chapter Ordinary number types
  365. CLN implements the following class hierarchy:
  366. @example
  367. Number
  368. cl_number
  369. <cln/number.h>
  370. |
  371. |
  372. Real or complex number
  373. cl_N
  374. <cln/complex.h>
  375. |
  376. |
  377. Real number
  378. cl_R
  379. <cln/real.h>
  380. |
  381. +-------------------+-------------------+
  382. | |
  383. Rational number Floating-point number
  384. cl_RA cl_F
  385. <cln/rational.h> <cln/float.h>
  386. | |
  387. | +--------------+--------------+--------------+
  388. Integer | | | |
  389. cl_I Short-Float Single-Float Double-Float Long-Float
  390. <cln/integer.h> cl_SF cl_FF cl_DF cl_LF
  391. <cln/sfloat.h> <cln/ffloat.h> <cln/dfloat.h> <cln/lfloat.h>
  392. @end example
  393. @cindex @code{cl_number}
  394. @cindex abstract class
  395. The base class @code{cl_number} is an abstract base class.
  396. It is not useful to declare a variable of this type except if you want
  397. to completely disable compile-time type checking and use run-time type
  398. checking instead.
  399. @cindex @code{cl_N}
  400. @cindex real number
  401. @cindex complex number
  402. The class @code{cl_N} comprises real and complex numbers. There is
  403. no special class for complex numbers since complex numbers with imaginary
  404. part @code{0} are automatically converted to real numbers.
  405. @cindex @code{cl_R}
  406. The class @code{cl_R} comprises real numbers of different kinds. It is an
  407. abstract class.
  408. @cindex @code{cl_RA}
  409. @cindex rational number
  410. @cindex integer
  411. The class @code{cl_RA} comprises exact real numbers: rational numbers, including
  412. integers. There is no special class for non-integral rational numbers
  413. since rational numbers with denominator @code{1} are automatically converted
  414. to integers.
  415. @cindex @code{cl_F}
  416. The class @code{cl_F} implements floating-point approximations to real numbers.
  417. It is an abstract class.
  418. @section Exact numbers
  419. @cindex exact number
  420. Some numbers are represented as exact numbers: there is no loss of information
  421. when such a number is converted from its mathematical value to its internal
  422. representation. On exact numbers, the elementary operations (@code{+},
  423. @code{-}, @code{*}, @code{/}, comparisons, @dots{}) compute the completely
  424. correct result.
  425. In CLN, the exact numbers are:
  426. @itemize @bullet
  427. @item
  428. rational numbers (including integers),
  429. @item
  430. complex numbers whose real and imaginary parts are both rational numbers.
  431. @end itemize
  432. Rational numbers are always normalized to the form
  433. @code{@var{numerator}/@var{denominator}} where the numerator and denominator
  434. are coprime integers and the denominator is positive. If the resulting
  435. denominator is @code{1}, the rational number is converted to an integer.
  436. @cindex immediate numbers
  437. Small integers (typically in the range @code{-2^29}@dots{}@code{2^29-1},
  438. for 32-bit machines) are especially efficient, because they consume no heap
  439. allocation. Otherwise the distinction between these immediate integers
  440. (called ``fixnums'') and heap allocated integers (called ``bignums'')
  441. is completely transparent.
  442. @section Floating-point numbers
  443. @cindex floating-point number
  444. Not all real numbers can be represented exactly. (There is an easy mathematical
  445. proof for this: Only a countable set of numbers can be stored exactly in
  446. a computer, even if one assumes that it has unlimited storage. But there
  447. are uncountably many real numbers.) So some approximation is needed.
  448. CLN implements ordinary floating-point numbers, with mantissa and exponent.
  449. @cindex rounding error
  450. The elementary operations (@code{+}, @code{-}, @code{*}, @code{/}, @dots{})
  451. only return approximate results. For example, the value of the expression
  452. @code{(cl_F) 0.3 + (cl_F) 0.4} prints as @samp{0.70000005}, not as
  453. @samp{0.7}. Rounding errors like this one are inevitable when computing
  454. with floating-point numbers.
  455. Nevertheless, CLN rounds the floating-point results of the operations @code{+},
  456. @code{-}, @code{*}, @code{/}, @code{sqrt} according to the ``round-to-even''
  457. rule: It first computes the exact mathematical result and then returns the
  458. floating-point number which is nearest to this. If two floating-point numbers
  459. are equally distant from the ideal result, the one with a @code{0} in its least
  460. significant mantissa bit is chosen.
  461. Similarly, testing floating point numbers for equality @samp{x == y}
  462. is gambling with random errors. Better check for @samp{abs(x - y) < epsilon}
  463. for some well-chosen @code{epsilon}.
  464. Floating point numbers come in four flavors:
  465. @itemize @bullet
  466. @item
  467. @cindex @code{cl_SF}
  468. Short floats, type @code{cl_SF}.
  469. They have 1 sign bit, 8 exponent bits (including the exponent's sign),
  470. and 17 mantissa bits (including the ``hidden'' bit).
  471. They don't consume heap allocation.
  472. @item
  473. @cindex @code{cl_FF}
  474. Single floats, type @code{cl_FF}.
  475. They have 1 sign bit, 8 exponent bits (including the exponent's sign),
  476. and 24 mantissa bits (including the ``hidden'' bit).
  477. In CLN, they are represented as IEEE single-precision floating point numbers.
  478. This corresponds closely to the C/C++ type @samp{float}.
  479. @item
  480. @cindex @code{cl_DF}
  481. Double floats, type @code{cl_DF}.
  482. They have 1 sign bit, 11 exponent bits (including the exponent's sign),
  483. and 53 mantissa bits (including the ``hidden'' bit).
  484. In CLN, they are represented as IEEE double-precision floating point numbers.
  485. This corresponds closely to the C/C++ type @samp{double}.
  486. @item
  487. @cindex @code{cl_LF}
  488. Long floats, type @code{cl_LF}.
  489. They have 1 sign bit, 32 exponent bits (including the exponent's sign),
  490. and n mantissa bits (including the ``hidden'' bit), where n >= 64.
  491. The precision of a long float is unlimited, but once created, a long float
  492. has a fixed precision. (No ``lazy recomputation''.)
  493. @end itemize
  494. Of course, computations with long floats are more expensive than those
  495. with smaller floating-point formats.
  496. CLN does not implement features like NaNs, denormalized numbers and
  497. gradual underflow. If the exponent range of some floating-point type
  498. is too limited for your application, choose another floating-point type
  499. with larger exponent range.
  500. @cindex @code{cl_F}
  501. As a user of CLN, you can forget about the differences between the
  502. four floating-point types and just declare all your floating-point
  503. variables as being of type @code{cl_F}. This has the advantage that
  504. when you change the precision of some computation (say, from @code{cl_DF}
  505. to @code{cl_LF}), you don't have to change the code, only the precision
  506. of the initial values. Also, many transcendental functions have been
  507. declared as returning a @code{cl_F} when the argument is a @code{cl_F},
  508. but such declarations are missing for the types @code{cl_SF}, @code{cl_FF},
  509. @code{cl_DF}, @code{cl_LF}. (Such declarations would be wrong if
  510. the floating point contagion rule happened to change in the future.)
  511. @section Complex numbers
  512. @cindex complex number
  513. Complex numbers, as implemented by the class @code{cl_N}, have a real
  514. part and an imaginary part, both real numbers. A complex number whose
  515. imaginary part is the exact number @code{0} is automatically converted
  516. to a real number.
  517. Complex numbers can arise from real numbers alone, for example
  518. through application of @code{sqrt} or transcendental functions.
  519. @section Conversions
  520. @cindex conversion
  521. Conversions from any class to any its superclasses (``base classes'' in
  522. C++ terminology) is done automatically.
  523. Conversions from the C built-in types @samp{long} and @samp{unsigned long}
  524. are provided for the classes @code{cl_I}, @code{cl_RA}, @code{cl_R},
  525. @code{cl_N} and @code{cl_number}.
  526. Conversions from the C built-in types @samp{int} and @samp{unsigned int}
  527. are provided for the classes @code{cl_I}, @code{cl_RA}, @code{cl_R},
  528. @code{cl_N} and @code{cl_number}. However, these conversions emphasize
  529. efficiency. Their range is therefore limited:
  530. @itemize @minus
  531. @item
  532. The conversion from @samp{int} works only if the argument is < 2^29 and > -2^29.
  533. @item
  534. The conversion from @samp{unsigned int} works only if the argument is < 2^29.
  535. @end itemize
  536. In a declaration like @samp{cl_I x = 10;} the C++ compiler is able to
  537. do the conversion of @code{10} from @samp{int} to @samp{cl_I} at compile time
  538. already. On the other hand, code like @samp{cl_I x = 1000000000;} is
  539. in error.
  540. So, if you want to be sure that an @samp{int} whose magnitude is not guaranteed
  541. to be < 2^29 is correctly converted to a @samp{cl_I}, first convert it to a
  542. @samp{long}. Similarly, if a large @samp{unsigned int} is to be converted to a
  543. @samp{cl_I}, first convert it to an @samp{unsigned long}.
  544. Conversions from the C built-in type @samp{float} are provided for the classes
  545. @code{cl_FF}, @code{cl_F}, @code{cl_R}, @code{cl_N} and @code{cl_number}.
  546. Conversions from the C built-in type @samp{double} are provided for the classes
  547. @code{cl_DF}, @code{cl_F}, @code{cl_R}, @code{cl_N} and @code{cl_number}.
  548. Conversions from @samp{const char *} are provided for the classes
  549. @code{cl_I}, @code{cl_RA},
  550. @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}, @code{cl_F},
  551. @code{cl_R}, @code{cl_N}.
  552. The easiest way to specify a value which is outside of the range of the
  553. C++ built-in types is therefore to specify it as a string, like this:
  554. @cindex Rubik's cube
  555. @example
  556. cl_I order_of_rubiks_cube_group = "43252003274489856000";
  557. @end example
  558. Note that this conversion is done at runtime, not at compile-time.
  559. Conversions from @code{cl_I} to the C built-in types @samp{int},
  560. @samp{unsigned int}, @samp{long}, @samp{unsigned long} are provided through
  561. the functions
  562. @table @code
  563. @item int cl_I_to_int (const cl_I& x)
  564. @cindex @code{cl_I_to_int ()}
  565. @itemx unsigned int cl_I_to_uint (const cl_I& x)
  566. @cindex @code{cl_I_to_uint ()}
  567. @itemx long cl_I_to_long (const cl_I& x)
  568. @cindex @code{cl_I_to_long ()}
  569. @itemx unsigned long cl_I_to_ulong (const cl_I& x)
  570. @cindex @code{cl_I_to_ulong ()}
  571. Returns @code{x} as element of the C type @var{ctype}. If @code{x} is not
  572. representable in the range of @var{ctype}, a runtime error occurs.
  573. @end table
  574. Conversions from the classes @code{cl_I}, @code{cl_RA},
  575. @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}, @code{cl_F} and
  576. @code{cl_R}
  577. to the C built-in types @samp{float} and @samp{double} are provided through
  578. the functions
  579. @table @code
  580. @item float float_approx (const @var{type}& x)
  581. @cindex @code{float_approx ()}
  582. @itemx double double_approx (const @var{type}& x)
  583. @cindex @code{double_approx ()}
  584. Returns an approximation of @code{x} of C type @var{ctype}.
  585. If @code{abs(x)} is too close to 0 (underflow), 0 is returned.
  586. If @code{abs(x)} is too large (overflow), an IEEE infinity is returned.
  587. @end table
  588. Conversions from any class to any of its subclasses (``derived classes'' in
  589. C++ terminology) are not provided. Instead, you can assert and check
  590. that a value belongs to a certain subclass, and return it as element of that
  591. class, using the @samp{As} and @samp{The} macros.
  592. @cindex @code{As()()}
  593. @code{As(@var{type})(@var{value})} checks that @var{value} belongs to
  594. @var{type} and returns it as such.
  595. @cindex @code{The()()}
  596. @code{The(@var{type})(@var{value})} assumes that @var{value} belongs to
  597. @var{type} and returns it as such. It is your responsibility to ensure
  598. that this assumption is valid. Since macros and namespaces don't go
  599. together well, there is an equivalent to @samp{The}: the template
  600. @samp{the}.
  601. Example:
  602. @example
  603. @group
  604. cl_I x = @dots{};
  605. if (!(x >= 0)) abort();
  606. cl_I ten_x_a = The(cl_I)(expt(10,x)); // If x >= 0, 10^x is an integer.
  607. // In general, it would be a rational number.
  608. cl_I ten_x_b = the<cl_I>(expt(10,x)); // The same as above.
  609. @end group
  610. @end example
  611. @chapter Functions on numbers
  612. Each of the number classes declares its mathematical operations in the
  613. corresponding include file. For example, if your code operates with
  614. objects of type @code{cl_I}, it should @code{#include <cln/integer.h>}.
  615. @section Constructing numbers
  616. Here is how to create number objects ``from nothing''.
  617. @subsection Constructing integers
  618. @code{cl_I} objects are most easily constructed from C integers and from
  619. strings. See @ref{Conversions}.
  620. @subsection Constructing rational numbers
  621. @code{cl_RA} objects can be constructed from strings. The syntax
  622. for rational numbers is described in @ref{Internal and printed representation}.
  623. Another standard way to produce a rational number is through application
  624. of @samp{operator /} or @samp{recip} on integers.
  625. @subsection Constructing floating-point numbers
  626. @code{cl_F} objects with low precision are most easily constructed from
  627. C @samp{float} and @samp{double}. See @ref{Conversions}.
  628. To construct a @code{cl_F} with high precision, you can use the conversion
  629. from @samp{const char *}, but you have to specify the desired precision
  630. within the string. (See @ref{Internal and printed representation}.)
  631. Example:
  632. @example
  633. cl_F e = "0.271828182845904523536028747135266249775724709369996e+1_40";
  634. @end example
  635. will set @samp{e} to the given value, with a precision of 40 decimal digits.
  636. The programmatic way to construct a @code{cl_F} with high precision is
  637. through the @code{cl_float} conversion function, see
  638. @ref{Conversion to floating-point numbers}. For example, to compute
  639. @code{e} to 40 decimal places, first construct 1.0 to 40 decimal places
  640. and then apply the exponential function:
  641. @example
  642. float_format_t precision = float_format(40);
  643. cl_F e = exp(cl_float(1,precision));
  644. @end example
  645. @subsection Constructing complex numbers
  646. Non-real @code{cl_N} objects are normally constructed through the function
  647. @example
  648. cl_N complex (const cl_R& realpart, const cl_R& imagpart)
  649. @end example
  650. See @ref{Elementary complex functions}.
  651. @section Elementary functions
  652. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  653. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  654. defines the following operations:
  655. @table @code
  656. @item @var{type} operator + (const @var{type}&, const @var{type}&)
  657. @cindex @code{operator + ()}
  658. Addition.
  659. @item @var{type} operator - (const @var{type}&, const @var{type}&)
  660. @cindex @code{operator - ()}
  661. Subtraction.
  662. @item @var{type} operator - (const @var{type}&)
  663. Returns the negative of the argument.
  664. @item @var{type} plus1 (const @var{type}& x)
  665. @cindex @code{plus1 ()}
  666. Returns @code{x + 1}.
  667. @item @var{type} minus1 (const @var{type}& x)
  668. @cindex @code{minus1 ()}
  669. Returns @code{x - 1}.
  670. @item @var{type} operator * (const @var{type}&, const @var{type}&)
  671. @cindex @code{operator * ()}
  672. Multiplication.
  673. @item @var{type} square (const @var{type}& x)
  674. @cindex @code{square ()}
  675. Returns @code{x * x}.
  676. @end table
  677. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA},
  678. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  679. defines the following operations:
  680. @table @code
  681. @item @var{type} operator / (const @var{type}&, const @var{type}&)
  682. @cindex @code{operator / ()}
  683. Division.
  684. @item @var{type} recip (const @var{type}&)
  685. @cindex @code{recip ()}
  686. Returns the reciprocal of the argument.
  687. @end table
  688. The class @code{cl_I} doesn't define a @samp{/} operation because
  689. in the C/C++ language this operator, applied to integral types,
  690. denotes the @samp{floor} or @samp{truncate} operation (which one of these,
  691. is implementation dependent). (@xref{Rounding functions}.)
  692. Instead, @code{cl_I} defines an ``exact quotient'' function:
  693. @table @code
  694. @item cl_I exquo (const cl_I& x, const cl_I& y)
  695. @cindex @code{exquo ()}
  696. Checks that @code{y} divides @code{x}, and returns the quotient @code{x}/@code{y}.
  697. @end table
  698. The following exponentiation functions are defined:
  699. @table @code
  700. @item cl_I expt_pos (const cl_I& x, const cl_I& y)
  701. @cindex @code{expt_pos ()}
  702. @itemx cl_RA expt_pos (const cl_RA& x, const cl_I& y)
  703. @code{y} must be > 0. Returns @code{x^y}.
  704. @item cl_RA expt (const cl_RA& x, const cl_I& y)
  705. @cindex @code{expt ()}
  706. @itemx cl_R expt (const cl_R& x, const cl_I& y)
  707. @itemx cl_N expt (const cl_N& x, const cl_I& y)
  708. Returns @code{x^y}.
  709. @end table
  710. Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
  711. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  712. defines the following operation:
  713. @table @code
  714. @item @var{type} abs (const @var{type}& x)
  715. @cindex @code{abs ()}
  716. Returns the absolute value of @code{x}.
  717. This is @code{x} if @code{x >= 0}, and @code{-x} if @code{x <= 0}.
  718. @end table
  719. The class @code{cl_N} implements this as follows:
  720. @table @code
  721. @item cl_R abs (const cl_N x)
  722. Returns the absolute value of @code{x}.
  723. @end table
  724. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  725. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  726. defines the following operation:
  727. @table @code
  728. @item @var{type} signum (const @var{type}& x)
  729. @cindex @code{signum ()}
  730. Returns the sign of @code{x}, in the same number format as @code{x}.
  731. This is defined as @code{x / abs(x)} if @code{x} is non-zero, and
  732. @code{x} if @code{x} is zero. If @code{x} is real, the value is either
  733. 0 or 1 or -1.
