|
|
// Compute the Legendre polynomials.
#include <cln/number.h>
#include <cln/integer.h>
#include <cln/rational.h>
#include <cln/univpoly.h>
#include <cln/modinteger.h>
#include <cln/univpoly_rational.h>
#include <cln/univpoly_modint.h>
#include <cln/io.h>
#include <cstdlib>
using namespace std; using namespace cln;
// Computes the n-th Legendre polynomial in R[x], using the formula
// P_n(x) = 1/(2^n n!) * (d/dx)^n (x^2-1)^n. (Assume n >= 0.)
const cl_UP_RA legendre (const cl_rational_ring& R, int n) { cl_univpoly_rational_ring PR = find_univpoly_ring(R); cl_UP_RA b = PR->create(2); b.set_coeff(2,1); b.set_coeff(1,0); b.set_coeff(0,-1); b.finalize(); // b is now x^2-1
cl_UP_RA p = (n==0 ? PR->one() : expt_pos(b,n)); for (int i = 0; i < n; i++) p = deriv(p); cl_RA factor = recip(factorial(n)*ash(1,n)); for (int j = degree(p); j >= 0; j--) p.set_coeff(j, coeff(p,j) * factor); p.finalize(); return p; }
const cl_UP_MI legendre (const cl_modint_ring& R, int n) { cl_univpoly_modint_ring PR = find_univpoly_ring(R); cl_UP_MI b = PR->create(2); b.set_coeff(2,R->canonhom(1)); b.set_coeff(1,R->canonhom(0)); b.set_coeff(0,R->canonhom(-1)); b.finalize(); // b is now x^2-1
cl_UP_MI p = (n==0 ? PR->one() : expt_pos(b,n)); for (int i = 0; i < n; i++) p = deriv(p); cl_MI factor = recip(R->canonhom(factorial(n)*ash(1,n))); for (int j = degree(p); j >= 0; j--) p.set_coeff(j, coeff(p,j) * factor); p.finalize(); return p; }
int main (int argc, char* argv[]) { if (!(argc == 2 || argc == 3)) { cerr << "Usage: legendre n [m]" << endl; exit(1); } int n = atoi(argv[1]); if (!(n >= 0)) { cerr << "Usage: legendre n [m] with n >= 0" << endl; exit(1); } if (argc == 2) { cl_UP p = legendre(cl_RA_ring,n); cout << p << endl; } else { cl_I m = argv[2]; cl_UP p = legendre(find_modint_ring(m),n); cout << p << endl; } return 0; }
|