|
|
// Univariate Polynomials.
#ifndef _CL_UNIVPOLY_H
#define _CL_UNIVPOLY_H
#include "cln/object.h"
#include "cln/ring.h"
#include "cln/malloc.h"
#include "cln/proplist.h"
#include "cln/symbol.h"
#include "cln/V.h"
#include "cln/io.h"
namespace cln {
// To protect against mixing elements of different polynomial rings, every
// polynomial carries its ring in itself.
class cl_heap_univpoly_ring;
class cl_univpoly_ring : public cl_ring { public: // Default constructor.
cl_univpoly_ring (); // Constructor. Takes a cl_heap_univpoly_ring*, increments its refcount.
cl_univpoly_ring (cl_heap_univpoly_ring* r); // Private constructor. Doesn't increment the refcount.
cl_univpoly_ring (cl_private_thing); // Copy constructor.
cl_univpoly_ring (const cl_univpoly_ring&); // Assignment operator.
cl_univpoly_ring& operator= (const cl_univpoly_ring&); // Automatic dereferencing.
cl_heap_univpoly_ring* operator-> () const { return (cl_heap_univpoly_ring*)heappointer; } }; // Copy constructor and assignment operator.
CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_ring,cl_ring) CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_ring,cl_univpoly_ring)
// Normal constructor for `cl_univpoly_ring'.
inline cl_univpoly_ring::cl_univpoly_ring (cl_heap_univpoly_ring* r) : cl_ring ((cl_private_thing) (cl_inc_pointer_refcount((cl_heap*)r), r)) {} // Private constructor for `cl_univpoly_ring'.
inline cl_univpoly_ring::cl_univpoly_ring (cl_private_thing p) : cl_ring (p) {}
// Operations on univariate polynomial rings.
inline bool operator== (const cl_univpoly_ring& R1, const cl_univpoly_ring& R2) { return (R1.pointer == R2.pointer); } inline bool operator!= (const cl_univpoly_ring& R1, const cl_univpoly_ring& R2) { return (R1.pointer != R2.pointer); } inline bool operator== (const cl_univpoly_ring& R1, cl_heap_univpoly_ring* R2) { return (R1.pointer == R2); } inline bool operator!= (const cl_univpoly_ring& R1, cl_heap_univpoly_ring* R2) { return (R1.pointer != R2); }
// Representation of a univariate polynomial.
class _cl_UP /* cf. _cl_ring_element */ { public: cl_gcpointer rep; // vector of coefficients, a cl_V_any
// Default constructor.
_cl_UP (); public: /* ugh */ // Constructor.
_cl_UP (const cl_heap_univpoly_ring* R, const cl_V_any& r) : rep (as_cl_private_thing(r)) { (void)R; } _cl_UP (const cl_univpoly_ring& R, const cl_V_any& r) : rep (as_cl_private_thing(r)) { (void)R; } public: // Conversion.
CL_DEFINE_CONVERTER(_cl_ring_element) public: // Ability to place an object at a given address.
void* operator new (size_t size) { return malloc_hook(size); } void* operator new (size_t size, void* ptr) { (void)size; return ptr; } void operator delete (void* ptr) { free_hook(ptr); } };
class cl_UP /* cf. cl_ring_element */ : public _cl_UP { protected: cl_univpoly_ring _ring; // polynomial ring (references the base ring)
public: const cl_univpoly_ring& ring () const { return _ring; } private: // Default constructor.
cl_UP (); public: /* ugh */ // Constructor.
cl_UP (const cl_univpoly_ring& R, const cl_V_any& r) : _cl_UP (R,r), _ring (R) {} cl_UP (const cl_univpoly_ring& R, const _cl_UP& r) : _cl_UP (r), _ring (R) {} public: // Conversion.