  734. @end table
  735. @section Elementary rational functions
  736. Each of the classes @code{cl_RA}, @code{cl_I} defines the following operations:
  737. @table @code
  738. @item cl_I numerator (const @var{type}& x)
  739. @cindex @code{numerator ()}
  740. Returns the numerator of @code{x}.
  741. @item cl_I denominator (const @var{type}& x)
  742. @cindex @code{denominator ()}
  743. Returns the denominator of @code{x}.
  744. @end table
  745. The numerator and denominator of a rational number are normalized in such
  746. a way that they have no factor in common and the denominator is positive.
  747. @section Elementary complex functions
  748. The class @code{cl_N} defines the following operation:
  749. @table @code
  750. @item cl_N complex (const cl_R& a, const cl_R& b)
  751. @cindex @code{complex ()}
  752. Returns the complex number @code{a+bi}, that is, the complex number with
  753. real part @code{a} and imaginary part @code{b}.
  754. @end table
  755. Each of the classes @code{cl_N}, @code{cl_R} defines the following operations:
  756. @table @code
  757. @item cl_R realpart (const @var{type}& x)
  758. @cindex @code{realpart ()}
  759. Returns the real part of @code{x}.
  760. @item cl_R imagpart (const @var{type}& x)
  761. @cindex @code{imagpart ()}
  762. Returns the imaginary part of @code{x}.
  763. @item @var{type} conjugate (const @var{type}& x)
  764. @cindex @code{conjugate ()}
  765. Returns the complex conjugate of @code{x}.
  766. @end table
  767. We have the relations
  768. @itemize @asis
  769. @item
  770. @code{x = complex(realpart(x), imagpart(x))}
  771. @item
  772. @code{conjugate(x) = complex(realpart(x), -imagpart(x))}
  773. @end itemize
  774. @section Comparisons
  775. @cindex comparison
  776. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  777. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  778. defines the following operations:
  779. @table @code
  780. @item bool operator == (const @var{type}&, const @var{type}&)
  781. @cindex @code{operator == ()}
  782. @itemx bool operator != (const @var{type}&, const @var{type}&)
  783. @cindex @code{operator != ()}
  784. Comparison, as in C and C++.
  785. @item uint32 equal_hashcode (const @var{type}&)
  786. @cindex @code{equal_hashcode ()}
  787. Returns a 32-bit hash code that is the same for any two numbers which are
  788. the same according to @code{==}. This hash code depends on the number's value,
  789. not its type or precision.
  790. @item cl_boolean zerop (const @var{type}& x)
  791. @cindex @code{zerop ()}
  792. Compare against zero: @code{x == 0}
  793. @end table
  794. Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
  795. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  796. defines the following operations:
  797. @table @code
  798. @item cl_signean compare (const @var{type}& x, const @var{type}& y)
  799. @cindex @code{compare ()}
  800. Compares @code{x} and @code{y}. Returns +1 if @code{x}>@code{y},
  801. -1 if @code{x}<@code{y}, 0 if @code{x}=@code{y}.
  802. @item bool operator <= (const @var{type}&, const @var{type}&)
  803. @cindex @code{operator <= ()}
  804. @itemx bool operator < (const @var{type}&, const @var{type}&)
  805. @cindex @code{operator < ()}
  806. @itemx bool operator >= (const @var{type}&, const @var{type}&)
  807. @cindex @code{operator >= ()}
  808. @itemx bool operator > (const @var{type}&, const @var{type}&)
  809. @cindex @code{operator > ()}
  810. Comparison, as in C and C++.
  811. @item cl_boolean minusp (const @var{type}& x)
  812. @cindex @code{minusp ()}
  813. Compare against zero: @code{x < 0}
  814. @item cl_boolean plusp (const @var{type}& x)
  815. @cindex @code{plusp ()}
  816. Compare against zero: @code{x > 0}
  817. @item @var{type} max (const @var{type}& x, const @var{type}& y)
  818. @cindex @code{max ()}
  819. Return the maximum of @code{x} and @code{y}.
  820. @item @var{type} min (const @var{type}& x, const @var{type}& y)
  821. @cindex @code{min ()}
  822. Return the minimum of @code{x} and @code{y}.
  823. @end table
  824. When a floating point number and a rational number are compared, the float
  825. is first converted to a rational number using the function @code{rational}.
  826. Since a floating point number actually represents an interval of real numbers,
  827. the result might be surprising.
  828. For example, @code{(cl_F)(cl_R)"1/3" == (cl_R)"1/3"} returns false because
  829. there is no floating point number whose value is exactly @code{1/3}.
  830. @section Rounding functions
  831. @cindex rounding
  832. When a real number is to be converted to an integer, there is no ``best''
  833. rounding. The desired rounding function depends on the application.
  834. The Common Lisp and ISO Lisp standards offer four rounding functions:
  835. @table @code
  836. @item floor(x)
  837. This is the largest integer <=@code{x}.
  838. @item ceiling(x)
  839. This is the smallest integer >=@code{x}.
  840. @item truncate(x)
  841. Among the integers between 0 and @code{x} (inclusive) the one nearest to @code{x}.
  842. @item round(x)
  843. The integer nearest to @code{x}. If @code{x} is exactly halfway between two
  844. integers, choose the even one.
  845. @end table
  846. These functions have different advantages:
  847. @code{floor} and @code{ceiling} are translation invariant:
  848. @code{floor(x+n) = floor(x) + n} and @code{ceiling(x+n) = ceiling(x) + n}
  849. for every @code{x} and every integer @code{n}.
  850. On the other hand, @code{truncate} and @code{round} are symmetric:
  851. @code{truncate(-x) = -truncate(x)} and @code{round(-x) = -round(x)},
  852. and furthermore @code{round} is unbiased: on the ``average'', it rounds
  853. down exactly as often as it rounds up.
  854. The functions are related like this:
  855. @itemize @asis
  856. @item
  857. @code{ceiling(m/n) = floor((m+n-1)/n) = floor((m-1)/n)+1}
  858. for rational numbers @code{m/n} (@code{m}, @code{n} integers, @code{n}>0), and
  859. @item
  860. @code{truncate(x) = sign(x) * floor(abs(x))}
  861. @end itemize
  862. Each of the classes @code{cl_R}, @code{cl_RA},
  863. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  864. defines the following operations:
  865. @table @code
  866. @item cl_I floor1 (const @var{type}& x)
  867. @cindex @code{floor1 ()}
  868. Returns @code{floor(x)}.
  869. @item cl_I ceiling1 (const @var{type}& x)
  870. @cindex @code{ceiling1 ()}
  871. Returns @code{ceiling(x)}.
  872. @item cl_I truncate1 (const @var{type}& x)
  873. @cindex @code{truncate1 ()}
  874. Returns @code{truncate(x)}.
  875. @item cl_I round1 (const @var{type}& x)
  876. @cindex @code{round1 ()}
  877. Returns @code{round(x)}.
  878. @end table
  879. Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
  880. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  881. defines the following operations:
  882. @table @code
  883. @item cl_I floor1 (const @var{type}& x, const @var{type}& y)
  884. Returns @code{floor(x/y)}.
  885. @item cl_I ceiling1 (const @var{type}& x, const @var{type}& y)
  886. Returns @code{ceiling(x/y)}.
  887. @item cl_I truncate1 (const @var{type}& x, const @var{type}& y)
  888. Returns @code{truncate(x/y)}.
  889. @item cl_I round1 (const @var{type}& x, const @var{type}& y)
  890. Returns @code{round(x/y)}.
  891. @end table
  892. These functions are called @samp{floor1}, @dots{} here instead of
  893. @samp{floor}, @dots{}, because on some systems, system dependent include
  894. files define @samp{floor} and @samp{ceiling} as macros.
  895. In many cases, one needs both the quotient and the remainder of a division.
  896. It is more efficient to compute both at the same time than to perform
  897. two divisions, one for quotient and the next one for the remainder.
  898. The following functions therefore return a structure containing both
  899. the quotient and the remainder. The suffix @samp{2} indicates the number
  900. of ``return values''. The remainder is defined as follows:
  901. @itemize @bullet
  902. @item
  903. for the computation of @code{quotient = floor(x)},
  904. @code{remainder = x - quotient},
  905. @item
  906. for the computation of @code{quotient = floor(x,y)},
  907. @code{remainder = x - quotient*y},
  908. @end itemize
  909. and similarly for the other three operations.
  910. Each of the classes @code{cl_R}, @code{cl_RA},
  911. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  912. defines the following operations:
  913. @table @code
  914. @item struct @var{type}_div_t @{ cl_I quotient; @var{type} remainder; @};
  915. @itemx @var{type}_div_t floor2 (const @var{type}& x)
  916. @itemx @var{type}_div_t ceiling2 (const @var{type}& x)
  917. @itemx @var{type}_div_t truncate2 (const @var{type}& x)
  918. @itemx @var{type}_div_t round2 (const @var{type}& x)
  919. @end table
  920. Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
  921. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  922. defines the following operations:
  923. @table @code
  924. @item struct @var{type}_div_t @{ cl_I quotient; @var{type} remainder; @};
  925. @itemx @var{type}_div_t floor2 (const @var{type}& x, const @var{type}& y)
  926. @cindex @code{floor2 ()}
  927. @itemx @var{type}_div_t ceiling2 (const @var{type}& x, const @var{type}& y)
  928. @cindex @code{ceiling2 ()}
  929. @itemx @var{type}_div_t truncate2 (const @var{type}& x, const @var{type}& y)
  930. @cindex @code{truncate2 ()}
  931. @itemx @var{type}_div_t round2 (const @var{type}& x, const @var{type}& y)
  932. @cindex @code{round2 ()}
  933. @end table
  934. Sometimes, one wants the quotient as a floating-point number (of the
  935. same format as the argument, if the argument is a float) instead of as
  936. an integer. The prefix @samp{f} indicates this.
  937. Each of the classes
  938. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  939. defines the following operations:
  940. @table @code
  941. @item @var{type} ffloor (const @var{type}& x)
  942. @cindex @code{ffloor ()}
  943. @itemx @var{type} fceiling (const @var{type}& x)
  944. @cindex @code{fceiling ()}
  945. @itemx @var{type} ftruncate (const @var{type}& x)
  946. @cindex @code{ftruncate ()}
  947. @itemx @var{type} fround (const @var{type}& x)
  948. @cindex @code{fround ()}
  949. @end table
  950. and similarly for class @code{cl_R}, but with return type @code{cl_F}.
  951. The class @code{cl_R} defines the following operations:
  952. @table @code
  953. @item cl_F ffloor (const @var{type}& x, const @var{type}& y)
  954. @itemx cl_F fceiling (const @var{type}& x, const @var{type}& y)
  955. @itemx cl_F ftruncate (const @var{type}& x, const @var{type}& y)
  956. @itemx cl_F fround (const @var{type}& x, const @var{type}& y)
  957. @end table
  958. These functions also exist in versions which return both the quotient
  959. and the remainder. The suffix @samp{2} indicates this.
  960. Each of the classes
  961. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  962. defines the following operations:
  963. @cindex @code{cl_F_fdiv_t}
  964. @cindex @code{cl_SF_fdiv_t}
  965. @cindex @code{cl_FF_fdiv_t}
  966. @cindex @code{cl_DF_fdiv_t}
  967. @cindex @code{cl_LF_fdiv_t}
  968. @table @code
  969. @item struct @var{type}_fdiv_t @{ @var{type} quotient; @var{type} remainder; @};
  970. @itemx @var{type}_fdiv_t ffloor2 (const @var{type}& x)
  971. @cindex @code{ffloor2 ()}
  972. @itemx @var{type}_fdiv_t fceiling2 (const @var{type}& x)
  973. @cindex @code{fceiling2 ()}
  974. @itemx @var{type}_fdiv_t ftruncate2 (const @var{type}& x)
  975. @cindex @code{ftruncate2 ()}
  976. @itemx @var{type}_fdiv_t fround2 (const @var{type}& x)
  977. @cindex @code{fround2 ()}
  978. @end table
  979. and similarly for class @code{cl_R}, but with quotient type @code{cl_F}.
  980. @cindex @code{cl_R_fdiv_t}
  981. The class @code{cl_R} defines the following operations:
  982. @table @code
  983. @item struct @var{type}_fdiv_t @{ cl_F quotient; cl_R remainder; @};
  984. @itemx @var{type}_fdiv_t ffloor2 (const @var{type}& x, const @var{type}& y)
  985. @itemx @var{type}_fdiv_t fceiling2 (const @var{type}& x, const @var{type}& y)
  986. @itemx @var{type}_fdiv_t ftruncate2 (const @var{type}& x, const @var{type}& y)
  987. @itemx @var{type}_fdiv_t fround2 (const @var{type}& x, const @var{type}& y)
  988. @end table
  989. Other applications need only the remainder of a division.
  990. The remainder of @samp{floor} and @samp{ffloor} is called @samp{mod}
  991. (abbreviation of ``modulo''). The remainder @samp{truncate} and
  992. @samp{ftruncate} is called @samp{rem} (abbreviation of ``remainder'').
  993. @itemize @bullet
  994. @item
  995. @code{mod(x,y) = floor2(x,y).remainder = x - floor(x/y)*y}
  996. @item
  997. @code{rem(x,y) = truncate2(x,y).remainder = x - truncate(x/y)*y}
  998. @end itemize
  999. If @code{x} and @code{y} are both >= 0, @code{mod(x,y) = rem(x,y) >= 0}.
  1000. In general, @code{mod(x,y)} has the sign of @code{y} or is zero,
  1001. and @code{rem(x,y)} has the sign of @code{x} or is zero.
  1002. The classes @code{cl_R}, @code{cl_I} define the following operations:
  1003. @table @code
  1004. @item @var{type} mod (const @var{type}& x, const @var{type}& y)
  1005. @cindex @code{mod ()}
  1006. @itemx @var{type} rem (const @var{type}& x, const @var{type}& y)
  1007. @cindex @code{rem ()}
  1008. @end table
  1009. @section Roots
  1010. Each of the classes @code{cl_R},
  1011. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  1012. defines the following operation:
  1013. @table @code
  1014. @item @var{type} sqrt (const @var{type}& x)
  1015. @cindex @code{sqrt ()}
  1016. @code{x} must be >= 0. This function returns the square root of @code{x},
  1017. normalized to be >= 0. If @code{x} is the square of a rational number,
  1018. @code{sqrt(x)} will be a rational number, else it will return a
  1019. floating-point approximation.
  1020. @end table
  1021. The classes @code{cl_RA}, @code{cl_I} define the following operation:
  1022. @table @code
  1023. @item cl_boolean sqrtp (const @var{type}& x, @var{type}* root)
  1024. @cindex @code{sqrtp ()}
  1025. This tests whether @code{x} is a perfect square. If so, it returns true
  1026. and the exact square root in @code{*root}, else it returns false.
  1027. @end table
  1028. Furthermore, for integers, similarly:
  1029. @table @code
  1030. @item cl_boolean isqrt (const @var{type}& x, @var{type}* root)
  1031. @cindex @code{isqrt ()}
  1032. @code{x} should be >= 0. This function sets @code{*root} to
  1033. @code{floor(sqrt(x))} and returns the same value as @code{sqrtp}:
  1034. the boolean value @code{(expt(*root,2) == x)}.
  1035. @end table
  1036. For @code{n}th roots, the classes @code{cl_RA}, @code{cl_I}
  1037. define the following operation:
  1038. @table @code
  1039. @item cl_boolean rootp (const @var{type}& x, const cl_I& n, @var{type}* root)
  1040. @cindex @code{rootp ()}
  1041. @code{x} must be >= 0. @code{n} must be > 0.
  1042. This tests whether @code{x} is an @code{n}th power of a rational number.
  1043. If so, it returns true and the exact root in @code{*root}, else it returns
  1044. false.
  1045. @end table
  1046. The only square root function which accepts negative numbers is the one
  1047. for class @code{cl_N}:
  1048. @table @code
  1049. @item cl_N sqrt (const cl_N& z)
  1050. @cindex @code{sqrt ()}
  1051. Returns the square root of @code{z}, as defined by the formula
  1052. @code{sqrt(z) = exp(log(z)/2)}. Conversion to a floating-point type
  1053. or to a complex number are done if necessary. The range of the result is the
  1054. right half plane @code{realpart(sqrt(z)) >= 0}
  1055. including the positive imaginary axis and 0, but excluding
  1056. the negative imaginary axis.
  1057. The result is an exact number only if @code{z} is an exact number.
  1058. @end table
  1059. @section Transcendental functions
  1060. @cindex transcendental functions
  1061. The transcendental functions return an exact result if the argument
  1062. is exact and the result is exact as well. Otherwise they must return
  1063. inexact numbers even if the argument is exact.
  1064. For example, @code{cos(0) = 1} returns the rational number @code{1}.
  1065. @subsection Exponential and logarithmic functions
  1066. @table @code
  1067. @item cl_R exp (const cl_R& x)
  1068. @cindex @code{exp ()}
  1069. @itemx cl_N exp (const cl_N& x)
  1070. Returns the exponential function of @code{x}. This is @code{e^x} where
  1071. @code{e} is the base of the natural logarithms. The range of the result
  1072. is the entire complex plane excluding 0.
  1073. @item cl_R ln (const cl_R& x)
  1074. @cindex @code{ln ()}
  1075. @code{x} must be > 0. Returns the (natural) logarithm of x.
