|
|
// Check whether a mersenne number is prime,
// using the Lucas-Lehmer test.
// [Donald Ervin Knuth: The Art of Computer Programming, Vol. II:
// Seminumerical Algorithms, second edition. Section 4.5.4, p. 391.]
// We work with integers.
#include <cln/integer.h>
using namespace std; using namespace cln;
// Checks whether 2^q-1 is prime, q an odd prime.
bool mersenne_prime_p (int q) { cl_I m = ((cl_I)1 << q) - 1; int i; cl_I L_i; for (i = 0, L_i = 4; i < q-2; i++) L_i = mod(L_i*L_i - 2, m); return (L_i==0); }
// Same thing, but optimized.
bool mersenne_prime_p_opt (int q) { cl_I m = ((cl_I)1 << q) - 1; int i; cl_I L_i; for (i = 0, L_i = 4; i < q-2; i++) { L_i = square(L_i) - 2; L_i = ldb(L_i,cl_byte(q,q)) + ldb(L_i,cl_byte(q,0)); if (L_i >= m) L_i = L_i - m; } return (L_i==0); }
// Now we work with modular integers.
#include <cln/modinteger.h>
// Same thing, but using modular integers.
bool mersenne_prime_p_modint (int q) { cl_I m = ((cl_I)1 << q) - 1; cl_modint_ring R = find_modint_ring(m); // Z/mZ
int i; cl_MI L_i; for (i = 0, L_i = R->canonhom(4); i < q-2; i++) L_i = R->minus(R->square(L_i),R->canonhom(2)); return R->equal(L_i,R->zero()); }
#include <cln/io.h> // we do I/O
#include <cstdlib> // declares exit()
#include <cln/timing.h>
int main (int argc, char* argv[]) { if (!(argc == 2)) { cerr << "Usage: lucaslehmer exponent" << endl; exit(1); } int q = atoi(argv[1]); if (!(q >= 2 && ((q % 2)==1))) { cerr << "Usage: lucaslehmer q with q odd prime" << endl; exit(1); } bool isprime; { CL_TIMING; isprime = mersenne_prime_p(q); } { CL_TIMING; isprime = mersenne_prime_p_opt(q); } { CL_TIMING; isprime = mersenne_prime_p_modint(q); } cout << "2^" << q << "-1 is "; if (isprime) cout << "prime" << endl; else cout << "composite" << endl; }
// Computing time on a i486, 33 MHz:
// 1279: 2.02 s
// 2281: 8.74 s
// 44497: 14957 s
|