CL_DEFINE_CONVERTER(cl_ring_element) // Destructive modification.
void set_coeff (uintL index, const cl_ring_element& y); void finalize(); // Evaluation.
const cl_ring_element operator() (const cl_ring_element& y) const; // Debugging output.
void debug_print () const; public: // Ability to place an object at a given address.
void* operator new (size_t size) { return malloc_hook(size); } void* operator new (size_t size, void* ptr) { (void)size; return ptr; } void operator delete (void* ptr) { free_hook(ptr); } };
// Ring operations.
struct _cl_univpoly_setops /* cf. _cl_ring_setops */ { // print
void (* fprint) (cl_heap_univpoly_ring* R, std::ostream& stream, const _cl_UP& x); // equality
// (Be careful: This is not well-defined for polynomials with
// floating-point coefficients.)
cl_boolean (* equal) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y); }; struct _cl_univpoly_addops /* cf. _cl_ring_addops */ { // 0
const _cl_UP (* zero) (cl_heap_univpoly_ring* R); cl_boolean (* zerop) (cl_heap_univpoly_ring* R, const _cl_UP& x); // x+y
const _cl_UP (* plus) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y); // x-y
const _cl_UP (* minus) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y); // -x
const _cl_UP (* uminus) (cl_heap_univpoly_ring* R, const _cl_UP& x); }; struct _cl_univpoly_mulops /* cf. _cl_ring_mulops */ { // 1
const _cl_UP (* one) (cl_heap_univpoly_ring* R); // canonical homomorphism
const _cl_UP (* canonhom) (cl_heap_univpoly_ring* R, const cl_I& x); // x*y
const _cl_UP (* mul) (cl_heap_univpoly_ring* R, const _cl_UP& x, const _cl_UP& y); // x^2
const _cl_UP (* square) (cl_heap_univpoly_ring* R, const _cl_UP& x); // x^y, y Integer >0
const _cl_UP (* expt_pos) (cl_heap_univpoly_ring* R, const _cl_UP& x, const cl_I& y); }; struct _cl_univpoly_modulops { // scalar multiplication x*y
const _cl_UP (* scalmul) (cl_heap_univpoly_ring* R, const cl_ring_element& x, const _cl_UP& y); }; struct _cl_univpoly_polyops { // degree
sintL (* degree) (cl_heap_univpoly_ring* R, const _cl_UP& x); // monomial
const _cl_UP (* monomial) (cl_heap_univpoly_ring* R, const cl_ring_element& x, uintL e); // coefficient (0 if index>degree)
const cl_ring_element (* coeff) (cl_heap_univpoly_ring* R, const _cl_UP& x, uintL index); // create new polynomial, bounded degree
const _cl_UP (* create) (cl_heap_univpoly_ring* R, sintL deg); // set coefficient in new polynomial
void (* set_coeff) (cl_heap_univpoly_ring* R, _cl_UP& x, uintL index, const cl_ring_element& y); // finalize polynomial
void (* finalize) (cl_heap_univpoly_ring* R, _cl_UP& x); // evaluate, substitute an element of R
const cl_ring_element (* eval) (cl_heap_univpoly_ring* R, const _cl_UP& x, const cl_ring_element& y); }; typedef const _cl_univpoly_setops cl_univpoly_setops; typedef const _cl_univpoly_addops cl_univpoly_addops; typedef const _cl_univpoly_mulops cl_univpoly_mulops; typedef const _cl_univpoly_modulops cl_univpoly_modulops; typedef const _cl_univpoly_polyops cl_univpoly_polyops;
// Representation of a univariate polynomial ring.
class cl_heap_univpoly_ring /* cf. cl_heap_ring */ : public cl_heap { SUBCLASS_cl_heap_ring() private: cl_property_list properties; protected: cl_univpoly_setops* setops; cl_univpoly_addops* addops; cl_univpoly_mulops* mulops; cl_univpoly_modulops* modulops; cl_univpoly_polyops* polyops; protected: cl_ring _basering; // the coefficients are elements of this ring
public: const cl_ring& basering () const { return _basering; } public: // Low-level operations.