  1076. @item cl_N log (const cl_N& x)
  1077. @cindex @code{log ()}
  1078. Returns the (natural) logarithm of x. If @code{x} is real and positive,
  1079. this is @code{ln(x)}. In general, @code{log(x) = log(abs(x)) + i*phase(x)}.
  1080. The range of the result is the strip in the complex plane
  1081. @code{-pi < imagpart(log(x)) <= pi}.
  1082. @item cl_R phase (const cl_N& x)
  1083. @cindex @code{phase ()}
  1084. Returns the angle part of @code{x} in its polar representation as a
  1085. complex number. That is, @code{phase(x) = atan(realpart(x),imagpart(x))}.
  1086. This is also the imaginary part of @code{log(x)}.
  1087. The range of the result is the interval @code{-pi < phase(x) <= pi}.
  1088. The result will be an exact number only if @code{zerop(x)} or
  1089. if @code{x} is real and positive.
  1090. @item cl_R log (const cl_R& a, const cl_R& b)
  1091. @code{a} and @code{b} must be > 0. Returns the logarithm of @code{a} with
  1092. respect to base @code{b}. @code{log(a,b) = ln(a)/ln(b)}.
  1093. The result can be exact only if @code{a = 1} or if @code{a} and @code{b}
  1094. are both rational.
  1095. @item cl_N log (const cl_N& a, const cl_N& b)
  1096. Returns the logarithm of @code{a} with respect to base @code{b}.
  1097. @code{log(a,b) = log(a)/log(b)}.
  1098. @item cl_N expt (const cl_N& x, const cl_N& y)
  1099. @cindex @code{expt ()}
  1100. Exponentiation: Returns @code{x^y = exp(y*log(x))}.
  1101. @end table
  1102. The constant e = exp(1) = 2.71828@dots{} is returned by the following functions:
  1103. @table @code
  1104. @item cl_F exp1 (float_format_t f)
  1105. @cindex @code{exp1 ()}
  1106. Returns e as a float of format @code{f}.
  1107. @item cl_F exp1 (const cl_F& y)
  1108. Returns e in the float format of @code{y}.
  1109. @item cl_F exp1 (void)
  1110. Returns e as a float of format @code{default_float_format}.
  1111. @end table
  1112. @subsection Trigonometric functions
  1113. @table @code
  1114. @item cl_R sin (const cl_R& x)
  1115. @cindex @code{sin ()}
  1116. Returns @code{sin(x)}. The range of the result is the interval
  1117. @code{-1 <= sin(x) <= 1}.
  1118. @item cl_N sin (const cl_N& z)
  1119. Returns @code{sin(z)}. The range of the result is the entire complex plane.
  1120. @item cl_R cos (const cl_R& x)
  1121. @cindex @code{cos ()}
  1122. Returns @code{cos(x)}. The range of the result is the interval
  1123. @code{-1 <= cos(x) <= 1}.
  1124. @item cl_N cos (const cl_N& x)
  1125. Returns @code{cos(z)}. The range of the result is the entire complex plane.
  1126. @item struct cos_sin_t @{ cl_R cos; cl_R sin; @};
  1127. @cindex @code{cos_sin_t}
  1128. @itemx cos_sin_t cos_sin (const cl_R& x)
  1129. Returns both @code{sin(x)} and @code{cos(x)}. This is more efficient than
  1130. @cindex @code{cos_sin ()}
  1131. computing them separately. The relation @code{cos^2 + sin^2 = 1} will
  1132. hold only approximately.
  1133. @item cl_R tan (const cl_R& x)
  1134. @cindex @code{tan ()}
  1135. @itemx cl_N tan (const cl_N& x)
  1136. Returns @code{tan(x) = sin(x)/cos(x)}.
  1137. @item cl_N cis (const cl_R& x)
  1138. @cindex @code{cis ()}
  1139. @itemx cl_N cis (const cl_N& x)
  1140. Returns @code{exp(i*x)}. The name @samp{cis} means ``cos + i sin'', because
  1141. @code{e^(i*x) = cos(x) + i*sin(x)}.
  1142. @cindex @code{asin}
  1143. @cindex @code{asin ()}
  1144. @item cl_N asin (const cl_N& z)
  1145. Returns @code{arcsin(z)}. This is defined as
  1146. @code{arcsin(z) = log(iz+sqrt(1-z^2))/i} and satisfies
  1147. @code{arcsin(-z) = -arcsin(z)}.
  1148. The range of the result is the strip in the complex domain
  1149. @code{-pi/2 <= realpart(arcsin(z)) <= pi/2}, excluding the numbers
  1150. with @code{realpart = -pi/2} and @code{imagpart < 0} and the numbers
  1151. with @code{realpart = pi/2} and @code{imagpart > 0}.
  1152. @ignore
  1153. Proof: This follows from arcsin(z) = arsinh(iz)/i and the corresponding
  1154. results for arsinh.
  1155. @end ignore
  1156. @item cl_N acos (const cl_N& z)
  1157. @cindex @code{acos ()}
  1158. Returns @code{arccos(z)}. This is defined as
  1159. @code{arccos(z) = pi/2 - arcsin(z) = log(z+i*sqrt(1-z^2))/i}
  1160. @ignore
  1161. Kahan's formula:
  1162. @code{arccos(z) = 2*log(sqrt((1+z)/2)+i*sqrt((1-z)/2))/i}
  1163. @end ignore
  1164. and satisfies @code{arccos(-z) = pi - arccos(z)}.
  1165. The range of the result is the strip in the complex domain
  1166. @code{0 <= realpart(arcsin(z)) <= pi}, excluding the numbers
  1167. with @code{realpart = 0} and @code{imagpart < 0} and the numbers
  1168. with @code{realpart = pi} and @code{imagpart > 0}.
  1169. @ignore
  1170. Proof: This follows from the results about arcsin.
  1171. @end ignore
  1172. @cindex @code{atan}
  1173. @cindex @code{atan ()}
  1174. @item cl_R atan (const cl_R& x, const cl_R& y)
  1175. Returns the angle of the polar representation of the complex number
  1176. @code{x+iy}. This is @code{atan(y/x)} if @code{x>0}. The range of
  1177. the result is the interval @code{-pi < atan(x,y) <= pi}. The result will
  1178. be an exact number only if @code{x > 0} and @code{y} is the exact @code{0}.
  1179. WARNING: In Common Lisp, this function is called as @code{(atan y x)},
  1180. with reversed order of arguments.
  1181. @item cl_R atan (const cl_R& x)
  1182. Returns @code{arctan(x)}. This is the same as @code{atan(1,x)}. The range
  1183. of the result is the interval @code{-pi/2 < atan(x) < pi/2}. The result
  1184. will be an exact number only if @code{x} is the exact @code{0}.
  1185. @item cl_N atan (const cl_N& z)
  1186. Returns @code{arctan(z)}. This is defined as
  1187. @code{arctan(z) = (log(1+iz)-log(1-iz)) / 2i} and satisfies
  1188. @code{arctan(-z) = -arctan(z)}. The range of the result is
  1189. the strip in the complex domain
  1190. @code{-pi/2 <= realpart(arctan(z)) <= pi/2}, excluding the numbers
  1191. with @code{realpart = -pi/2} and @code{imagpart >= 0} and the numbers
  1192. with @code{realpart = pi/2} and @code{imagpart <= 0}.
  1193. @ignore
  1194. Proof: arctan(z) = artanh(iz)/i, we know the range of the artanh function.
  1195. @end ignore
  1196. @end table
  1197. @cindex pi
  1198. @cindex Archimedes' constant
  1199. Archimedes' constant pi = 3.14@dots{} is returned by the following functions:
  1200. @table @code
  1201. @item cl_F pi (float_format_t f)
  1202. @cindex @code{pi ()}
  1203. Returns pi as a float of format @code{f}.
  1204. @item cl_F pi (const cl_F& y)
  1205. Returns pi in the float format of @code{y}.
  1206. @item cl_F pi (void)
  1207. Returns pi as a float of format @code{default_float_format}.
  1208. @end table
  1209. @subsection Hyperbolic functions
  1210. @table @code
  1211. @item cl_R sinh (const cl_R& x)
  1212. @cindex @code{sinh ()}
  1213. Returns @code{sinh(x)}.
  1214. @item cl_N sinh (const cl_N& z)
  1215. Returns @code{sinh(z)}. The range of the result is the entire complex plane.
  1216. @item cl_R cosh (const cl_R& x)
  1217. @cindex @code{cosh ()}
  1218. Returns @code{cosh(x)}. The range of the result is the interval
  1219. @code{cosh(x) >= 1}.
  1220. @item cl_N cosh (const cl_N& z)
  1221. Returns @code{cosh(z)}. The range of the result is the entire complex plane.
  1222. @item struct cosh_sinh_t @{ cl_R cosh; cl_R sinh; @};
  1223. @cindex @code{cosh_sinh_t}
  1224. @itemx cosh_sinh_t cosh_sinh (const cl_R& x)
  1225. @cindex @code{cosh_sinh ()}
  1226. Returns both @code{sinh(x)} and @code{cosh(x)}. This is more efficient than
  1227. computing them separately. The relation @code{cosh^2 - sinh^2 = 1} will
  1228. hold only approximately.
  1229. @item cl_R tanh (const cl_R& x)
  1230. @cindex @code{tanh ()}
  1231. @itemx cl_N tanh (const cl_N& x)
  1232. Returns @code{tanh(x) = sinh(x)/cosh(x)}.
  1233. @item cl_N asinh (const cl_N& z)
  1234. @cindex @code{asinh ()}
  1235. Returns @code{arsinh(z)}. This is defined as
  1236. @code{arsinh(z) = log(z+sqrt(1+z^2))} and satisfies
  1237. @code{arsinh(-z) = -arsinh(z)}.
  1238. @ignore
  1239. Proof: Knowing the range of log, we know -pi < imagpart(arsinh(z)) <= pi.
  1240. Actually, z+sqrt(1+z^2) can never be real and <0, so
  1241. -pi < imagpart(arsinh(z)) < pi.
  1242. We have (z+sqrt(1+z^2))*(-z+sqrt(1+(-z)^2)) = (1+z^2)-z^2 = 1, hence the
  1243. logs of both factors sum up to 0 mod 2*pi*i, hence to 0.
  1244. @end ignore
  1245. The range of the result is the strip in the complex domain
  1246. @code{-pi/2 <= imagpart(arsinh(z)) <= pi/2}, excluding the numbers
  1247. with @code{imagpart = -pi/2} and @code{realpart > 0} and the numbers
  1248. with @code{imagpart = pi/2} and @code{realpart < 0}.
  1249. @ignore
  1250. Proof: Write z = x+iy. Because of arsinh(-z) = -arsinh(z), we may assume
  1251. that z is in Range(sqrt), that is, x>=0 and, if x=0, then y>=0.
  1252. If x > 0, then Re(z+sqrt(1+z^2)) = x + Re(sqrt(1+z^2)) >= x > 0,
  1253. so -pi/2 < imagpart(log(z+sqrt(1+z^2))) < pi/2.
  1254. If x = 0 and y >= 0, arsinh(z) = log(i*y+sqrt(1-y^2)).
  1255. If y <= 1, the realpart is 0 and the imagpart is >= 0 and <= pi/2.
  1256. If y >= 1, the imagpart is pi/2 and the realpart is
  1257. log(y+sqrt(y^2-1)) >= log(y) >= 0.
  1258. @end ignore
  1259. @ignore
  1260. Moreover, if z is in Range(sqrt),
  1261. log(sqrt(1+z^2)+z) = 2 artanh(z/(1+sqrt(1+z^2)))
  1262. (for a proof, see file src/cl_C_asinh.cc).
  1263. @end ignore
  1264. @item cl_N acosh (const cl_N& z)
  1265. @cindex @code{acosh ()}
  1266. Returns @code{arcosh(z)}. This is defined as
  1267. @code{arcosh(z) = 2*log(sqrt((z+1)/2)+sqrt((z-1)/2))}.
  1268. The range of the result is the half-strip in the complex domain
  1269. @code{-pi < imagpart(arcosh(z)) <= pi, realpart(arcosh(z)) >= 0},
  1270. excluding the numbers with @code{realpart = 0} and @code{-pi < imagpart < 0}.
  1271. @ignore
  1272. Proof: sqrt((z+1)/2) and sqrt((z-1)/2)) lie in Range(sqrt), hence does
  1273. their sum, hence its log has an imagpart <= pi/2 and > -pi/2.
  1274. If z is in Range(sqrt), we have
  1275. sqrt(z+1)*sqrt(z-1) = sqrt(z^2-1)
  1276. ==> (sqrt((z+1)/2)+sqrt((z-1)/2))^2 = (z+1)/2 + sqrt(z^2-1) + (z-1)/2
  1277. = z + sqrt(z^2-1)
  1278. ==> arcosh(z) = log(z+sqrt(z^2-1)) mod 2*pi*i
  1279. and since the imagpart of both expressions is > -pi, <= pi
  1280. ==> arcosh(z) = log(z+sqrt(z^2-1))
  1281. To prove that the realpart of this is >= 0, write z = x+iy with x>=0,
  1282. z^2-1 = u+iv with u = x^2-y^2-1, v = 2xy,
  1283. sqrt(z^2-1) = p+iq with p = sqrt((sqrt(u^2+v^2)+u)/2) >= 0,
  1284. q = sqrt((sqrt(u^2+v^2)-u)/2) * sign(v),
  1285. then |z+sqrt(z^2-1)|^2 = |x+iy + p+iq|^2
  1286. = (x+p)^2 + (y+q)^2
  1287. = x^2 + 2xp + p^2 + y^2 + 2yq + q^2
  1288. >= x^2 + p^2 + y^2 + q^2 (since x>=0, p>=0, yq>=0)
  1289. = x^2 + y^2 + sqrt(u^2+v^2)
  1290. >= x^2 + y^2 + |u|
  1291. >= x^2 + y^2 - u
  1292. = 1 + 2*y^2
  1293. >= 1
  1294. hence realpart(log(z+sqrt(z^2-1))) = log(|z+sqrt(z^2-1)|) >= 0.
  1295. Equality holds only if y = 0 and u <= 0, i.e. 0 <= x < 1.
  1296. In this case arcosh(z) = log(x+i*sqrt(1-x^2)) has imagpart >=0.
  1297. Otherwise, -z is in Range(sqrt).
  1298. If y != 0, sqrt((z+1)/2) = i^sign(y) * sqrt((-z-1)/2),
  1299. sqrt((z-1)/2) = i^sign(y) * sqrt((-z+1)/2),
  1300. hence arcosh(z) = sign(y)*pi/2*i + arcosh(-z),
  1301. and this has realpart > 0.
  1302. If y = 0 and -1<=x<=0, we still have sqrt(z+1)*sqrt(z-1) = sqrt(z^2-1),
  1303. ==> arcosh(z) = log(z+sqrt(z^2-1)) = log(x+i*sqrt(1-x^2))
  1304. has realpart = 0 and imagpart > 0.
  1305. If y = 0 and x<=-1, however, sqrt(z+1)*sqrt(z-1) = - sqrt(z^2-1),
  1306. ==> arcosh(z) = log(z-sqrt(z^2-1)) = pi*i + arcosh(-z).
  1307. This has realpart >= 0 and imagpart = pi.
  1308. @end ignore
  1309. @item cl_N atanh (const cl_N& z)
  1310. @cindex @code{atanh ()}
  1311. Returns @code{artanh(z)}. This is defined as
  1312. @code{artanh(z) = (log(1+z)-log(1-z)) / 2} and satisfies
  1313. @code{artanh(-z) = -artanh(z)}. The range of the result is
  1314. the strip in the complex domain
  1315. @code{-pi/2 <= imagpart(artanh(z)) <= pi/2}, excluding the numbers
  1316. with @code{imagpart = -pi/2} and @code{realpart <= 0} and the numbers
  1317. with @code{imagpart = pi/2} and @code{realpart >= 0}.
  1318. @ignore
  1319. Proof: Write z = x+iy. Examine
  1320. imagpart(artanh(z)) = (atan(1+x,y) - atan(1-x,-y))/2.
  1321. Case 1: y = 0.
  1322. x > 1 ==> imagpart = -pi/2, realpart = 1/2 log((x+1)/(x-1)) > 0,
  1323. x < -1 ==> imagpart = pi/2, realpart = 1/2 log((-x-1)/(-x+1)) < 0,
  1324. |x| < 1 ==> imagpart = 0
  1325. Case 2: y > 0.
  1326. imagpart(artanh(z))
  1327. = (atan(1+x,y) - atan(1-x,-y))/2
  1328. = ((pi/2 - atan((1+x)/y)) - (-pi/2 - atan((1-x)/-y)))/2
  1329. = (pi - atan((1+x)/y) - atan((1-x)/y))/2
  1330. > (pi - pi/2 - pi/2 )/2 = 0
  1331. and (1+x)/y > (1-x)/y
  1332. ==> atan((1+x)/y) > atan((-1+x)/y) = - atan((1-x)/y)
  1333. ==> imagpart < pi/2.
