|
|
<HTML> <HEAD> <!-- Created by texi2html 1.56k from cln.texi on 4 May 2000 -->
<TITLE>CLN, a Class Library for Numbers - 6. Rings</TITLE> </HEAD> <BODY> Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_5.html">previous</A>, <A HREF="cln_7.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>. <P><HR><P>
<H1><A NAME="SEC47" HREF="cln_toc.html#TOC47">6. Rings</A></H1>
<P> CLN has a class of abstract rings.
<PRE> Ring cl_ring <cl_ring.h> </PRE>
<P> Rings can be compared for equality:
<DL COMPACT>
<DT><CODE>bool operator== (const cl_ring&, const cl_ring&)</CODE> <DD> <DT><CODE>bool operator!= (const cl_ring&, const cl_ring&)</CODE> <DD> These compare two rings for equality. </DL>
<P> Given a ring <CODE>R</CODE>, the following members can be used.
<DL COMPACT>
<DT><CODE>void R->fprint (cl_ostream stream, const cl_ring_element& x)</CODE> <DD> <DT><CODE>cl_boolean R->equal (const cl_ring_element& x, const cl_ring_element& y)</CODE> <DD> <DT><CODE>cl_ring_element R->zero ()</CODE> <DD> <DT><CODE>cl_boolean R->zerop (const cl_ring_element& x)</CODE> <DD> <DT><CODE>cl_ring_element R->plus (const cl_ring_element& x, const cl_ring_element& y)</CODE> <DD> <DT><CODE>cl_ring_element R->minus (const cl_ring_element& x, const cl_ring_element& y)</CODE> <DD> <DT><CODE>cl_ring_element R->uminus (const cl_ring_element& x)</CODE> <DD> <DT><CODE>cl_ring_element R->one ()</CODE> <DD> <DT><CODE>cl_ring_element R->canonhom (const cl_I& x)</CODE> <DD> <DT><CODE>cl_ring_element R->mul (const cl_ring_element& x, const cl_ring_element& y)</CODE> <DD> <DT><CODE>cl_ring_element R->square (const cl_ring_element& x)</CODE> <DD> <DT><CODE>cl_ring_element R->expt_pos (const cl_ring_element& x, const cl_I& y)</CODE> <DD> </DL>
<P> The following rings are built-in.
<DL COMPACT>
<DT><CODE>cl_null_ring cl_0_ring</CODE> <DD> The null ring, containing only zero.
<DT><CODE>cl_complex_ring cl_C_ring</CODE> <DD> The ring of complex numbers. This corresponds to the type <CODE>cl_N</CODE>.
<DT><CODE>cl_real_ring cl_R_ring</CODE> <DD> The ring of real numbers. This corresponds to the type <CODE>cl_R</CODE>.
<DT><CODE>cl_rational_ring cl_RA_ring</CODE> <DD> The ring of rational numbers. This corresponds to the type <CODE>cl_RA</CODE>.
<DT><CODE>cl_integer_ring cl_I_ring</CODE> <DD> The ring of integers. This corresponds to the type <CODE>cl_I</CODE>. </DL>
<P> Type tests can be performed for any of <CODE>cl_C_ring</CODE>, <CODE>cl_R_ring</CODE>, <CODE>cl_RA_ring</CODE>, <CODE>cl_I_ring</CODE>:
<DL COMPACT>
<DT><CODE>cl_boolean instanceof (const cl_number& x, const cl_number_ring& R)</CODE> <DD> Tests whether the given number is an element of the number ring R. </DL>
<P><HR><P> Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_5.html">previous</A>, <A HREF="cln_7.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>. </BODY> </HTML>
|