void _fprint (std::ostream& stream, const _cl_UP& x) { setops->fprint(this,stream,x); } cl_boolean _equal (const _cl_UP& x, const _cl_UP& y) { return setops->equal(this,x,y); } const _cl_UP _zero () { return addops->zero(this); } cl_boolean _zerop (const _cl_UP& x) { return addops->zerop(this,x); } const _cl_UP _plus (const _cl_UP& x, const _cl_UP& y) { return addops->plus(this,x,y); } const _cl_UP _minus (const _cl_UP& x, const _cl_UP& y) { return addops->minus(this,x,y); } const _cl_UP _uminus (const _cl_UP& x) { return addops->uminus(this,x); } const _cl_UP _one () { return mulops->one(this); } const _cl_UP _canonhom (const cl_I& x) { return mulops->canonhom(this,x); } const _cl_UP _mul (const _cl_UP& x, const _cl_UP& y) { return mulops->mul(this,x,y); } const _cl_UP _square (const _cl_UP& x) { return mulops->square(this,x); } const _cl_UP _expt_pos (const _cl_UP& x, const cl_I& y) { return mulops->expt_pos(this,x,y); } const _cl_UP _scalmul (const cl_ring_element& x, const _cl_UP& y) { return modulops->scalmul(this,x,y); } sintL _degree (const _cl_UP& x) { return polyops->degree(this,x); } const _cl_UP _monomial (const cl_ring_element& x, uintL e) { return polyops->monomial(this,x,e); } const cl_ring_element _coeff (const _cl_UP& x, uintL index) { return polyops->coeff(this,x,index); } const _cl_UP _create (sintL deg) { return polyops->create(this,deg); } void _set_coeff (_cl_UP& x, uintL index, const cl_ring_element& y) { polyops->set_coeff(this,x,index,y); } void _finalize (_cl_UP& x) { polyops->finalize(this,x); } const cl_ring_element _eval (const _cl_UP& x, const cl_ring_element& y) { return polyops->eval(this,x,y); } // High-level operations.
void fprint (std::ostream& stream, const cl_UP& x) { if (!(x.ring() == this)) cl_abort(); _fprint(stream,x); } cl_boolean equal (const cl_UP& x, const cl_UP& y) { if (!(x.ring() == this)) cl_abort(); if (!(y.ring() == this)) cl_abort(); return _equal(x,y); } const cl_UP zero () { return cl_UP(this,_zero()); } cl_boolean zerop (const cl_UP& x) { if (!(x.ring() == this)) cl_abort(); return _zerop(x); } const cl_UP plus (const cl_UP& x, const cl_UP& y) { if (!(x.ring() == this)) cl_abort(); if (!(y.ring() == this)) cl_abort(); return cl_UP(this,_plus(x,y)); } const cl_UP minus (const cl_UP& x, const cl_UP& y) { if (!(x.ring() == this)) cl_abort(); if (!(y.ring() == this)) cl_abort(); return cl_UP(this,_minus(x,y)); } const cl_UP uminus (const cl_UP& x) { if (!(x.ring() == this)) cl_abort(); return cl_UP(this,_uminus(x)); } const cl_UP one () { return cl_UP(this,_one()); } const cl_UP canonhom (const cl_I& x) { return cl_UP(this,_canonhom(x)); } const cl_UP mul (const cl_UP& x, const cl_UP& y) { if (!(x.ring() == this)) cl_abort(); if (!(y.ring() == this)) cl_abort(); return cl_UP(this,_mul(x,y)); } const cl_UP square (const cl_UP& x) { if (!(x.ring() == this)) cl_abort(); return cl_UP(this,_square(x)); } const cl_UP expt_pos (const cl_UP& x, const cl_I& y) { if (!(x.ring() == this)) cl_abort(); return cl_UP(this,_expt_pos(x,y)); } const cl_UP scalmul (const cl_ring_element& x, const cl_UP& y) { if (!(y.ring() == this)) cl_abort(); return cl_UP(this,_scalmul(x,y)); } sintL degree (const cl_UP& x) { if (!(x.ring() == this)) cl_abort(); return _degree(x); } const cl_UP monomial (const cl_ring_element& x, uintL e) { return cl_UP(this,_monomial(x,e)); } const cl_ring_element coeff (const cl_UP& x, uintL index) { if (!(x.ring() == this)) cl_abort(); return _coeff(x,index); } const cl_UP create (sintL deg) { return cl_UP(this,_create(deg)); } void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y) { if (!(x.ring() == this)) cl_abort(); _set_coeff(x,index,y); } void finalize (cl_UP& x) { if (!(x.ring() == this)) cl_abort(); _finalize(x); } const cl_ring_element eval (const cl_UP& x, const cl_ring_element& y) { if (!(x.ring() == this)) cl_abort(); return _eval(x,y); } // Property operations.
cl_property* get_property (const cl_symbol& key) { return properties.get_property(key); } void add_property (cl_property* new_property) { properties.add_property(new_property); } // Constructor.
cl_heap_univpoly_ring (const cl_ring& r, cl_univpoly_setops*, cl_univpoly_addops*, cl_univpoly_mulops*, cl_univpoly_modulops*, cl_univpoly_polyops*); // This class is intented to be subclassable, hence needs a virtual destructor.