  1334. Hence 0 < imagpart < pi/2.
  1335. Case 3: y < 0.
  1336. By artanh(z) = -artanh(-z) and case 2, -pi/2 < imagpart < 0.
  1337. @end ignore
  1338. @end table
  1339. @subsection Euler gamma
  1340. @cindex Euler's constant
  1341. Euler's constant C = 0.577@dots{} is returned by the following functions:
  1342. @table @code
  1343. @item cl_F eulerconst (float_format_t f)
  1344. @cindex @code{eulerconst ()}
  1345. Returns Euler's constant as a float of format @code{f}.
  1346. @item cl_F eulerconst (const cl_F& y)
  1347. Returns Euler's constant in the float format of @code{y}.
  1348. @item cl_F eulerconst (void)
  1349. Returns Euler's constant as a float of format @code{default_float_format}.
  1350. @end table
  1351. Catalan's constant G = 0.915@dots{} is returned by the following functions:
  1352. @cindex Catalan's constant
  1353. @table @code
  1354. @item cl_F catalanconst (float_format_t f)
  1355. @cindex @code{catalanconst ()}
  1356. Returns Catalan's constant as a float of format @code{f}.
  1357. @item cl_F catalanconst (const cl_F& y)
  1358. Returns Catalan's constant in the float format of @code{y}.
  1359. @item cl_F catalanconst (void)
  1360. Returns Catalan's constant as a float of format @code{default_float_format}.
  1361. @end table
  1362. @subsection Riemann zeta
  1363. @cindex Riemann's zeta
  1364. Riemann's zeta function at an integral point @code{s>1} is returned by the
  1365. following functions:
  1366. @table @code
  1367. @item cl_F zeta (int s, float_format_t f)
  1368. @cindex @code{zeta ()}
  1369. Returns Riemann's zeta function at @code{s} as a float of format @code{f}.
  1370. @item cl_F zeta (int s, const cl_F& y)
  1371. Returns Riemann's zeta function at @code{s} in the float format of @code{y}.
  1372. @item cl_F zeta (int s)
  1373. Returns Riemann's zeta function at @code{s} as a float of format
  1374. @code{default_float_format}.
  1375. @end table
  1376. @section Functions on integers
  1377. @subsection Logical functions
  1378. Integers, when viewed as in two's complement notation, can be thought as
  1379. infinite bit strings where the bits' values eventually are constant.
  1380. For example,
  1381. @example
  1382. 17 = ......00010001
  1383. -6 = ......11111010
  1384. @end example
  1385. The logical operations view integers as such bit strings and operate
  1386. on each of the bit positions in parallel.
  1387. @table @code
  1388. @item cl_I lognot (const cl_I& x)
  1389. @cindex @code{lognot ()}
  1390. @itemx cl_I operator ~ (const cl_I& x)
  1391. @cindex @code{operator ~ ()}
  1392. Logical not, like @code{~x} in C. This is the same as @code{-1-x}.
  1393. @item cl_I logand (const cl_I& x, const cl_I& y)
  1394. @cindex @code{logand ()}
  1395. @itemx cl_I operator & (const cl_I& x, const cl_I& y)
  1396. @cindex @code{operator & ()}
  1397. Logical and, like @code{x & y} in C.
  1398. @item cl_I logior (const cl_I& x, const cl_I& y)
  1399. @cindex @code{logior ()}
  1400. @itemx cl_I operator | (const cl_I& x, const cl_I& y)
  1401. @cindex @code{operator | ()}
  1402. Logical (inclusive) or, like @code{x | y} in C.
  1403. @item cl_I logxor (const cl_I& x, const cl_I& y)
  1404. @cindex @code{logxor ()}
  1405. @itemx cl_I operator ^ (const cl_I& x, const cl_I& y)
  1406. @cindex @code{operator ^ ()}
  1407. Exclusive or, like @code{x ^ y} in C.
  1408. @item cl_I logeqv (const cl_I& x, const cl_I& y)
  1409. @cindex @code{logeqv ()}
  1410. Bitwise equivalence, like @code{~(x ^ y)} in C.
  1411. @item cl_I lognand (const cl_I& x, const cl_I& y)
  1412. @cindex @code{lognand ()}
  1413. Bitwise not and, like @code{~(x & y)} in C.
  1414. @item cl_I lognor (const cl_I& x, const cl_I& y)
  1415. @cindex @code{lognor ()}
  1416. Bitwise not or, like @code{~(x | y)} in C.
  1417. @item cl_I logandc1 (const cl_I& x, const cl_I& y)
  1418. @cindex @code{logandc1 ()}
  1419. Logical and, complementing the first argument, like @code{~x & y} in C.
  1420. @item cl_I logandc2 (const cl_I& x, const cl_I& y)
  1421. @cindex @code{logandc2 ()}
  1422. Logical and, complementing the second argument, like @code{x & ~y} in C.
  1423. @item cl_I logorc1 (const cl_I& x, const cl_I& y)
  1424. @cindex @code{logorc1 ()}
  1425. Logical or, complementing the first argument, like @code{~x | y} in C.
  1426. @item cl_I logorc2 (const cl_I& x, const cl_I& y)
  1427. @cindex @code{logorc2 ()}
  1428. Logical or, complementing the second argument, like @code{x | ~y} in C.
  1429. @end table
  1430. These operations are all available though the function
  1431. @table @code
  1432. @item cl_I boole (cl_boole op, const cl_I& x, const cl_I& y)
  1433. @cindex @code{boole ()}
  1434. @end table
  1435. where @code{op} must have one of the 16 values (each one stands for a function
  1436. which combines two bits into one bit): @code{boole_clr}, @code{boole_set},
  1437. @code{boole_1}, @code{boole_2}, @code{boole_c1}, @code{boole_c2},
  1438. @code{boole_and}, @code{boole_ior}, @code{boole_xor}, @code{boole_eqv},
  1439. @code{boole_nand}, @code{boole_nor}, @code{boole_andc1}, @code{boole_andc2},
  1440. @code{boole_orc1}, @code{boole_orc2}.
  1441. @cindex @code{boole_clr}
  1442. @cindex @code{boole_set}
  1443. @cindex @code{boole_1}
  1444. @cindex @code{boole_2}
  1445. @cindex @code{boole_c1}
  1446. @cindex @code{boole_c2}
  1447. @cindex @code{boole_and}
  1448. @cindex @code{boole_xor}
  1449. @cindex @code{boole_eqv}
  1450. @cindex @code{boole_nand}
  1451. @cindex @code{boole_nor}
  1452. @cindex @code{boole_andc1}
  1453. @cindex @code{boole_andc2}
  1454. @cindex @code{boole_orc1}
  1455. @cindex @code{boole_orc2}
  1456. Other functions that view integers as bit strings:
  1457. @table @code
  1458. @item cl_boolean logtest (const cl_I& x, const cl_I& y)
  1459. @cindex @code{logtest ()}
  1460. Returns true if some bit is set in both @code{x} and @code{y}, i.e. if
  1461. @code{logand(x,y) != 0}.
  1462. @item cl_boolean logbitp (const cl_I& n, const cl_I& x)
  1463. @cindex @code{logbitp ()}
  1464. Returns true if the @code{n}th bit (from the right) of @code{x} is set.
  1465. Bit 0 is the least significant bit.
  1466. @item uintL logcount (const cl_I& x)
  1467. @cindex @code{logcount ()}
  1468. Returns the number of one bits in @code{x}, if @code{x} >= 0, or
  1469. the number of zero bits in @code{x}, if @code{x} < 0.
  1470. @end table
  1471. The following functions operate on intervals of bits in integers.
  1472. The type
  1473. @example
  1474. struct cl_byte @{ uintL size; uintL position; @};
  1475. @end example
  1476. @cindex @code{cl_byte}
  1477. represents the bit interval containing the bits
  1478. @code{position}@dots{}@code{position+size-1} of an integer.
  1479. The constructor @code{cl_byte(size,position)} constructs a @code{cl_byte}.
  1480. @table @code
  1481. @item cl_I ldb (const cl_I& n, const cl_byte& b)
  1482. @cindex @code{ldb ()}
  1483. extracts the bits of @code{n} described by the bit interval @code{b}
  1484. and returns them as a nonnegative integer with @code{b.size} bits.
  1485. @item cl_boolean ldb_test (const cl_I& n, const cl_byte& b)
  1486. @cindex @code{ldb_test ()}
  1487. Returns true if some bit described by the bit interval @code{b} is set in
  1488. @code{n}.
  1489. @item cl_I dpb (const cl_I& newbyte, const cl_I& n, const cl_byte& b)
  1490. @cindex @code{dpb ()}
  1491. Returns @code{n}, with the bits described by the bit interval @code{b}
  1492. replaced by @code{newbyte}. Only the lowest @code{b.size} bits of
  1493. @code{newbyte} are relevant.
  1494. @end table
  1495. The functions @code{ldb} and @code{dpb} implicitly shift. The following
  1496. functions are their counterparts without shifting:
  1497. @table @code
  1498. @item cl_I mask_field (const cl_I& n, const cl_byte& b)
  1499. @cindex @code{mask_field ()}
  1500. returns an integer with the bits described by the bit interval @code{b}
  1501. copied from the corresponding bits in @code{n}, the other bits zero.
  1502. @item cl_I deposit_field (const cl_I& newbyte, const cl_I& n, const cl_byte& b)
  1503. @cindex @code{deposit_field ()}
  1504. returns an integer where the bits described by the bit interval @code{b}
  1505. come from @code{newbyte} and the other bits come from @code{n}.
  1506. @end table
  1507. The following relations hold:
  1508. @itemize @asis
  1509. @item
  1510. @code{ldb (n, b) = mask_field(n, b) >> b.position},
  1511. @item
  1512. @code{dpb (newbyte, n, b) = deposit_field (newbyte << b.position, n, b)},
  1513. @item
  1514. @code{deposit_field(newbyte,n,b) = n ^ mask_field(n,b) ^ mask_field(new_byte,b)}.
  1515. @end itemize
  1516. The following operations on integers as bit strings are efficient shortcuts
  1517. for common arithmetic operations:
  1518. @table @code
  1519. @item cl_boolean oddp (const cl_I& x)
  1520. @cindex @code{oddp ()}
  1521. Returns true if the least significant bit of @code{x} is 1. Equivalent to
  1522. @code{mod(x,2) != 0}.
  1523. @item cl_boolean evenp (const cl_I& x)
  1524. @cindex @code{evenp ()}
  1525. Returns true if the least significant bit of @code{x} is 0. Equivalent to
  1526. @code{mod(x,2) == 0}.
  1527. @item cl_I operator << (const cl_I& x, const cl_I& n)
  1528. @cindex @code{operator << ()}
  1529. Shifts @code{x} by @code{n} bits to the left. @code{n} should be >=0.
  1530. Equivalent to @code{x * expt(2,n)}.
  1531. @item cl_I operator >> (const cl_I& x, const cl_I& n)
  1532. @cindex @code{operator >> ()}
  1533. Shifts @code{x} by @code{n} bits to the right. @code{n} should be >=0.
  1534. Bits shifted out to the right are thrown away.
  1535. Equivalent to @code{floor(x / expt(2,n))}.
  1536. @item cl_I ash (const cl_I& x, const cl_I& y)
  1537. @cindex @code{ash ()}
  1538. Shifts @code{x} by @code{y} bits to the left (if @code{y}>=0) or
  1539. by @code{-y} bits to the right (if @code{y}<=0). In other words, this
  1540. returns @code{floor(x * expt(2,y))}.
  1541. @item uintL integer_length (const cl_I& x)
  1542. @cindex @code{integer_length ()}
  1543. Returns the number of bits (excluding the sign bit) needed to represent @code{x}
  1544. in two's complement notation. This is the smallest n >= 0 such that
  1545. -2^n <= x < 2^n. If x > 0, this is the unique n > 0 such that
  1546. 2^(n-1) <= x < 2^n.
  1547. @item uintL ord2 (const cl_I& x)
  1548. @cindex @code{ord2 ()}
  1549. @code{x} must be non-zero. This function returns the number of 0 bits at the
  1550. right of @code{x} in two's complement notation. This is the largest n >= 0
  1551. such that 2^n divides @code{x}.
  1552. @item uintL power2p (const cl_I& x)
  1553. @cindex @code{power2p ()}
  1554. @code{x} must be > 0. This function checks whether @code{x} is a power of 2.
  1555. If @code{x} = 2^(n-1), it returns n. Else it returns 0.
  1556. (See also the function @code{logp}.)
  1557. @end table
  1558. @subsection Number theoretic functions
  1559. @table @code
  1560. @item uint32 gcd (uint32 a, uint32 b)
  1561. @cindex @code{gcd ()}
  1562. @itemx cl_I gcd (const cl_I& a, const cl_I& b)
  1563. This function returns the greatest common divisor of @code{a} and @code{b},
  1564. normalized to be >= 0.
  1565. @item cl_I xgcd (const cl_I& a, const cl_I& b, cl_I* u, cl_I* v)
  1566. @cindex @code{xgcd ()}
  1567. This function (``extended gcd'') returns the greatest common divisor @code{g} of
  1568. @code{a} and @code{b} and at the same time the representation of @code{g}
  1569. as an integral linear combination of @code{a} and @code{b}:
  1570. @code{u} and @code{v} with @code{u*a+v*b = g}, @code{g} >= 0.
  1571. @code{u} and @code{v} will be normalized to be of smallest possible absolute
  1572. value, in the following sense: If @code{a} and @code{b} are non-zero, and
  1573. @code{abs(a) != abs(b)}, @code{u} and @code{v} will satisfy the inequalities
  1574. @code{abs(u) <= abs(b)/(2*g)}, @code{abs(v) <= abs(a)/(2*g)}.
  1575. @item cl_I lcm (const cl_I& a, const cl_I& b)
  1576. @cindex @code{lcm ()}
  1577. This function returns the least common multiple of @code{a} and @code{b},
  1578. normalized to be >= 0.
  1579. @item cl_boolean logp (const cl_I& a, const cl_I& b, cl_RA* l)
  1580. @cindex @code{logp ()}
  1581. @itemx cl_boolean logp (const cl_RA& a, const cl_RA& b, cl_RA* l)
  1582. @code{a} must be > 0. @code{b} must be >0 and != 1. If log(a,b) is
  1583. rational number, this function returns true and sets *l = log(a,b), else
  1584. it returns false.
  1585. @end table
  1586. @subsection Combinatorial functions
  1587. @table @code
  1588. @item cl_I factorial (uintL n)
  1589. @cindex @code{factorial ()}
  1590. @code{n} must be a small integer >= 0. This function returns the factorial
  1591. @code{n}! = @code{1*2*@dots{}*n}.
  1592. @item cl_I doublefactorial (uintL n)
  1593. @cindex @code{doublefactorial ()}
  1594. @code{n} must be a small integer >= 0. This function returns the
  1595. doublefactorial @code{n}!! = @code{1*3*@dots{}*n} or
  1596. @code{n}!! = @code{2*4*@dots{}*n}, respectively.
  1597. @item cl_I binomial (uintL n, uintL k)
  1598. @cindex @code{binomial ()}
  1599. @code{n} and @code{k} must be small integers >= 0. This function returns the
  1600. binomial coefficient
  1601. @tex
  1602. ${n \choose k} = {n! \over n! (n-k)!}$
  1603. @end tex
  1604. @ifinfo
  1605. (@code{n} choose @code{k}) = @code{n}! / @code{k}! @code{(n-k)}!
  1606. @end ifinfo
  1607. for 0 <= k <= n, 0 else.
  1608. @end table
  1609. @section Functions on floating-point numbers
  1610. Recall that a floating-point number consists of a sign @code{s}, an
  1611. exponent @code{e} and a mantissa @code{m}. The value of the number is
  1612. @code{(-1)^s * 2^e * m}.
  1613. Each of the classes
  1614. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  1615. defines the following operations.
  1616. @table @code
  1617. @item @var{type} scale_float (const @var{type}& x, sintL delta)
  1618. @cindex @code{scale_float ()}
  1619. @itemx @var{type} scale_float (const @var{type}& x, const cl_I& delta)
  1620. Returns @code{x*2^delta}. This is more efficient than an explicit multiplication
  1621. because it copies @code{x} and modifies the exponent.
  1622. @end table
  1623. The following functions provide an abstract interface to the underlying
  1624. representation of floating-point numbers.
  1625. @table @code
  1626. @item sintL float_exponent (const @var{type}& x)
  1627. @cindex @code{float_exponent ()}
  1628. Returns the exponent @code{e} of @code{x}.
  1629. For @code{x = 0.0}, this is 0. For @code{x} non-zero, this is the unique
  1630. integer with @code{2^(e-1) <= abs(x) < 2^e}.
  1631. @item sintL float_radix (const @var{type}& x)
  1632. @cindex @code{float_radix ()}
  1633. Returns the base of the floating-point representation. This is always @code{2}.
  1634. @item @var{type} float_sign (const @var{type}& x)
  1635. @cindex @code{float_sign ()}
  1636. Returns the sign @code{s} of @code{x} as a float. The value is 1 for
  1637. @code{x} >= 0, -1 for @code{x} < 0.
  1638. @item uintL float_digits (const @var{type}& x)
  1639. @cindex @code{float_digits ()}
  1640. Returns the number of mantissa bits in the floating-point representation
  1641. of @code{x}, including the hidden bit. The value only depends on the type
  1642. of @code{x}, not on its value.
  1643. @item uintL float_precision (const @var{type}& x)
  1644. @cindex @code{float_precision ()}
  1645. Returns the number of significant mantissa bits in the floating-point
  1646. representation of @code{x}. Since denormalized numbers are not supported,
  1647. this is the same as @code{float_digits(x)} if @code{x} is non-zero, and
  1648. 0 if @code{x} = 0.
  1649. @end table
  1650. The complete internal representation of a float is encoded in the type
  1651. @cindex @code{decoded_float}
  1652. @cindex @code{decoded_sfloat}
  1653. @cindex @code{decoded_ffloat}
  1654. @cindex @code{decoded_dfloat}
  1655. @cindex @code{decoded_lfloat}
  1656. @code{decoded_float} (or @code{decoded_sfloat}, @code{decoded_ffloat},
  1657. @code{decoded_dfloat}, @code{decoded_lfloat}, respectively), defined by
  1658. @example
  1659. struct decoded_@var{type}float @{
  1660. @var{type} mantissa; cl_I exponent; @var{type} sign;
  1661. @};
  1662. @end example
  1663. and returned by the function
  1664. @table @code
  1665. @item decoded_@var{type}float decode_float (const @var{type}& x)
  1666. @cindex @code{decode_float ()}
  1667. For @code{x} non-zero, this returns @code{(-1)^s}, @code{e}, @code{m} with
  1668. @code{x = (-1)^s * 2^e * m} and @code{0.5 <= m < 1.0}. For @code{x} = 0,
  1669. it returns @code{(-1)^s}=1, @code{e}=0, @code{m}=0.
