|
|
<HTML> <HEAD> <!-- Created by texi2html 1.56k from cln.texi on 14 January 2000 -->
<TITLE>CLN, a Class Library for Numbers - 7. Modular integers</TITLE> </HEAD> <BODY> Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_6.html">previous</A>, <A HREF="cln_8.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>. <P><HR><P>
<H1><A NAME="SEC48" HREF="cln_toc.html#TOC48">7. Modular integers</A></H1>
<H2><A NAME="SEC49" HREF="cln_toc.html#TOC49">7.1 Modular integer rings</A></H2>
<P> CLN implements modular integers, i.e. integers modulo a fixed integer N. The modulus is explicitly part of every modular integer. CLN doesn't allow you to (accidentally) mix elements of different modular rings, e.g. <CODE>(3 mod 4) + (2 mod 5)</CODE> will result in a runtime error. (Ideally one would imagine a generic data type <CODE>cl_MI(N)</CODE>, but C++ doesn't have generic types. So one has to live with runtime checks.)
<P> The class of modular integer rings is
<PRE> Ring cl_ring <cl_ring.h> | | Modular integer ring cl_modint_ring <cl_modinteger.h> </PRE>
<P> and the class of all modular integers (elements of modular integer rings) is
<PRE> Modular integer cl_MI <cl_modinteger.h> </PRE>
<P> Modular integer rings are constructed using the function
<DL COMPACT>
<DT><CODE>cl_modint_ring cl_find_modint_ring (const cl_I& N)</CODE> <DD> This function returns the modular ring <SAMP>`Z/NZ'</SAMP>. It takes care of finding out about special cases of <CODE>N</CODE>, like powers of two and odd numbers for which Montgomery multiplication will be a win, and precomputes any necessary auxiliary data for computing modulo <CODE>N</CODE>. There is a cache table of rings, indexed by <CODE>N</CODE> (or, more precisely, by <CODE>abs(N)</CODE>). This ensures that the precomputation costs are reduced to a minimum. </DL>
<P> Modular integer rings can be compared for equality:
<DL COMPACT>
<DT><CODE>bool operator== (const cl_modint_ring&, const cl_modint_ring&)</CODE> <DD> <DT><CODE>bool operator!= (const cl_modint_ring&, const cl_modint_ring&)</CODE> <DD> These compare two modular integer rings for equality. Two different calls to <CODE>cl_find_modint_ring</CODE> with the same argument necessarily return the same ring because it is memoized in the cache table. </DL>
<H2><A NAME="SEC50" HREF="cln_toc.html#TOC50">7.2 Functions on modular integers</A></H2>
<P> Given a modular integer ring <CODE>R</CODE>, the following members can be used.
<DL COMPACT>
<DT><CODE>cl_I R->modulus</CODE> <DD> This is the ring's modulus, normalized to be nonnegative: <CODE>abs(N)</CODE>.
<DT><CODE>cl_MI R->zero()</CODE> <DD> This returns <CODE>0 mod N</CODE>.
<DT><CODE>cl_MI R->one()</CODE> <DD> This returns <CODE>1 mod N</CODE>.
<DT><CODE>cl_MI R->canonhom (const cl_I& x)</CODE> <DD> This returns <CODE>x mod N</CODE>.
<DT><CODE>cl_I R->retract (const cl_MI& x)</CODE> <DD> This is a partial inverse function to <CODE>R->canonhom</CODE>. It returns the standard representative (<CODE>>=0</CODE>, <CODE><N</CODE>) of <CODE>x</CODE>.
<DT><CODE>cl_MI R->random(cl_random_state& randomstate)</CODE> <DD> <DT><CODE>cl_MI R->random()</CODE> <DD> This returns a random integer modulo <CODE>N</CODE>. </DL>
<P> The following operations are defined on modular integers.
<DL COMPACT>
<DT><CODE>cl_modint_ring x.ring ()</CODE> <DD> Returns the ring to which the modular integer <CODE>x</CODE> belongs.
<DT><CODE>cl_MI operator+ (const cl_MI&, const cl_MI&)</CODE> <DD> Returns the sum of two modular integers. One of the arguments may also be a plain integer.
<DT><CODE>cl_MI operator- (const cl_MI&, const cl_MI&)</CODE> <DD> Returns the difference of two modular integers. One of the arguments may also be a plain integer.
<DT><CODE>cl_MI operator- (const cl_MI&)</CODE> <DD> Returns the negative of a modular integer.
<DT><CODE>cl_MI operator* (const cl_MI&, const cl_MI&)</CODE> <DD> Returns the product of two modular integers. One of the arguments may also be a plain integer.
<DT><CODE>cl_MI square (const cl_MI&)</CODE> <DD> Returns the square of a modular integer.
<DT><CODE>cl_MI recip (const cl_MI& x)</CODE> <DD> Returns the reciprocal <CODE>x^-1</CODE> of a modular integer <CODE>x</CODE>. <CODE>x</CODE> must be coprime to the modulus, otherwise an error message is issued.
<DT><CODE>cl_MI div (const cl_MI& x, const cl_MI& y)</CODE> <DD> Returns the quotient <CODE>x*y^-1</CODE> of two modular integers <CODE>x</CODE>, <CODE>y</CODE>. <CODE>y</CODE> must be coprime to the modulus, otherwise an error message is issued.
<DT><CODE>cl_MI expt_pos (const cl_MI& x, const cl_I& y)</CODE> <DD> <CODE>y</CODE> must be > 0. Returns <CODE>x^y</CODE>.
<DT><CODE>cl_MI expt (const cl_MI& x, const cl_I& y)</CODE> <DD> Returns <CODE>x^y</CODE>. If <CODE>y</CODE> is negative, <CODE>x</CODE> must be coprime to the modulus, else an error message is issued.
<DT><CODE>cl_MI operator<< (const cl_MI& x, const cl_I& y)</CODE> <DD> Returns <CODE>x*2^y</CODE>.
<DT><CODE>cl_MI operator>> (const cl_MI& x, const cl_I& y)</CODE> <DD> Returns <CODE>x*2^-y</CODE>. When <CODE>y</CODE> is positive, the modulus must be odd, or an error message is issued.
<DT><CODE>bool operator== (const cl_MI&, const cl_MI&)</CODE> <DD> <DT><CODE>bool operator!= (const cl_MI&, const cl_MI&)</CODE> <DD> Compares two modular integers, belonging to the same modular integer ring, for equality.
<DT><CODE>cl_boolean zerop (const cl_MI& x)</CODE> <DD> Returns true if <CODE>x</CODE> is <CODE>0 mod N</CODE>. </DL>
<P> The following output functions are defined (see also the chapter on input/output).
<DL COMPACT>
<DT><CODE>void fprint (cl_ostream stream, const cl_MI& x)</CODE> <DD> <DT><CODE>cl_ostream operator<< (cl_ostream stream, const cl_MI& x)</CODE> <DD> Prints the modular integer <CODE>x</CODE> on the <CODE>stream</CODE>. The output may depend on the global printer settings in the variable <CODE>cl_default_print_flags</CODE>. </DL>
<P><HR><P> Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_6.html">previous</A>, <A HREF="cln_8.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>. </BODY> </HTML>
|