virtual ~cl_heap_univpoly_ring () {} private: virtual void dummy (); }; #define SUBCLASS_cl_heap_univpoly_ring() \
SUBCLASS_cl_heap_ring()
// Lookup or create the "standard" univariate polynomial ring over a ring r.
extern const cl_univpoly_ring find_univpoly_ring (const cl_ring& r); //CL_REQUIRE(cl_UP_unnamed)
// Lookup or create a univariate polynomial ring with a named variable over r.
extern const cl_univpoly_ring find_univpoly_ring (const cl_ring& r, const cl_symbol& varname); //CL_REQUIRE(cl_UP_named)
CL_REQUIRE(cl_UP)
// Runtime typing support.
extern cl_class cl_class_univpoly_ring;
// Operations on polynomials.
// Output.
inline void fprint (std::ostream& stream, const cl_UP& x) { x.ring()->fprint(stream,x); } CL_DEFINE_PRINT_OPERATOR(cl_UP)
// Add.
inline const cl_UP operator+ (const cl_UP& x, const cl_UP& y) { return x.ring()->plus(x,y); }
// Negate.
inline const cl_UP operator- (const cl_UP& x) { return x.ring()->uminus(x); }
// Subtract.
inline const cl_UP operator- (const cl_UP& x, const cl_UP& y) { return x.ring()->minus(x,y); }
// Equality.
inline bool operator== (const cl_UP& x, const cl_UP& y) { return x.ring()->equal(x,y); } inline bool operator!= (const cl_UP& x, const cl_UP& y) { return !x.ring()->equal(x,y); }
// Compare against 0.
inline cl_boolean zerop (const cl_UP& x) { return x.ring()->zerop(x); }
// Multiply.
inline const cl_UP operator* (const cl_UP& x, const cl_UP& y) { return x.ring()->mul(x,y); }
// Squaring.
inline const cl_UP square (const cl_UP& x) { return x.ring()->square(x); }
// Exponentiation x^y, where y > 0.
inline const cl_UP expt_pos (const cl_UP& x, const cl_I& y) { return x.ring()->expt_pos(x,y); }
// Scalar multiplication.
#if 0 // less efficient
inline const cl_UP operator* (const cl_I& x, const cl_UP& y) { return y.ring()->mul(y.ring()->canonhom(x),y); } inline const cl_UP operator* (const cl_UP& x, const cl_I& y) { return x.ring()->mul(x.ring()->canonhom(y),x); } #endif
inline const cl_UP operator* (const cl_I& x, const cl_UP& y) { return y.ring()->scalmul(y.ring()->basering()->canonhom(x),y); } inline const cl_UP operator* (const cl_UP& x, const cl_I& y) { return x.ring()->scalmul(x.ring()->basering()->canonhom(y),x); } inline const cl_UP operator* (const cl_ring_element& x, const cl_UP& y) { return y.ring()->scalmul(x,y); } inline const cl_UP operator* (const cl_UP& x, const cl_ring_element& y) { return x.ring()->scalmul(y,x); }
// Degree.
inline sintL degree (const cl_UP& x) { return x.ring()->degree(x); }
// Coefficient.
inline const cl_ring_element coeff (const cl_UP& x, uintL index) { return x.ring()->coeff(x,index); }
// Destructive modification.
inline void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y) { x.ring()->set_coeff(x,index,y); } inline void finalize (cl_UP& x) { x.ring()->finalize(x); } inline void cl_UP::set_coeff (uintL index, const cl_ring_element& y) { ring()->set_coeff(*this,index,y); } inline void cl_UP::finalize () { ring()->finalize(*this); }
// Evaluation. (No extension of the base ring allowed here for now.)
inline const cl_ring_element cl_UP::operator() (const cl_ring_element& y) const { return ring()->eval(*this,y); }
// Derivative.
extern const cl_UP deriv (const cl_UP& x);
// Ring of uninitialized elements.
// Any operation results in a run-time error.
extern const cl_univpoly_ring cl_no_univpoly_ring; extern cl_class cl_class_no_univpoly_ring; CL_REQUIRE(cl_UP_no_ring)
inline cl_univpoly_ring::cl_univpoly_ring () : cl_ring (as_cl_private_thing(cl_no_univpoly_ring)) {} inline _cl_UP::_cl_UP () : rep ((cl_private_thing) cl_combine(cl_FN_tag,0)) {} inline cl_UP::cl_UP () : _cl_UP (), _ring () {}
// Debugging support.