  1670. @code{e} is the same as returned by the function @code{float_exponent}.
  1671. @end table
  1672. A complete decoding in terms of integers is provided as type
  1673. @cindex @code{cl_idecoded_float}
  1674. @example
  1675. struct cl_idecoded_float @{
  1676. cl_I mantissa; cl_I exponent; cl_I sign;
  1677. @};
  1678. @end example
  1679. by the following function:
  1680. @table @code
  1681. @item cl_idecoded_float integer_decode_float (const @var{type}& x)
  1682. @cindex @code{integer_decode_float ()}
  1683. For @code{x} non-zero, this returns @code{(-1)^s}, @code{e}, @code{m} with
  1684. @code{x = (-1)^s * 2^e * m} and @code{m} an integer with @code{float_digits(x)}
  1685. bits. For @code{x} = 0, it returns @code{(-1)^s}=1, @code{e}=0, @code{m}=0.
  1686. WARNING: The exponent @code{e} is not the same as the one returned by
  1687. the functions @code{decode_float} and @code{float_exponent}.
  1688. @end table
  1689. Some other function, implemented only for class @code{cl_F}:
  1690. @table @code
  1691. @item cl_F float_sign (const cl_F& x, const cl_F& y)
  1692. @cindex @code{float_sign ()}
  1693. This returns a floating point number whose precision and absolute value
  1694. is that of @code{y} and whose sign is that of @code{x}. If @code{x} is
  1695. zero, it is treated as positive. Same for @code{y}.
  1696. @end table
  1697. @section Conversion functions
  1698. @cindex conversion
  1699. @subsection Conversion to floating-point numbers
  1700. The type @code{float_format_t} describes a floating-point format.
  1701. @cindex @code{float_format_t}
  1702. @table @code
  1703. @item float_format_t float_format (uintL n)
  1704. @cindex @code{float_format ()}
  1705. Returns the smallest float format which guarantees at least @code{n}
  1706. decimal digits in the mantissa (after the decimal point).
  1707. @item float_format_t float_format (const cl_F& x)
  1708. Returns the floating point format of @code{x}.
  1709. @item float_format_t default_float_format
  1710. @cindex @code{default_float_format}
  1711. Global variable: the default float format used when converting rational numbers
  1712. to floats.
  1713. @end table
  1714. To convert a real number to a float, each of the types
  1715. @code{cl_R}, @code{cl_F}, @code{cl_I}, @code{cl_RA},
  1716. @code{int}, @code{unsigned int}, @code{float}, @code{double}
  1717. defines the following operations:
  1718. @table @code
  1719. @item cl_F cl_float (const @var{type}&x, float_format_t f)
  1720. @cindex @code{cl_float ()}
  1721. Returns @code{x} as a float of format @code{f}.
  1722. @item cl_F cl_float (const @var{type}&x, const cl_F& y)
  1723. Returns @code{x} in the float format of @code{y}.
  1724. @item cl_F cl_float (const @var{type}&x)
  1725. Returns @code{x} as a float of format @code{default_float_format} if
  1726. it is an exact number, or @code{x} itself if it is already a float.
  1727. @end table
  1728. Of course, converting a number to a float can lose precision.
  1729. Every floating-point format has some characteristic numbers:
  1730. @table @code
  1731. @item cl_F most_positive_float (float_format_t f)
  1732. @cindex @code{most_positive_float ()}
  1733. Returns the largest (most positive) floating point number in float format @code{f}.
  1734. @item cl_F most_negative_float (float_format_t f)
  1735. @cindex @code{most_negative_float ()}
  1736. Returns the smallest (most negative) floating point number in float format @code{f}.
  1737. @item cl_F least_positive_float (float_format_t f)
  1738. @cindex @code{least_positive_float ()}
  1739. Returns the least positive floating point number (i.e. > 0 but closest to 0)
  1740. in float format @code{f}.
  1741. @item cl_F least_negative_float (float_format_t f)
  1742. @cindex @code{least_negative_float ()}
  1743. Returns the least negative floating point number (i.e. < 0 but closest to 0)
  1744. in float format @code{f}.
  1745. @item cl_F float_epsilon (float_format_t f)
  1746. @cindex @code{float_epsilon ()}
  1747. Returns the smallest floating point number e > 0 such that @code{1+e != 1}.
  1748. @item cl_F float_negative_epsilon (float_format_t f)
  1749. @cindex @code{float_negative_epsilon ()}
  1750. Returns the smallest floating point number e > 0 such that @code{1-e != 1}.
  1751. @end table
  1752. @subsection Conversion to rational numbers
  1753. Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_F}
  1754. defines the following operation:
  1755. @table @code
  1756. @item cl_RA rational (const @var{type}& x)
  1757. @cindex @code{rational ()}
  1758. Returns the value of @code{x} as an exact number. If @code{x} is already
  1759. an exact number, this is @code{x}. If @code{x} is a floating-point number,
  1760. the value is a rational number whose denominator is a power of 2.
  1761. @end table
  1762. In order to convert back, say, @code{(cl_F)(cl_R)"1/3"} to @code{1/3}, there is
  1763. the function
  1764. @table @code
  1765. @item cl_RA rationalize (const cl_R& x)
  1766. @cindex @code{rationalize ()}
  1767. If @code{x} is a floating-point number, it actually represents an interval
  1768. of real numbers, and this function returns the rational number with
  1769. smallest denominator (and smallest numerator, in magnitude)
  1770. which lies in this interval.
  1771. If @code{x} is already an exact number, this function returns @code{x}.
  1772. @end table
  1773. If @code{x} is any float, one has
  1774. @itemize @asis
  1775. @item
  1776. @code{cl_float(rational(x),x) = x}
  1777. @item
  1778. @code{cl_float(rationalize(x),x) = x}
  1779. @end itemize
  1780. @section Random number generators
  1781. A random generator is a machine which produces (pseudo-)random numbers.
  1782. The include file @code{<cln/random.h>} defines a class @code{random_state}
  1783. which contains the state of a random generator. If you make a copy
  1784. of the random number generator, the original one and the copy will produce
  1785. the same sequence of random numbers.
  1786. The following functions return (pseudo-)random numbers in different formats.
  1787. Calling one of these modifies the state of the random number generator in
  1788. a complicated but deterministic way.
  1789. The global variable
  1790. @cindex @code{random_state}
  1791. @cindex @code{default_random_state}
  1792. @example
  1793. random_state default_random_state
  1794. @end example
  1795. contains a default random number generator. It is used when the functions
  1796. below are called without @code{random_state} argument.
  1797. @table @code
  1798. @item uint32 random32 (random_state& randomstate)
  1799. @itemx uint32 random32 ()
  1800. @cindex @code{random32 ()}
  1801. Returns a random unsigned 32-bit number. All bits are equally random.
  1802. @item cl_I random_I (random_state& randomstate, const cl_I& n)
  1803. @itemx cl_I random_I (const cl_I& n)
  1804. @cindex @code{random_I ()}
  1805. @code{n} must be an integer > 0. This function returns a random integer @code{x}
  1806. in the range @code{0 <= x < n}.
  1807. @item cl_F random_F (random_state& randomstate, const cl_F& n)
  1808. @itemx cl_F random_F (const cl_F& n)
  1809. @cindex @code{random_F ()}
  1810. @code{n} must be a float > 0. This function returns a random floating-point
  1811. number of the same format as @code{n} in the range @code{0 <= x < n}.
  1812. @item cl_R random_R (random_state& randomstate, const cl_R& n)
  1813. @itemx cl_R random_R (const cl_R& n)
  1814. @cindex @code{random_R ()}
  1815. Behaves like @code{random_I} if @code{n} is an integer and like @code{random_F}
  1816. if @code{n} is a float.
  1817. @end table
  1818. @section Obfuscating operators
  1819. @cindex modifying operators
  1820. The modifying C/C++ operators @code{+=}, @code{-=}, @code{*=}, @code{/=},
  1821. @code{&=}, @code{|=}, @code{^=}, @code{<<=}, @code{>>=}
  1822. are not available by default because their
  1823. use tends to make programs unreadable. It is trivial to get away without
  1824. them. However, if you feel that you absolutely need these operators
  1825. to get happy, then add
  1826. @example
  1827. #define WANT_OBFUSCATING_OPERATORS
  1828. @end example
  1829. @cindex @code{WANT_OBFUSCATING_OPERATORS}
  1830. to the beginning of your source files, before the inclusion of any CLN
  1831. include files. This flag will enable the following operators:
  1832. For the classes @code{cl_N}, @code{cl_R}, @code{cl_RA},
  1833. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}:
  1834. @table @code
  1835. @item @var{type}& operator += (@var{type}&, const @var{type}&)
  1836. @cindex @code{operator += ()}
  1837. @itemx @var{type}& operator -= (@var{type}&, const @var{type}&)
  1838. @cindex @code{operator -= ()}
  1839. @itemx @var{type}& operator *= (@var{type}&, const @var{type}&)
  1840. @cindex @code{operator *= ()}
  1841. @itemx @var{type}& operator /= (@var{type}&, const @var{type}&)
  1842. @cindex @code{operator /= ()}
  1843. @end table
  1844. For the class @code{cl_I}:
  1845. @table @code
  1846. @item @var{type}& operator += (@var{type}&, const @var{type}&)
  1847. @itemx @var{type}& operator -= (@var{type}&, const @var{type}&)
  1848. @itemx @var{type}& operator *= (@var{type}&, const @var{type}&)
  1849. @itemx @var{type}& operator &= (@var{type}&, const @var{type}&)
  1850. @cindex @code{operator &= ()}
  1851. @itemx @var{type}& operator |= (@var{type}&, const @var{type}&)
  1852. @cindex @code{operator |= ()}
  1853. @itemx @var{type}& operator ^= (@var{type}&, const @var{type}&)
  1854. @cindex @code{operator ^= ()}
  1855. @itemx @var{type}& operator <<= (@var{type}&, const @var{type}&)
  1856. @cindex @code{operator <<= ()}
  1857. @itemx @var{type}& operator >>= (@var{type}&, const @var{type}&)
  1858. @cindex @code{operator >>= ()}
  1859. @end table
  1860. For the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  1861. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}:
  1862. @table @code
  1863. @item @var{type}& operator ++ (@var{type}& x)
  1864. @cindex @code{operator ++ ()}
  1865. The prefix operator @code{++x}.
  1866. @item void operator ++ (@var{type}& x, int)
  1867. The postfix operator @code{x++}.
  1868. @item @var{type}& operator -- (@var{type}& x)
  1869. @cindex @code{operator -- ()}
  1870. The prefix operator @code{--x}.
  1871. @item void operator -- (@var{type}& x, int)
  1872. The postfix operator @code{x--}.
  1873. @end table
  1874. Note that by using these obfuscating operators, you wouldn't gain efficiency:
  1875. In CLN @samp{x += y;} is exactly the same as @samp{x = x+y;}, not more
  1876. efficient.
  1877. @chapter Input/Output
  1878. @cindex Input/Output
  1879. @section Internal and printed representation
  1880. @cindex representation
  1881. All computations deal with the internal representations of the numbers.
  1882. Every number has an external representation as a sequence of ASCII characters.
  1883. Several external representations may denote the same number, for example,
  1884. "20.0" and "20.000".
  1885. Converting an internal to an external representation is called ``printing'',
  1886. @cindex printing
  1887. converting an external to an internal representation is called ``reading''.
  1888. @cindex reading
  1889. In CLN, it is always true that conversion of an internal to an external
  1890. representation and then back to an internal representation will yield the
  1891. same internal representation. Symbolically: @code{read(print(x)) == x}.
  1892. This is called ``print-read consistency''.
  1893. Different types of numbers have different external representations (case
  1894. is insignificant):
  1895. @table @asis
  1896. @item Integers
  1897. External representation: @var{sign}@{@var{digit}@}+. The reader also accepts the
  1898. Common Lisp syntaxes @var{sign}@{@var{digit}@}+@code{.} with a trailing dot
  1899. for decimal integers
  1900. and the @code{#@var{n}R}, @code{#b}, @code{#o}, @code{#x} prefixes.
  1901. @item Rational numbers
  1902. External representation: @var{sign}@{@var{digit}@}+@code{/}@{@var{digit}@}+.
  1903. The @code{#@var{n}R}, @code{#b}, @code{#o}, @code{#x} prefixes are allowed
  1904. here as well.
  1905. @item Floating-point numbers
  1906. External representation: @var{sign}@{@var{digit}@}*@var{exponent} or
  1907. @var{sign}@{@var{digit}@}*@code{.}@{@var{digit}@}*@var{exponent} or
  1908. @var{sign}@{@var{digit}@}*@code{.}@{@var{digit}@}+. A precision specifier
  1909. of the form _@var{prec} may be appended. There must be at least
  1910. one digit in the non-exponent part. The exponent has the syntax
  1911. @var{expmarker} @var{expsign} @{@var{digit}@}+.
  1912. The exponent marker is
  1913. @itemize @asis
  1914. @item
  1915. @samp{s} for short-floats,
  1916. @item
  1917. @samp{f} for single-floats,
  1918. @item
  1919. @samp{d} for double-floats,
  1920. @item
  1921. @samp{L} for long-floats,
  1922. @end itemize
  1923. or @samp{e}, which denotes a default float format. The precision specifying
  1924. suffix has the syntax _@var{prec} where @var{prec} denotes the number of
  1925. valid mantissa digits (in decimal, excluding leading zeroes), cf. also
  1926. function @samp{float_format}.
  1927. @item Complex numbers
  1928. External representation:
  1929. @itemize @asis
  1930. @item
  1931. In algebraic notation: @code{@var{realpart}+@var{imagpart}i}. Of course,
  1932. if @var{imagpart} is negative, its printed representation begins with
  1933. a @samp{-}, and the @samp{+} between @var{realpart} and @var{imagpart}
  1934. may be omitted. Note that this notation cannot be used when the @var{imagpart}
  1935. is rational and the rational number's base is >18, because the @samp{i}
  1936. is then read as a digit.
  1937. @item
  1938. In Common Lisp notation: @code{#C(@var{realpart} @var{imagpart})}.
  1939. @end itemize
  1940. @end table
  1941. @section Input functions
  1942. Including @code{<cln/io.h>} defines a type @code{cl_istream}, which is
  1943. the type of the first argument to all input functions. @code{cl_istream}
  1944. is the same as @code{std::istream&}.
  1945. These are the simple input functions:
  1946. @table @code
  1947. @item int freadchar (cl_istream stream)
  1948. Reads a character from @code{stream}. Returns @code{cl_EOF} (not a @samp{char}!)
  1949. if the end of stream was encountered or an error occurred.
  1950. @item int funreadchar (cl_istream stream, int c)
  1951. Puts back @code{c} onto @code{stream}. @code{c} must be the result of the
  1952. last @code{freadchar} operation on @code{stream}.
  1953. @end table
  1954. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  1955. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  1956. defines, in @code{<cln/@var{type}_io.h>}, the following input function:
  1957. @table @code
  1958. @item cl_istream operator>> (cl_istream stream, @var{type}& result)
  1959. Reads a number from @code{stream} and stores it in the @code{result}.
  1960. @end table
  1961. The most flexible input functions, defined in @code{<cln/@var{type}_io.h>},
  1962. are the following:
  1963. @table @code
  1964. @item cl_N read_complex (cl_istream stream, const cl_read_flags& flags)
  1965. @itemx cl_R read_real (cl_istream stream, const cl_read_flags& flags)
  1966. @itemx cl_F read_float (cl_istream stream, const cl_read_flags& flags)
  1967. @itemx cl_RA read_rational (cl_istream stream, const cl_read_flags& flags)
  1968. @itemx cl_I read_integer (cl_istream stream, const cl_read_flags& flags)
  1969. Reads a number from @code{stream}. The @code{flags} are parameters which
  1970. affect the input syntax. Whitespace before the number is silently skipped.
  1971. @item cl_N read_complex (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
  1972. @itemx cl_R read_real (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
  1973. @itemx cl_F read_float (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
  1974. @itemx cl_RA read_rational (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
  1975. @itemx cl_I read_integer (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
  1976. Reads a number from a string in memory. The @code{flags} are parameters which
  1977. affect the input syntax. The string starts at @code{string} and ends at
  1978. @code{string_limit} (exclusive limit). @code{string_limit} may also be
  1979. @code{NULL}, denoting the entire string, i.e. equivalent to
  1980. @code{string_limit = string + strlen(string)}. If @code{end_of_parse} is
  1981. @code{NULL}, the string in memory must contain exactly one number and nothing
  1982. more, else a fatal error will be signalled. If @code{end_of_parse}
  1983. is not @code{NULL}, @code{*end_of_parse} will be assigned a pointer past
  1984. the last parsed character (i.e. @code{string_limit} if nothing came after
  1985. the number). Whitespace is not allowed.
  1986. @end table
  1987. The structure @code{cl_read_flags} contains the following fields:
  1988. @table @code
  1989. @item cl_read_syntax_t syntax
  1990. The possible results of the read operation. Possible values are
  1991. @code{syntax_number}, @code{syntax_real}, @code{syntax_rational},
  1992. @code{syntax_integer}, @code{syntax_float}, @code{syntax_sfloat},
  1993. @code{syntax_ffloat}, @code{syntax_dfloat}, @code{syntax_lfloat}.