#ifdef CL_DEBUG
extern int cl_UP_debug_module; CL_FORCE_LINK(cl_UP_debug_dummy, cl_UP_debug_module) #endif
} // namespace cln
#endif /* _CL_UNIVPOLY_H */
namespace cln {
// Templates for univariate polynomials of complex/real/rational/integers.
#ifdef notyet
// Unfortunately, this is not usable now, because of gcc-2.7 bugs:
// - A template inline function is not inline in the first function that
// uses it.
// - Argument matching bug: User-defined conversions are not tried (or
// tried with too low priority) for template functions w.r.t. normal
// functions. For example, a call expt_pos(cl_UP_specialized<cl_N>,int)
// is compiled as expt_pos(const cl_UP&, const cl_I&) instead of
// expt_pos(const cl_UP_specialized<cl_N>&, const cl_I&).
// It will, however, be usable when gcc-2.8 is released.
#if defined(_CL_UNIVPOLY_COMPLEX_H) || defined(_CL_UNIVPOLY_REAL_H) || defined(_CL_UNIVPOLY_RATIONAL_H) || defined(_CL_UNIVPOLY_INTEGER_H)
#ifndef _CL_UNIVPOLY_AUX_H
// Normal univariate polynomials with stricter static typing:
// `class T' instead of `cl_ring_element'.
template <class T> class cl_univpoly_specialized_ring; template <class T> class cl_UP_specialized; template <class T> class cl_heap_univpoly_specialized_ring;
template <class T> class cl_univpoly_specialized_ring : public cl_univpoly_ring { public: // Default constructor.
cl_univpoly_specialized_ring () : cl_univpoly_ring () {} // Copy constructor.
cl_univpoly_specialized_ring (const cl_univpoly_specialized_ring&); // Assignment operator.
cl_univpoly_specialized_ring& operator= (const cl_univpoly_specialized_ring&); // Automatic dereferencing.
cl_heap_univpoly_specialized_ring<T>* operator-> () const { return (cl_heap_univpoly_specialized_ring<T>*)heappointer; } }; // Copy constructor and assignment operator.
template <class T> _CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_specialized_ring<T>,cl_univpoly_specialized_ring,cl_univpoly_ring) template <class T> CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_specialized_ring<T>,cl_univpoly_specialized_ring<T>)
template <class T> class cl_UP_specialized : public cl_UP { public: const cl_univpoly_specialized_ring<T>& ring () const { return The(cl_univpoly_specialized_ring<T>)(_ring); } // Conversion.
CL_DEFINE_CONVERTER(cl_ring_element) // Destructive modification.
void set_coeff (uintL index, const T& y); void finalize(); // Evaluation.
const T operator() (const T& y) const; public: // Ability to place an object at a given address.
void* operator new (size_t size) { return malloc_hook(size); } void* operator new (size_t size, void* ptr) { (void)size; return ptr; } void operator delete (void* ptr) { free_hook(ptr); } };
template <class T> class cl_heap_univpoly_specialized_ring : public cl_heap_univpoly_ring { SUBCLASS_cl_heap_univpoly_ring() // High-level operations.
void fprint (std::ostream& stream, const cl_UP_specialized<T>& x) { cl_heap_univpoly_ring::fprint(stream,x); } cl_boolean equal (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) { return cl_heap_univpoly_ring::equal(x,y); } const cl_UP_specialized<T> zero () { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::zero()); } cl_boolean zerop (const cl_UP_specialized<T>& x) { return cl_heap_univpoly_ring::zerop(x); } const cl_UP_specialized<T> plus (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::plus(x,y)); } const cl_UP_specialized<T> minus (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::minus(x,y)); } const cl_UP_specialized<T> uminus (const cl_UP_specialized<T>& x) { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::uminus(x)); } const cl_UP_specialized<T> one () { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::one()); } const cl_UP_specialized<T> canonhom (const cl_I& x) { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::canonhom(x)); } const cl_UP_specialized<T> mul (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::mul(x,y)); } const cl_UP_specialized<T> square (const cl_UP_specialized<T>& x) { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::square(x)); } const cl_UP_specialized<T> expt_pos (const cl_UP_specialized<T>& x, const cl_I& y) { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::expt_pos(x,y)); } const cl_UP_specialized<T> scalmul (const T& x, const cl_UP_specialized<T>& y) { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::scalmul(x,y)); } sintL degree (const cl_UP_specialized<T>& x) { return cl_heap_univpoly_ring::degree(x); } const cl_UP_specialized<T> monomial (const T& x, uintL e) { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_C_ring??,x),e)); } const T coeff (const cl_UP_specialized<T>& x, uintL index) { return The(T)(cl_heap_univpoly_ring::coeff(x,index)); } const cl_UP_specialized<T> create (sintL deg) { return The2(cl_UP_specialized<T>)(cl_heap_univpoly_ring::create(deg)); } void set_coeff (cl_UP_specialized<T>& x, uintL index, const T& y) { cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_C_ring??,y)); } void finalize (cl_UP_specialized<T>& x) { cl_heap_univpoly_ring::finalize(x); } const T eval (const cl_UP_specialized<T>& x, const T& y) { return The(T)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_C_ring??,y))); } private: // No need for any constructors.
cl_heap_univpoly_specialized_ring (); };
// Lookup of polynomial rings.
template <class T> inline const cl_univpoly_specialized_ring<T> find_univpoly_ring (const cl_specialized_number_ring<T>& r) { return The(cl_univpoly_specialized_ring<T>) (find_univpoly_ring((const cl_ring&)r)); } template <class T> inline const cl_univpoly_specialized_ring<T> find_univpoly_ring (const cl_specialized_number_ring<T>& r, const cl_symbol& varname) { return The(cl_univpoly_specialized_ring<T>) (find_univpoly_ring((const cl_ring&)r,varname)); }
// Operations on polynomials.
// Add.
template <class T> inline const cl_UP_specialized<T> operator+ (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) { return x.ring()->plus(x,y); }
// Negate.
template <class T> inline const cl_UP_specialized<T> operator- (const cl_UP_specialized<T>& x) { return x.ring()->uminus(x); }
// Subtract.
template <class T> inline const cl_UP_specialized<T> operator- (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) { return x.ring()->minus(x,y); }
// Multiply.
template <class T> inline const cl_UP_specialized<T> operator* (const cl_UP_specialized<T>& x, const cl_UP_specialized<T>& y) { return x.ring()->mul(x,y); }
// Squaring.
template <class T> inline const cl_UP_specialized<T> square (const cl_UP_specialized<T>& x) { return x.ring()->square(x); }
// Exponentiation x^y, where y > 0.
template <class T> inline const cl_UP_specialized<T> expt_pos (const cl_UP_specialized<T>& x, const cl_I& y) { return x.ring()->expt_pos(x,y); }
// Scalar multiplication.
// Need more discrimination on T ??
template <class T> inline const cl_UP_specialized<T> operator* (const cl_I& x, const cl_UP_specialized<T>& y) { return y.ring()->mul(y.ring()->canonhom(x),y); } template <class T> inline const cl_UP_specialized<T> operator* (const cl_UP_specialized<T>& x, const cl_I& y) { return x.ring()->mul(x.ring()->canonhom(y),x); } template <class T> inline const cl_UP_specialized<T> operator* (const T& x, const cl_UP_specialized<T>& y) { return y.ring()->scalmul(x,y); } template <class T> inline const cl_UP_specialized<T> operator* (const cl_UP_specialized<T>& x, const T& y) { return x.ring()->scalmul(y,x); }
// Coefficient.
template <class T> inline const T coeff (const cl_UP_specialized<T>& x, uintL index) { return x.ring()->coeff(x,index); }
// Destructive modification.
template <class T> inline void set_coeff (cl_UP_specialized<T>& x, uintL index, const T& y) { x.ring()->set_coeff(x,index,y); } template <class T> inline void finalize (cl_UP_specialized<T>& x) { x.ring()->finalize(x); } template <class T> inline void cl_UP_specialized<T>::set_coeff (uintL index, const T& y) { ring()->set_coeff(*this,index,y); } template <class T> inline void cl_UP_specialized<T>::finalize () { ring()->finalize(*this); }
// Evaluation. (No extension of the base ring allowed here for now.)
template <class T> inline const T cl_UP_specialized<T>::operator() (const T& y) const { return ring()->eval(*this,y); }
// Derivative.
template <class T> inline const cl_UP_specialized<T> deriv (const cl_UP_specialized<T>& x) { return The(cl_UP_specialized<T>)(deriv((const cl_UP&)x)); }
#endif /* _CL_UNIVPOLY_AUX_H */
#endif
#endif /* notyet */
} // namespace cln
|