  1994. @item cl_read_lsyntax_t lsyntax
  1995. Specifies the language-dependent syntax variant for the read operation.
  1996. Possible values are
  1997. @table @code
  1998. @item lsyntax_standard
  1999. accept standard algebraic notation only, no complex numbers,
  2000. @item lsyntax_algebraic
  2001. accept the algebraic notation @code{@var{x}+@var{y}i} for complex numbers,
  2002. @item lsyntax_commonlisp
  2003. accept the @code{#b}, @code{#o}, @code{#x} syntaxes for binary, octal,
  2004. hexadecimal numbers,
  2005. @code{#@var{base}R} for rational numbers in a given base,
  2006. @code{#c(@var{realpart} @var{imagpart})} for complex numbers,
  2007. @item lsyntax_all
  2008. accept all of these extensions.
  2009. @end table
  2010. @item unsigned int rational_base
  2011. The base in which rational numbers are read.
  2012. @item float_format_t float_flags.default_float_format
  2013. The float format used when reading floats with exponent marker @samp{e}.
  2014. @item float_format_t float_flags.default_lfloat_format
  2015. The float format used when reading floats with exponent marker @samp{l}.
  2016. @item cl_boolean float_flags.mantissa_dependent_float_format
  2017. When this flag is true, floats specified with more digits than corresponding
  2018. to the exponent marker they contain, but without @var{_nnn} suffix, will get a
  2019. precision corresponding to their number of significant digits.
  2020. @end table
  2021. @section Output functions
  2022. Including @code{<cln/io.h>} defines a type @code{cl_ostream}, which is
  2023. the type of the first argument to all output functions. @code{cl_ostream}
  2024. is the same as @code{std::ostream&}.
  2025. These are the simple output functions:
  2026. @table @code
  2027. @item void fprintchar (cl_ostream stream, char c)
  2028. Prints the character @code{x} literally on the @code{stream}.
  2029. @item void fprint (cl_ostream stream, const char * string)
  2030. Prints the @code{string} literally on the @code{stream}.
  2031. @item void fprintdecimal (cl_ostream stream, int x)
  2032. @itemx void fprintdecimal (cl_ostream stream, const cl_I& x)
  2033. Prints the integer @code{x} in decimal on the @code{stream}.
  2034. @item void fprintbinary (cl_ostream stream, const cl_I& x)
  2035. Prints the integer @code{x} in binary (base 2, without prefix)
  2036. on the @code{stream}.
  2037. @item void fprintoctal (cl_ostream stream, const cl_I& x)
  2038. Prints the integer @code{x} in octal (base 8, without prefix)
  2039. on the @code{stream}.
  2040. @item void fprinthexadecimal (cl_ostream stream, const cl_I& x)
  2041. Prints the integer @code{x} in hexadecimal (base 16, without prefix)
  2042. on the @code{stream}.
  2043. @end table
  2044. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  2045. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  2046. defines, in @code{<cln/@var{type}_io.h>}, the following output functions:
  2047. @table @code
  2048. @item void fprint (cl_ostream stream, const @var{type}& x)
  2049. @itemx cl_ostream operator<< (cl_ostream stream, const @var{type}& x)
  2050. Prints the number @code{x} on the @code{stream}. The output may depend
  2051. on the global printer settings in the variable @code{default_print_flags}.
  2052. The @code{ostream} flags and settings (flags, width and locale) are
  2053. ignored.
  2054. @end table
  2055. The most flexible output function, defined in @code{<cln/@var{type}_io.h>},
  2056. are the following:
  2057. @example
  2058. void print_complex (cl_ostream stream, const cl_print_flags& flags,
  2059. const cl_N& z);
  2060. void print_real (cl_ostream stream, const cl_print_flags& flags,
  2061. const cl_R& z);
  2062. void print_float (cl_ostream stream, const cl_print_flags& flags,
  2063. const cl_F& z);
  2064. void print_rational (cl_ostream stream, const cl_print_flags& flags,
  2065. const cl_RA& z);
  2066. void print_integer (cl_ostream stream, const cl_print_flags& flags,
  2067. const cl_I& z);
  2068. @end example
  2069. Prints the number @code{x} on the @code{stream}. The @code{flags} are
  2070. parameters which affect the output.
  2071. The structure type @code{cl_print_flags} contains the following fields:
  2072. @table @code
  2073. @item unsigned int rational_base
  2074. The base in which rational numbers are printed. Default is @code{10}.
  2075. @item cl_boolean rational_readably
  2076. If this flag is true, rational numbers are printed with radix specifiers in
  2077. Common Lisp syntax (@code{#@var{n}R} or @code{#b} or @code{#o} or @code{#x}
  2078. prefixes, trailing dot). Default is false.
  2079. @item cl_boolean float_readably
  2080. If this flag is true, type specific exponent markers have precedence over 'E'.
  2081. Default is false.
  2082. @item float_format_t default_float_format
  2083. Floating point numbers of this format will be printed using the 'E' exponent
  2084. marker. Default is @code{float_format_ffloat}.
  2085. @item cl_boolean complex_readably
  2086. If this flag is true, complex numbers will be printed using the Common Lisp
  2087. syntax @code{#C(@var{realpart} @var{imagpart})}. Default is false.
  2088. @item cl_string univpoly_varname
  2089. Univariate polynomials with no explicit indeterminate name will be printed
  2090. using this variable name. Default is @code{"x"}.
  2091. @end table
  2092. The global variable @code{default_print_flags} contains the default values,
  2093. used by the function @code{fprint}.
  2094. @chapter Rings
  2095. CLN has a class of abstract rings.
  2096. @example
  2097. Ring
  2098. cl_ring
  2099. <cln/ring.h>
  2100. @end example
  2101. Rings can be compared for equality:
  2102. @table @code
  2103. @item bool operator== (const cl_ring&, const cl_ring&)
  2104. @itemx bool operator!= (const cl_ring&, const cl_ring&)
  2105. These compare two rings for equality.
  2106. @end table
  2107. Given a ring @code{R}, the following members can be used.
  2108. @table @code
  2109. @item void R->fprint (cl_ostream stream, const cl_ring_element& x)
  2110. @cindex @code{fprint ()}
  2111. @itemx cl_boolean R->equal (const cl_ring_element& x, const cl_ring_element& y)
  2112. @cindex @code{equal ()}
  2113. @itemx cl_ring_element R->zero ()
  2114. @cindex @code{zero ()}
  2115. @itemx cl_boolean R->zerop (const cl_ring_element& x)
  2116. @cindex @code{zerop ()}
  2117. @itemx cl_ring_element R->plus (const cl_ring_element& x, const cl_ring_element& y)
  2118. @cindex @code{plus ()}
  2119. @itemx cl_ring_element R->minus (const cl_ring_element& x, const cl_ring_element& y)
  2120. @cindex @code{minus ()}
  2121. @itemx cl_ring_element R->uminus (const cl_ring_element& x)
  2122. @cindex @code{uminus ()}
  2123. @itemx cl_ring_element R->one ()
  2124. @cindex @code{one ()}
  2125. @itemx cl_ring_element R->canonhom (const cl_I& x)
  2126. @cindex @code{canonhom ()}
  2127. @itemx cl_ring_element R->mul (const cl_ring_element& x, const cl_ring_element& y)
  2128. @cindex @code{mul ()}
  2129. @itemx cl_ring_element R->square (const cl_ring_element& x)
  2130. @cindex @code{square ()}
  2131. @itemx cl_ring_element R->expt_pos (const cl_ring_element& x, const cl_I& y)
  2132. @cindex @code{expt_pos ()}
  2133. @end table
  2134. The following rings are built-in.
  2135. @table @code
  2136. @item cl_null_ring cl_0_ring
  2137. The null ring, containing only zero.
  2138. @item cl_complex_ring cl_C_ring
  2139. The ring of complex numbers. This corresponds to the type @code{cl_N}.
  2140. @item cl_real_ring cl_R_ring
  2141. The ring of real numbers. This corresponds to the type @code{cl_R}.
  2142. @item cl_rational_ring cl_RA_ring
  2143. The ring of rational numbers. This corresponds to the type @code{cl_RA}.
  2144. @item cl_integer_ring cl_I_ring
  2145. The ring of integers. This corresponds to the type @code{cl_I}.
  2146. @end table
  2147. Type tests can be performed for any of @code{cl_C_ring}, @code{cl_R_ring},
  2148. @code{cl_RA_ring}, @code{cl_I_ring}:
  2149. @table @code
  2150. @item cl_boolean instanceof (const cl_number& x, const cl_number_ring& R)
  2151. @cindex @code{instanceof ()}
  2152. Tests whether the given number is an element of the number ring R.
  2153. @end table
  2154. @chapter Modular integers
  2155. @cindex modular integer
  2156. @section Modular integer rings
  2157. @cindex ring
  2158. CLN implements modular integers, i.e. integers modulo a fixed integer N.
  2159. The modulus is explicitly part of every modular integer. CLN doesn't
  2160. allow you to (accidentally) mix elements of different modular rings,
  2161. e.g. @code{(3 mod 4) + (2 mod 5)} will result in a runtime error.
  2162. (Ideally one would imagine a generic data type @code{cl_MI(N)}, but C++
  2163. doesn't have generic types. So one has to live with runtime checks.)
  2164. The class of modular integer rings is
  2165. @example
  2166. Ring
  2167. cl_ring
  2168. <cln/ring.h>
  2169. |
  2170. |
  2171. Modular integer ring
  2172. cl_modint_ring
  2173. <cln/modinteger.h>
  2174. @end example
  2175. @cindex @code{cl_modint_ring}
  2176. and the class of all modular integers (elements of modular integer rings) is
  2177. @example
  2178. Modular integer
  2179. cl_MI
  2180. <cln/modinteger.h>
  2181. @end example
  2182. Modular integer rings are constructed using the function
  2183. @table @code
  2184. @item cl_modint_ring find_modint_ring (const cl_I& N)
  2185. @cindex @code{find_modint_ring ()}
  2186. This function returns the modular ring @samp{Z/NZ}. It takes care
  2187. of finding out about special cases of @code{N}, like powers of two
  2188. and odd numbers for which Montgomery multiplication will be a win,
  2189. @cindex Montgomery multiplication
  2190. and precomputes any necessary auxiliary data for computing modulo @code{N}.
  2191. There is a cache table of rings, indexed by @code{N} (or, more precisely,
  2192. by @code{abs(N)}). This ensures that the precomputation costs are reduced
  2193. to a minimum.
  2194. @end table
  2195. Modular integer rings can be compared for equality:
  2196. @table @code
  2197. @item bool operator== (const cl_modint_ring&, const cl_modint_ring&)
  2198. @cindex @code{operator == ()}
  2199. @itemx bool operator!= (const cl_modint_ring&, const cl_modint_ring&)
  2200. @cindex @code{operator != ()}
  2201. These compare two modular integer rings for equality. Two different calls
  2202. to @code{find_modint_ring} with the same argument necessarily return the
  2203. same ring because it is memoized in the cache table.
  2204. @end table
  2205. @section Functions on modular integers
  2206. Given a modular integer ring @code{R}, the following members can be used.
  2207. @table @code
  2208. @item cl_I R->modulus
  2209. @cindex @code{modulus}
  2210. This is the ring's modulus, normalized to be nonnegative: @code{abs(N)}.
  2211. @item cl_MI R->zero()
  2212. @cindex @code{zero ()}
  2213. This returns @code{0 mod N}.
  2214. @item cl_MI R->one()
  2215. @cindex @code{one ()}
  2216. This returns @code{1 mod N}.
  2217. @item cl_MI R->canonhom (const cl_I& x)
  2218. @cindex @code{canonhom ()}
  2219. This returns @code{x mod N}.
  2220. @item cl_I R->retract (const cl_MI& x)
  2221. @cindex @code{retract ()}
  2222. This is a partial inverse function to @code{R->canonhom}. It returns the
  2223. standard representative (@code{>=0}, @code{<N}) of @code{x}.
  2224. @item cl_MI R->random(random_state& randomstate)
  2225. @itemx cl_MI R->random()
  2226. @cindex @code{random ()}
  2227. This returns a random integer modulo @code{N}.
  2228. @end table
  2229. The following operations are defined on modular integers.
  2230. @table @code
  2231. @item cl_modint_ring x.ring ()
  2232. @cindex @code{ring ()}
  2233. Returns the ring to which the modular integer @code{x} belongs.
  2234. @item cl_MI operator+ (const cl_MI&, const cl_MI&)
  2235. @cindex @code{operator + ()}
  2236. Returns the sum of two modular integers. One of the arguments may also
  2237. be a plain integer.
  2238. @item cl_MI operator- (const cl_MI&, const cl_MI&)
  2239. @cindex @code{operator - ()}
  2240. Returns the difference of two modular integers. One of the arguments may also
  2241. be a plain integer.
  2242. @item cl_MI operator- (const cl_MI&)
  2243. Returns the negative of a modular integer.
  2244. @item cl_MI operator* (const cl_MI&, const cl_MI&)
  2245. @cindex @code{operator * ()}
  2246. Returns the product of two modular integers. One of the arguments may also
  2247. be a plain integer.
  2248. @item cl_MI square (const cl_MI&)
  2249. @cindex @code{square ()}
  2250. Returns the square of a modular integer.
  2251. @item cl_MI recip (const cl_MI& x)
  2252. @cindex @code{recip ()}
  2253. Returns the reciprocal @code{x^-1} of a modular integer @code{x}. @code{x}
  2254. must be coprime to the modulus, otherwise an error message is issued.
  2255. @item cl_MI div (const cl_MI& x, const cl_MI& y)
  2256. @cindex @code{div ()}
  2257. Returns the quotient @code{x*y^-1} of two modular integers @code{x}, @code{y}.
  2258. @code{y} must be coprime to the modulus, otherwise an error message is issued.
  2259. @item cl_MI expt_pos (const cl_MI& x, const cl_I& y)
  2260. @cindex @code{expt_pos ()}
  2261. @code{y} must be > 0. Returns @code{x^y}.
  2262. @item cl_MI expt (const cl_MI& x, const cl_I& y)
  2263. @cindex @code{expt ()}
  2264. Returns @code{x^y}. If @code{y} is negative, @code{x} must be coprime to the
  2265. modulus, else an error message is issued.
  2266. @item cl_MI operator<< (const cl_MI& x, const cl_I& y)
  2267. @cindex @code{operator << ()}
  2268. Returns @code{x*2^y}.
  2269. @item cl_MI operator>> (const cl_MI& x, const cl_I& y)
  2270. @cindex @code{operator >> ()}
  2271. Returns @code{x*2^-y}. When @code{y} is positive, the modulus must be odd,
  2272. or an error message is issued.
  2273. @item bool operator== (const cl_MI&, const cl_MI&)
  2274. @cindex @code{operator == ()}
  2275. @itemx bool operator!= (const cl_MI&, const cl_MI&)
  2276. @cindex @code{operator != ()}
  2277. Compares two modular integers, belonging to the same modular integer ring,
  2278. for equality.
  2279. @item cl_boolean zerop (const cl_MI& x)
  2280. @cindex @code{zerop ()}
  2281. Returns true if @code{x} is @code{0 mod N}.
  2282. @end table
  2283. The following output functions are defined (see also the chapter on
  2284. input/output).
  2285. @table @code
  2286. @item void fprint (cl_ostream stream, const cl_MI& x)
  2287. @cindex @code{fprint ()}
  2288. @itemx cl_ostream operator<< (cl_ostream stream, const cl_MI& x)
  2289. @cindex @code{operator << ()}
  2290. Prints the modular integer @code{x} on the @code{stream}. The output may depend
  2291. on the global printer settings in the variable @code{default_print_flags}.
  2292. @end table
  2293. @chapter Symbolic data types
  2294. @cindex symbolic type
  2295. CLN implements two symbolic (non-numeric) data types: strings and symbols.
  2296. @section Strings
  2297. @cindex string
  2298. @cindex @code{cl_string}
  2299. The class
  2300. @example
  2301. String
  2302. cl_string
  2303. <cln/string.h>
  2304. @end example
  2305. implements immutable strings.
  2306. Strings are constructed through the following constructors:
  2307. @table @code
  2308. @item cl_string (const char * s)
  2309. Returns an immutable copy of the (zero-terminated) C string @code{s}.
  2310. @item cl_string (const char * ptr, unsigned long len)
  2311. Returns an immutable copy of the @code{len} characters at
  2312. @code{ptr[0]}, @dots{}, @code{ptr[len-1]}. NUL characters are allowed.
  2313. @end table
  2314. The following functions are available on strings:
  2315. @table @code
  2316. @item operator =
  2317. Assignment from @code{cl_string} and @code{const char *}.
  2318. @item s.length()
  2319. @cindex @code{length ()}
  2320. @itemx strlen(s)
  2321. @cindex @code{strlen ()}
  2322. Returns the length of the string @code{s}.
  2323. @item s[i]
  2324. @cindex @code{operator [] ()}
  2325. Returns the @code{i}th character of the string @code{s}.
  2326. @code{i} must be in the range @code{0 <= i < s.length()}.
  2327. @item bool equal (const cl_string& s1, const cl_string& s2)
  2328. @cindex @code{equal ()}
  2329. Compares two strings for equality. One of the arguments may also be a
  2330. plain @code{const char *}.
  2331. @end table
  2332. @section Symbols
  2333. @cindex symbol
  2334. @cindex @code{cl_symbol}
  2335. Symbols are uniquified strings: all symbols with the same name are shared.
  2336. This means that comparison of two symbols is fast (effectively just a pointer
  2337. comparison), whereas comparison of two strings must in the worst case walk
  2338. both strings until their end.
  2339. Symbols are used, for example, as tags for properties, as names of variables
  2340. in polynomial rings, etc.
  2341. Symbols are constructed through the following constructor:
  2342. @table @code
  2343. @item cl_symbol (const cl_string& s)
  2344. Looks up or creates a new symbol with a given name.
  2345. @end table
  2346. The following operations are available on symbols:
  2347. @table @code
  2348. @item cl_string (const cl_symbol& sym)
  2349. Conversion to @code{cl_string}: Returns the string which names the symbol
  2350. @code{sym}.
  2351. @item bool equal (const cl_symbol& sym1, const cl_symbol& sym2)
  2352. @cindex @code{equal ()}
  2353. Compares two symbols for equality. This is very fast.
  2354. @end table
  2355. @chapter Univariate polynomials
  2356. @cindex polynomial
  2357. @cindex univariate polynomial
  2358. @section Univariate polynomial rings
  2359. CLN implements univariate polynomials (polynomials in one variable) over an
  2360. arbitrary ring. The indeterminate variable may be either unnamed (and will be
  2361. printed according to @code{default_print_flags.univpoly_varname}, which
  2362. defaults to @samp{x}) or carry a given name. The base ring and the
  2363. indeterminate are explicitly part of every polynomial. CLN doesn't allow you to
  2364. (accidentally) mix elements of different polynomial rings, e.g.
  2365. @code{(a^2+1) * (b^3-1)} will result in a runtime error. (Ideally this should
  2366. return a multivariate polynomial, but they are not yet implemented in CLN.)
  2367. The classes of univariate polynomial rings are
  2368. @example
  2369. Ring
  2370. cl_ring
  2371. <cln/ring.h>
  2372. |
  2373. |
  2374. Univariate polynomial ring
  2375. cl_univpoly_ring
  2376. <cln/univpoly.h>
  2377. |
  2378. +----------------+-------------------+
  2379. | | |
  2380. Complex polynomial ring | Modular integer polynomial ring
  2381. cl_univpoly_complex_ring | cl_univpoly_modint_ring
  2382. <cln/univpoly_complex.h> | <cln/univpoly_modint.h>
  2383. |
  2384. +----------------+
  2385. | |
  2386. Real polynomial ring |
  2387. cl_univpoly_real_ring |
  2388. <cln/univpoly_real.h> |
  2389. |
  2390. +----------------+
  2391. | |
  2392. Rational polynomial ring |
  2393. cl_univpoly_rational_ring |
  2394. <cln/univpoly_rational.h> |
  2395. |
  2396. +----------------+
  2397. |
  2398. Integer polynomial ring
  2399. cl_univpoly_integer_ring
  2400. <cln/univpoly_integer.h>
  2401. @end example
  2402. and the corresponding classes of univariate polynomials are
  2403. @example
  2404. Univariate polynomial
  2405. cl_UP
  2406. <cln/univpoly.h>
  2407. |
  2408. +----------------+-------------------+
  2409. | | |
  2410. Complex polynomial | Modular integer polynomial
  2411. cl_UP_N | cl_UP_MI
  2412. <cln/univpoly_complex.h> | <cln/univpoly_modint.h>
  2413. |
  2414. +----------------+
  2415. | |
  2416. Real polynomial |
  2417. cl_UP_R |
  2418. <cln/univpoly_real.h> |
  2419. |
  2420. +----------------+
  2421. | |
  2422. Rational polynomial |
  2423. cl_UP_RA |
  2424. <cln/univpoly_rational.h> |
  2425. |
  2426. +----------------+
  2427. |
  2428. Integer polynomial
  2429. cl_UP_I
  2430. <cln/univpoly_integer.h>
  2431. @end example
  2432. Univariate polynomial rings are constructed using the functions
  2433. @table @code
  2434. @item cl_univpoly_ring find_univpoly_ring (const cl_ring& R)
  2435. @itemx cl_univpoly_ring find_univpoly_ring (const cl_ring& R, const cl_symbol& varname)
  2436. This function returns the polynomial ring @samp{R[X]}, unnamed or named.
  2437. @code{R} may be an arbitrary ring. This function takes care of finding out
  2438. about special cases of @code{R}, such as the rings of complex numbers,
  2439. real numbers, rational numbers, integers, or modular integer rings.
  2440. There is a cache table of rings, indexed by @code{R} and @code{varname}.
  2441. This ensures that two calls of this function with the same arguments will
  2442. return the same polynomial ring.
  2443. @itemx cl_univpoly_complex_ring find_univpoly_ring (const cl_complex_ring& R)
  2444. @cindex @code{find_univpoly_ring ()}
  2445. @itemx cl_univpoly_complex_ring find_univpoly_ring (const cl_complex_ring& R, const cl_symbol& varname)
  2446. @itemx cl_univpoly_real_ring find_univpoly_ring (const cl_real_ring& R)
  2447. @itemx cl_univpoly_real_ring find_univpoly_ring (const cl_real_ring& R, const cl_symbol& varname)
  2448. @itemx cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& R)
  2449. @itemx cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& R, const cl_symbol& varname)
  2450. @itemx cl_univpoly_integer_ring find_univpoly_ring (const cl_integer_ring& R)
  2451. @itemx cl_univpoly_integer_ring find_univpoly_ring (const cl_integer_ring& R, const cl_symbol& varname)
  2452. @itemx cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring& R)
  2453. @itemx cl_univpoly_modint_ring find_univpoly_ring (const cl_modint_ring& R, const cl_symbol& varname)
  2454. These functions are equivalent to the general @code{find_univpoly_ring},
  2455. only the return type is more specific, according to the base ring's type.
  2456. @end table
  2457. @section Functions on univariate polynomials
  2458. Given a univariate polynomial ring @code{R}, the following members can be used.
  2459. @table @code
  2460. @item cl_ring R->basering()
  2461. @cindex @code{basering ()}
  2462. This returns the base ring, as passed to @samp{find_univpoly_ring}.
  2463. @item cl_UP R->zero()
  2464. @cindex @code{zero ()}
  2465. This returns @code{0 in R}, a polynomial of degree -1.
  2466. @item cl_UP R->one()
  2467. @cindex @code{one ()}
  2468. This returns @code{1 in R}, a polynomial of degree <= 0.
  2469. @item cl_UP R->canonhom (const cl_I& x)
  2470. @cindex @code{canonhom ()}
  2471. This returns @code{x in R}, a polynomial of degree <= 0.
  2472. @item cl_UP R->monomial (const cl_ring_element& x, uintL e)
  2473. @cindex @code{monomial ()}
  2474. This returns a sparse polynomial: @code{x * X^e}, where @code{X} is the
  2475. indeterminate.
  2476. @item cl_UP R->create (sintL degree)
  2477. @cindex @code{create ()}
  2478. Creates a new polynomial with a given degree. The zero polynomial has degree
  2479. @code{-1}. After creating the polynomial, you should put in the coefficients,
  2480. using the @code{set_coeff} member function, and then call the @code{finalize}
  2481. member function.
  2482. @end table
  2483. The following are the only destructive operations on univariate polynomials.
  2484. @table @code
  2485. @item void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y)
  2486. @cindex @code{set_coeff ()}
  2487. This changes the coefficient of @code{X^index} in @code{x} to be @code{y}.
  2488. After changing a polynomial and before applying any "normal" operation on it,
  2489. you should call its @code{finalize} member function.
  2490. @item void finalize (cl_UP& x)
  2491. @cindex @code{finalize ()}
  2492. This function marks the endpoint of destructive modifications of a polynomial.
  2493. It normalizes the internal representation so that subsequent computations have
  2494. less overhead. Doing normal computations on unnormalized polynomials may
  2495. produce wrong results or crash the program.
  2496. @end table
  2497. The following operations are defined on univariate polynomials.
  2498. @table @code
  2499. @item cl_univpoly_ring x.ring ()
  2500. @cindex @code{ring ()}
  2501. Returns the ring to which the univariate polynomial @code{x} belongs.
  2502. @item cl_UP operator+ (const cl_UP&, const cl_UP&)
  2503. @cindex @code{operator + ()}
  2504. Returns the sum of two univariate polynomials.
  2505. @item cl_UP operator- (const cl_UP&, const cl_UP&)
  2506. @cindex @code{operator - ()}
  2507. Returns the difference of two univariate polynomials.
  2508. @item cl_UP operator- (const cl_UP&)
  2509. Returns the negative of a univariate polynomial.
  2510. @item cl_UP operator* (const cl_UP&, const cl_UP&)
  2511. @cindex @code{operator * ()}
  2512. Returns the product of two univariate polynomials. One of the arguments may
  2513. also be a plain integer or an element of the base ring.
  2514. @item cl_UP square (const cl_UP&)
  2515. @cindex @code{square ()}
  2516. Returns the square of a univariate polynomial.
  2517. @item cl_UP expt_pos (const cl_UP& x, const cl_I& y)
  2518. @cindex @code{expt_pos ()}
  2519. @code{y} must be > 0. Returns @code{x^y}.
  2520. @item bool operator== (const cl_UP&, const cl_UP&)
  2521. @cindex @code{operator == ()}
  2522. @itemx bool operator!= (const cl_UP&, const cl_UP&)
  2523. @cindex @code{operator != ()}
  2524. Compares two univariate polynomials, belonging to the same univariate
  2525. polynomial ring, for equality.
  2526. @item cl_boolean zerop (const cl_UP& x)
  2527. @cindex @code{zerop ()}
  2528. Returns true if @code{x} is @code{0 in R}.
  2529. @item sintL degree (const cl_UP& x)
  2530. @cindex @code{degree ()}
  2531. Returns the degree of the polynomial. The zero polynomial has degree @code{-1}.
  2532. @item cl_ring_element coeff (const cl_UP& x, uintL index)
  2533. @cindex @code{coeff ()}
  2534. Returns the coefficient of @code{X^index} in the polynomial @code{x}.
  2535. @item cl_ring_element x (const cl_ring_element& y)
  2536. @cindex @code{operator () ()}
  2537. Evaluation: If @code{x} is a polynomial and @code{y} belongs to the base ring,
  2538. then @samp{x(y)} returns the value of the substitution of @code{y} into
  2539. @code{x}.
  2540. @item cl_UP deriv (const cl_UP& x)
  2541. @cindex @code{deriv ()}
  2542. Returns the derivative of the polynomial @code{x} with respect to the
  2543. indeterminate @code{X}.
  2544. @end table
  2545. The following output functions are defined (see also the chapter on
  2546. input/output).
  2547. @table @code
  2548. @item void fprint (cl_ostream stream, const cl_UP& x)
  2549. @cindex @code{fprint ()}
  2550. @itemx cl_ostream operator<< (cl_ostream stream, const cl_UP& x)
  2551. @cindex @code{operator << ()}
  2552. Prints the univariate polynomial @code{x} on the @code{stream}. The output may
  2553. depend on the global printer settings in the variable
  2554. @code{default_print_flags}.
  2555. @end table
  2556. @section Special polynomials
  2557. The following functions return special polynomials.
  2558. @table @code
  2559. @item cl_UP_I tschebychev (sintL n)
  2560. @cindex @code{tschebychev ()}
  2561. @cindex Chebyshev polynomial
  2562. Returns the n-th Chebyshev polynomial (n >= 0).
  2563. @item cl_UP_I hermite (sintL n)
  2564. @cindex @code{hermite ()}
  2565. @cindex Hermite polynomial
  2566. Returns the n-th Hermite polynomial (n >= 0).
  2567. @item cl_UP_RA legendre (sintL n)
  2568. @cindex @code{legendre ()}
  2569. @cindex Legende polynomial
  2570. Returns the n-th Legendre polynomial (n >= 0).
  2571. @item cl_UP_I laguerre (sintL n)
  2572. @cindex @code{laguerre ()}
  2573. @cindex Laguerre polynomial
  2574. Returns the n-th Laguerre polynomial (n >= 0).
  2575. @end table
  2576. Information how to derive the differential equation satisfied by each
  2577. of these polynomials from their definition can be found in the
  2578. @code{doc/polynomial/} directory.
  2579. @chapter Internals
  2580. @section Why C++ ?
  2581. @cindex advocacy
  2582. Using C++ as an implementation language provides
  2583. @itemize @bullet
  2584. @item
  2585. Efficiency: It compiles to machine code.
  2586. @item
  2587. @cindex portability
  2588. Portability: It runs on all platforms supporting a C++ compiler. Because
  2589. of the availability of GNU C++, this includes all currently used 32-bit and
  2590. 64-bit platforms, independently of the quality of the vendor's C++ compiler.
  2591. @item
  2592. Type safety: The C++ compilers knows about the number types and complains if,
  2593. for example, you try to assign a float to an integer variable. However,
  2594. a drawback is that C++ doesn't know about generic types, hence a restriction
  2595. like that @code{operator+ (const cl_MI&, const cl_MI&)} requires that both
  2596. arguments belong to the same modular ring cannot be expressed as a compile-time
  2597. information.
  2598. @item
  2599. Algebraic syntax: The elementary operations @code{+}, @code{-}, @code{*},
  2600. @code{=}, @code{==}, ... can be used in infix notation, which is more
  2601. convenient than Lisp notation @samp{(+ x y)} or C notation @samp{add(x,y,&z)}.
  2602. @end itemize
  2603. With these language features, there is no need for two separate languages,
  2604. one for the implementation of the library and one in which the library's users
  2605. can program. This means that a prototype implementation of an algorithm
  2606. can be integrated into the library immediately after it has been tested and
  2607. debugged. No need to rewrite it in a low-level language after having prototyped
  2608. in a high-level language.
  2609. @section Memory efficiency
  2610. In order to save memory allocations, CLN implements:
  2611. @itemize @bullet
  2612. @item
  2613. Object sharing: An operation like @code{x+0} returns @code{x} without copying
  2614. it.
  2615. @item
  2616. @cindex garbage collection
  2617. @cindex reference counting
  2618. Garbage collection: A reference counting mechanism makes sure that any
  2619. number object's storage is freed immediately when the last reference to the
  2620. object is gone.
  2621. @item
  2622. @cindex immediate numbers
  2623. Small integers are represented as immediate values instead of pointers
  2624. to heap allocated storage. This means that integers @code{> -2^29},
  2625. @code{< 2^29} don't consume heap memory, unless they were explicitly allocated
  2626. on the heap.
  2627. @end itemize
  2628. @section Speed efficiency
  2629. Speed efficiency is obtained by the combination of the following tricks
  2630. and algorithms:
  2631. @itemize @bullet
  2632. @item
  2633. Small integers, being represented as immediate values, don't require
  2634. memory access, just a couple of instructions for each elementary operation.
  2635. @item
  2636. The kernel of CLN has been written in assembly language for some CPUs
  2637. (@code{i386}, @code{m68k}, @code{sparc}, @code{mips}, @code{arm}).
  2638. @item
  2639. On all CPUs, CLN may be configured to use the superefficient low-level
  2640. routines from GNU GMP version 3.
  2641. @item
  2642. For large numbers, CLN uses, instead of the standard @code{O(N^2)}
  2643. algorithm, the Karatsuba multiplication, which is an
  2644. @iftex
  2645. @tex
  2646. $O(N^{1.6})$
  2647. @end tex
  2648. @end iftex
  2649. @ifinfo
  2650. @code{O(N^1.6)}
  2651. @end ifinfo
  2652. algorithm.
  2653. @item
  2654. For very large numbers (more than 12000 decimal digits), CLN uses
  2655. @iftex
  2656. Sch{@"o}nhage-Strassen
  2657. @cindex Sch{@"o}nhage-Strassen multiplication
  2658. @end iftex
  2659. @ifinfo
  2660. Sch�nhage-Strassen
  2661. @cindex Sch�nhage-Strassen multiplication
  2662. @end ifinfo
  2663. multiplication, which is an asymptotically optimal multiplication
  2664. algorithm.
  2665. @item
  2666. These fast multiplication algorithms also give improvements in the speed
  2667. of division and radix conversion.
  2668. @end itemize
  2669. @section Garbage collection
  2670. @cindex garbage collection
  2671. All the number classes are reference count classes: They only contain a pointer
  2672. to an object in the heap. Upon construction, assignment and destruction of
  2673. number objects, only the objects' reference count are manipulated.
  2674. Memory occupied by number objects are automatically reclaimed as soon as
  2675. their reference count drops to zero.
  2676. For number rings, another strategy is implemented: There is a cache of,
  2677. for example, the modular integer rings. A modular integer ring is destroyed
  2678. only if its reference count dropped to zero and the cache is about to be
  2679. resized. The effect of this strategy is that recently used rings remain
  2680. cached, whereas undue memory consumption through cached rings is avoided.
  2681. @chapter Using the library
  2682. For the following discussion, we will assume that you have installed
  2683. the CLN source in @code{$CLN_DIR} and built it in @code{$CLN_TARGETDIR}.
  2684. For example, for me it's @code{CLN_DIR="$HOME/cln"} and
  2685. @code{CLN_TARGETDIR="$HOME/cln/linuxelf"}. You might define these as
  2686. environment variables, or directly substitute the appropriate values.
  2687. @section Compiler options
  2688. @cindex compiler options
  2689. Until you have installed CLN in a public place, the following options are
  2690. needed:
  2691. When you compile CLN application code, add the flags
  2692. @example
  2693. -I$CLN_DIR/include -I$CLN_TARGETDIR/include
  2694. @end example
  2695. to the C++ compiler's command line (@code{make} variable CFLAGS or CXXFLAGS).
  2696. When you link CLN application code to form an executable, add the flags
  2697. @example
  2698. $CLN_TARGETDIR/src/libcln.a
  2699. @end example
  2700. to the C/C++ compiler's command line (@code{make} variable LIBS).
  2701. If you did a @code{make install}, the include files are installed in a
  2702. public directory (normally @code{/usr/local/include}), hence you don't
  2703. need special flags for compiling. The library has been installed to a
  2704. public directory as well (normally @code{/usr/local/lib}), hence when
  2705. linking a CLN application it is sufficient to give the flag @code{-lcln}.
  2706. Since CLN version 1.1, there are two tools to make the creation of
  2707. software packages that use CLN easier:
  2708. @itemize @bullet
  2709. @item
  2710. @cindex @code{cln-config}
  2711. @code{cln-config} is a shell script that you can use to determine the
  2712. compiler and linker command line options required to compile and link a
  2713. program with CLN. Start it with @code{--help} to learn about its options
  2714. or consult the manpage that comes with it.
  2715. @item
  2716. @cindex @code{AC_PATH_CLN}
  2717. @code{AC_PATH_CLN} is for packages configured using GNU automake.
  2718. The synopsis is:
  2719. @example
  2720. @code{AC_PATH_CLN([@var{MIN-VERSION}, [@var{ACTION-IF-FOUND} [, @var{ACTION-IF-NOT-FOUND}]]])}
  2721. @end example
  2722. This macro determines the location of CLN using @code{cln-config}, which
  2723. is either found in the user's path, or from the environment variable
  2724. @code{CLN_CONFIG}. It tests the installed libraries to make sure that
  2725. their version is not earlier than @var{MIN-VERSION} (a default version
  2726. will be used if not specified). If the required version was found, sets
  2727. the @env{CLN_CPPFLAGS} and the @env{CLN_LIBS} variables. This
  2728. macro is in the file @file{cln.m4} which is installed in
  2729. @file{$datadir/aclocal}. Note that if automake was installed with a
  2730. different @samp{--prefix} than CLN, you will either have to manually
  2731. move @file{cln.m4} to automake's @file{$datadir/aclocal}, or give
  2732. aclocal the @samp{-I} option when running it. Here is a possible example
  2733. to be included in your package's @file{configure.in}:
  2734. @example
  2735. AC_PATH_CLN(1.1.0, [
  2736. LIBS="$LIBS $CLN_LIBS"
  2737. CPPFLAGS="$CPPFLAGS $CLN_CPPFLAGS"
  2738. ], AC_MSG_ERROR([No suitable installed version of CLN could be found.]))
  2739. @end example
  2740. @end itemize
  2741. @section Compatibility to old CLN versions
  2742. @cindex namespace
  2743. @cindex compatibility
  2744. As of CLN version 1.1 all non-macro identifiers were hidden in namespace
  2745. @code{cln} in order to avoid potential name clashes with other C++
  2746. libraries. If you have an old application, you will have to manually
  2747. port it to the new scheme. The following principles will help during
  2748. the transition:
  2749. @itemize @bullet
  2750. @item
  2751. All headers are now in a separate subdirectory. Instead of including
  2752. @code{cl_}@var{something}@code{.h}, include
  2753. @code{cln/}@var{something}@code{.h} now.
  2754. @item
  2755. All public identifiers (typenames and functions) have lost their
  2756. @code{cl_} prefix. Exceptions are all the typenames of number types,
  2757. (cl_N, cl_I, cl_MI, @dots{}), rings, symbolic types (cl_string,
  2758. cl_symbol) and polynomials (cl_UP_@var{type}). (This is because their
  2759. names would not be mnemonic enough once the namespace @code{cln} is
  2760. imported. Even in a namespace we favor @code{cl_N} over @code{N}.)
  2761. @item
  2762. All public @emph{functions} that had by a @code{cl_} in their name still
  2763. carry that @code{cl_} if it is intrinsic part of a typename (as in
  2764. @code{cl_I_to_int ()}).
  2765. @end itemize
  2766. When developing other libraries, please keep in mind not to import the
  2767. namespace @code{cln} in one of your public header files by saying
  2768. @code{using namespace cln;}. This would propagate to other applications
  2769. and can cause name clashes there.
  2770. @section Include files
  2771. @cindex include files
  2772. @cindex header files
  2773. Here is a summary of the include files and their contents.
  2774. @table @code
  2775. @item <cln/object.h>
  2776. General definitions, reference counting, garbage collection.
  2777. @item <cln/number.h>
  2778. The class cl_number.
  2779. @item <cln/complex.h>
  2780. Functions for class cl_N, the complex numbers.
  2781. @item <cln/real.h>
  2782. Functions for class cl_R, the real numbers.
  2783. @item <cln/float.h>
  2784. Functions for class cl_F, the floats.
  2785. @item <cln/sfloat.h>
  2786. Functions for class cl_SF, the short-floats.
  2787. @item <cln/ffloat.h>
  2788. Functions for class cl_FF, the single-floats.
  2789. @item <cln/dfloat.h>
  2790. Functions for class cl_DF, the double-floats.
  2791. @item <cln/lfloat.h>
  2792. Functions for class cl_LF, the long-floats.
  2793. @item <cln/rational.h>
  2794. Functions for class cl_RA, the rational numbers.
  2795. @item <cln/integer.h>
  2796. Functions for class cl_I, the integers.
  2797. @item <cln/io.h>
  2798. Input/Output.
  2799. @item <cln/complex_io.h>
  2800. Input/Output for class cl_N, the complex numbers.
  2801. @item <cln/real_io.h>
  2802. Input/Output for class cl_R, the real numbers.
  2803. @item <cln/float_io.h>
  2804. Input/Output for class cl_F, the floats.
  2805. @item <cln/sfloat_io.h>
  2806. Input/Output for class cl_SF, the short-floats.
  2807. @item <cln/ffloat_io.h>
  2808. Input/Output for class cl_FF, the single-floats.
  2809. @item <cln/dfloat_io.h>
  2810. Input/Output for class cl_DF, the double-floats.
  2811. @item <cln/lfloat_io.h>
  2812. Input/Output for class cl_LF, the long-floats.
  2813. @item <cln/rational_io.h>
  2814. Input/Output for class cl_RA, the rational numbers.
  2815. @item <cln/integer_io.h>
  2816. Input/Output for class cl_I, the integers.
  2817. @item <cln/input.h>
  2818. Flags for customizing input operations.
  2819. @item <cln/output.h>
  2820. Flags for customizing output operations.
  2821. @item <cln/malloc.h>
  2822. @code{malloc_hook}, @code{free_hook}.
  2823. @item <cln/abort.h>
  2824. @code{cl_abort}.
  2825. @item <cln/condition.h>
  2826. Conditions/exceptions.
  2827. @item <cln/string.h>
  2828. Strings.
  2829. @item <cln/symbol.h>
  2830. Symbols.
  2831. @item <cln/proplist.h>
  2832. Property lists.
  2833. @item <cln/ring.h>
  2834. General rings.
  2835. @item <cln/null_ring.h>
  2836. The null ring.
  2837. @item <cln/complex_ring.h>
  2838. The ring of complex numbers.
  2839. @item <cln/real_ring.h>
  2840. The ring of real numbers.
  2841. @item <cln/rational_ring.h>
  2842. The ring of rational numbers.
  2843. @item <cln/integer_ring.h>
  2844. The ring of integers.
  2845. @item <cln/numtheory.h>
  2846. Number threory functions.
  2847. @item <cln/modinteger.h>
  2848. Modular integers.
  2849. @item <cln/V.h>
  2850. Vectors.
  2851. @item <cln/GV.h>
  2852. General vectors.
  2853. @item <cln/GV_number.h>
  2854. General vectors over cl_number.
  2855. @item <cln/GV_complex.h>
  2856. General vectors over cl_N.
  2857. @item <cln/GV_real.h>
  2858. General vectors over cl_R.
  2859. @item <cln/GV_rational.h>
  2860. General vectors over cl_RA.
  2861. @item <cln/GV_integer.h>
  2862. General vectors over cl_I.
  2863. @item <cln/GV_modinteger.h>
  2864. General vectors of modular integers.
  2865. @item <cln/SV.h>
  2866. Simple vectors.
  2867. @item <cln/SV_number.h>
  2868. Simple vectors over cl_number.
  2869. @item <cln/SV_complex.h>
  2870. Simple vectors over cl_N.
  2871. @item <cln/SV_real.h>
  2872. Simple vectors over cl_R.
  2873. @item <cln/SV_rational.h>
  2874. Simple vectors over cl_RA.
  2875. @item <cln/SV_integer.h>
  2876. Simple vectors over cl_I.
  2877. @item <cln/SV_ringelt.h>
  2878. Simple vectors of general ring elements.
  2879. @item <cln/univpoly.h>
  2880. Univariate polynomials.
  2881. @item <cln/univpoly_integer.h>
  2882. Univariate polynomials over the integers.
  2883. @item <cln/univpoly_rational.h>
  2884. Univariate polynomials over the rational numbers.
  2885. @item <cln/univpoly_real.h>
  2886. Univariate polynomials over the real numbers.
  2887. @item <cln/univpoly_complex.h>
  2888. Univariate polynomials over the complex numbers.
  2889. @item <cln/univpoly_modint.h>
  2890. Univariate polynomials over modular integer rings.
  2891. @item <cln/timing.h>
  2892. Timing facilities.
  2893. @item <cln/cln.h>
  2894. Includes all of the above.
  2895. @end table
  2896. @section An Example
  2897. A function which computes the nth Fibonacci number can be written as follows.
  2898. @cindex Fibonacci number
  2899. @example
  2900. #include <cln/integer.h>
  2901. #include <cln/real.h>
  2902. using namespace cln;
  2903. // Returns F_n, computed as the nearest integer to
  2904. // ((1+sqrt(5))/2)^n/sqrt(5). Assume n>=0.
  2905. const cl_I fibonacci (int n)
  2906. @{
  2907. // Need a precision of ((1+sqrt(5))/2)^-n.
  2908. float_format_t prec = float_format((int)(0.208987641*n+5));
  2909. cl_R sqrt5 = sqrt(cl_float(5,prec));
  2910. cl_R phi = (1+sqrt5)/2;
  2911. return round1( expt(phi,n)/sqrt5 );
  2912. @}
  2913. @end example
  2914. Let's explain what is going on in detail.
  2915. The include file @code{<cln/integer.h>} is necessary because the type
  2916. @code{cl_I} is used in the function, and the include file @code{<cln/real.h>}
  2917. is needed for the type @code{cl_R} and the floating point number functions.
  2918. The order of the include files does not matter. In order not to write
  2919. out @code{cln::}@var{foo} in this simple example we can safely import
  2920. the whole namespace @code{cln}.
  2921. Then comes the function declaration. The argument is an @code{int}, the
  2922. result an integer. The return type is defined as @samp{const cl_I}, not
  2923. simply @samp{cl_I}, because that allows the compiler to detect typos like
  2924. @samp{fibonacci(n) = 100}. It would be possible to declare the return
  2925. type as @code{const cl_R} (real number) or even @code{const cl_N} (complex
  2926. number). We use the most specialized possible return type because functions
  2927. which call @samp{fibonacci} will be able to profit from the compiler's type
  2928. analysis: Adding two integers is slightly more efficient than adding the
  2929. same objects declared as complex numbers, because it needs less type
  2930. dispatch. Also, when linking to CLN as a non-shared library, this minimizes
  2931. the size of the resulting executable program.
  2932. The result will be computed as expt(phi,n)/sqrt(5), rounded to the nearest
  2933. integer. In order to get a correct result, the absolute error should be less
  2934. than 1/2, i.e. the relative error should be less than sqrt(5)/(2*expt(phi,n)).
  2935. To this end, the first line computes a floating point precision for sqrt(5)
  2936. and phi.
  2937. Then sqrt(5) is computed by first converting the integer 5 to a floating point
  2938. number and than taking the square root. The converse, first taking the square
  2939. root of 5, and then converting to the desired precision, would not work in
  2940. CLN: The square root would be computed to a default precision (normally
  2941. single-float precision), and the following conversion could not help about
  2942. the lacking accuracy. This is because CLN is not a symbolic computer algebra
  2943. system and does not represent sqrt(5) in a non-numeric way.
  2944. The type @code{cl_R} for sqrt5 and, in the following line, phi is the only
  2945. possible choice. You cannot write @code{cl_F} because the C++ compiler can
  2946. only infer that @code{cl_float(5,prec)} is a real number. You cannot write
  2947. @code{cl_N} because a @samp{round1} does not exist for general complex
  2948. numbers.
  2949. When the function returns, all the local variables in the function are
  2950. automatically reclaimed (garbage collected). Only the result survives and
  2951. gets passed to the caller.
  2952. The file @code{fibonacci.cc} in the subdirectory @code{examples}
  2953. contains this implementation together with an even faster algorithm.
  2954. @section Debugging support
  2955. @cindex debugging
  2956. When debugging a CLN application with GNU @code{gdb}, two facilities are
  2957. available from the library:
  2958. @itemize @bullet
  2959. @item The library does type checks, range checks, consistency checks at
  2960. many places. When one of these fails, the function @code{cl_abort()} is
  2961. called. Its default implementation is to perform an @code{exit(1)}, so
  2962. you won't have a core dump. But for debugging, it is best to set a
  2963. breakpoint at this function:
  2964. @example
  2965. (gdb) break cl_abort
  2966. @end example
  2967. When this breakpoint is hit, look at the stack's backtrace:
  2968. @example
  2969. (gdb) where
  2970. @end example
  2971. @item The debugger's normal @code{print} command doesn't know about
  2972. CLN's types and therefore prints mostly useless hexadecimal addresses.
  2973. CLN offers a function @code{cl_print}, callable from the debugger,
  2974. for printing number objects. In order to get this function, you have
  2975. to define the macro @samp{CL_DEBUG} and then include all the header files
  2976. for which you want @code{cl_print} debugging support. For example:
  2977. @cindex @code{CL_DEBUG}
  2978. @example
  2979. #define CL_DEBUG
  2980. #include <cln/string.h>
  2981. @end example
  2982. Now, if you have in your program a variable @code{cl_string s}, and
  2983. inspect it under @code{gdb}, the output may look like this:
  2984. @example
  2985. (gdb) print s
  2986. $7 = @{<cl_gcpointer> = @{ = @{pointer = 0x8055b60, heappointer = 0x8055b60,
  2987. word = 134568800@}@}, @}
  2988. (gdb) call cl_print(s)
  2989. (cl_string) ""
  2990. $8 = 134568800
  2991. @end example
  2992. Note that the output of @code{cl_print} goes to the program's error output,
  2993. not to gdb's standard output.
  2994. Note, however, that the above facility does not work with all CLN types,
  2995. only with number objects and similar. Therefore CLN offers a member function
  2996. @code{debug_print()} on all CLN types. The same macro @samp{CL_DEBUG}
  2997. is needed for this member function to be implemented. Under @code{gdb},
  2998. you call it like this:
  2999. @cindex @code{debug_print ()}
  3000. @example
  3001. (gdb) print s
  3002. $7 = @{<cl_gcpointer> = @{ = @{pointer = 0x8055b60, heappointer = 0x8055b60,
  3003. word = 134568800@}@}, @}
  3004. (gdb) call s.debug_print()
  3005. (cl_string) ""
  3006. (gdb) define cprint
  3007. >call ($1).debug_print()
  3008. >end
  3009. (gdb) cprint s
  3010. (cl_string) ""
  3011. @end example
  3012. Unfortunately, this feature does not seem to work under all circumstances.
  3013. @end itemize
  3014. @chapter Customizing
  3015. @cindex customizing
  3016. @section Error handling
  3017. When a fatal error occurs, an error message is output to the standard error
  3018. output stream, and the function @code{cl_abort} is called. The default
  3019. version of this function (provided in the library) terminates the application.
  3020. To catch such a fatal error, you need to define the function @code{cl_abort}
  3021. yourself, with the prototype
  3022. @example
  3023. #include <cln/abort.h>
  3024. void cl_abort (void);
  3025. @end example
  3026. @cindex @code{cl_abort ()}
  3027. This function must not return control to its caller.
  3028. @section Floating-point underflow
  3029. @cindex underflow
  3030. Floating point underflow denotes the situation when a floating-point number
  3031. is to be created which is so close to @code{0} that its exponent is too
  3032. low to be represented internally. By default, this causes a fatal error.
  3033. If you set the global variable
  3034. @example
  3035. cl_boolean cl_inhibit_floating_point_underflow
  3036. @end example
  3037. to @code{cl_true}, the error will be inhibited, and a floating-point zero
  3038. will be generated instead. The default value of
  3039. @code{cl_inhibit_floating_point_underflow} is @code{cl_false}.
  3040. @section Customizing I/O
  3041. The output of the function @code{fprint} may be customized by changing the
  3042. value of the global variable @code{default_print_flags}.
  3043. @cindex @code{default_print_flags}
  3044. @section Customizing the memory allocator
  3045. Every memory allocation of CLN is done through the function pointer
  3046. @code{malloc_hook}. Freeing of this memory is done through the function
  3047. pointer @code{free_hook}. The default versions of these functions,
  3048. provided in the library, call @code{malloc} and @code{free} and check
  3049. the @code{malloc} result against @code{NULL}.
  3050. If you want to provide another memory allocator, you need to define
  3051. the variables @code{malloc_hook} and @code{free_hook} yourself,
  3052. like this:
  3053. @example
  3054. #include <cln/malloc.h>
  3055. namespace cln @{
  3056. void* (*malloc_hook) (size_t size) = @dots{};
  3057. void (*free_hook) (void* ptr) = @dots{};
  3058. @}
  3059. @end example
  3060. @cindex @code{malloc_hook ()}
  3061. @cindex @code{free_hook ()}
  3062. The @code{cl_malloc_hook} function must not return a @code{NULL} pointer.
  3063. It is not possible to change the memory allocator at runtime, because
  3064. it is already called at program startup by the constructors of some
  3065. global variables.
  3066. @c Indices
  3067. @unnumbered Index
  3068. @printindex my
  3069. @c Table of contents
  3070. @contents
  3071. @bye