You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							121 lines
						
					
					
						
							3.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							121 lines
						
					
					
						
							3.8 KiB
						
					
					
				| { | |
|  "cells": [ | |
|   { | |
|    "cell_type": "markdown", | |
|    "metadata": {}, | |
|    "source": [ | |
|     "## Example how to combine shielding with rllibs ppo algorithm." | |
|    ] | |
|   }, | |
|   { | |
|    "cell_type": "code", | |
|    "execution_count": null, | |
|    "metadata": {}, | |
|    "outputs": [], | |
|    "source": [ | |
|     "import gymnasium as gym\n", | |
|     "\n", | |
|     "import minigrid\n", | |
|     "\n", | |
|     "from ray import tune, air\n", | |
|     "from ray.tune import register_env\n", | |
|     "from ray.rllib.algorithms.ppo import PPOConfig\n", | |
|     "from ray.tune.logger import pretty_print\n", | |
|     "from ray.rllib.models import ModelCatalog\n", | |
|     "\n", | |
|     "\n", | |
|     "from torch_action_mask_model import TorchActionMaskModel\n", | |
|     "from wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper\n", | |
|     "from shieldhandlers import MiniGridShieldHandler, create_shield_query\n", | |
|     "  " | |
|    ] | |
|   }, | |
|   { | |
|    "cell_type": "code", | |
|    "execution_count": null, | |
|    "metadata": {}, | |
|    "outputs": [], | |
|    "source": [ | |
|     "def shielding_env_creater(config):\n", | |
|     "    name = config.get(\"name\", \"MiniGrid-LavaCrossingS9N1-v0\")\n", | |
|     "    framestack = config.get(\"framestack\", 4)\n", | |
|     "    \n", | |
|     "    shield_creator = MiniGridShieldHandler(\"grid.txt\", \"./main\", \"grid.prism\", \"Pmax=? [G !\\\"AgentIsInLavaAndNotDone\\\"]\")\n", | |
|     "    \n", | |
|     "    env = gym.make(name)\n", | |
|     "    env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query ,mask_actions=True)\n", | |
|     "    env = OneHotShieldingWrapper(env, config.vector_index if hasattr(config, \"vector_index\") else 0,\n", | |
|     "                                 framestack=framestack)\n", | |
|     "    \n", | |
|     "    return env\n", | |
|     "\n", | |
|     "\n", | |
|     "def register_minigrid_shielding_env():\n", | |
|     "    env_name = \"mini-grid-shielding\"\n", | |
|     "    register_env(env_name, shielding_env_creater)\n", | |
|     "    ModelCatalog.register_custom_model(\n", | |
|     "        \"shielding_model\", \n", | |
|     "        TorchActionMaskModel)" | |
|    ] | |
|   }, | |
|   { | |
|    "cell_type": "code", | |
|    "execution_count": null, | |
|    "metadata": {}, | |
|    "outputs": [], | |
|    "source": [ | |
|     "register_minigrid_shielding_env()\n", | |
|     "\n", | |
|     "\n", | |
|     "config = (PPOConfig()\n", | |
|     "    .rollouts(num_rollout_workers=1)\n", | |
|     "    .resources(num_gpus=0)\n", | |
|     "    .environment(env=\"mini-grid-shielding\", env_config={\"name\": \"MiniGrid-LavaCrossingS9N1-v0\"})\n", | |
|     "    .framework(\"torch\")\n", | |
|     "    .rl_module(_enable_rl_module_api = False)\n", | |
|     "    .training(_enable_learner_api=False ,model={\n", | |
|     "        \"custom_model\": \"shielding_model\"\n", | |
|     "    }))\n", | |
|     "\n", | |
|     "tuner = tune.Tuner(\"PPO\",\n", | |
|     "                    tune_config=tune.TuneConfig(\n", | |
|     "                        metric=\"episode_reward_mean\",\n", | |
|     "                        mode=\"max\",\n", | |
|     "                        num_samples=1,\n", | |
|     "                        \n", | |
|     "                    ),\n", | |
|     "                    run_config=air.RunConfig(\n", | |
|     "                            stop = {\"episode_reward_mean\": 94,\n", | |
|     "                                    \"timesteps_total\": 12000,\n", | |
|     "                                    \"training_iteration\": 12}, \n", | |
|     "                            checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True, num_to_keep=2 ),\n", | |
|     "                    ),\n", | |
|     "                    param_space=config,)\n", | |
|     "\n", | |
|     "tuner.fit()" | |
|    ] | |
|   } | |
|  ], | |
|  "metadata": { | |
|   "kernelspec": { | |
|    "display_name": "env", | |
|    "language": "python", | |
|    "name": "python3" | |
|   }, | |
|   "language_info": { | |
|    "codemirror_mode": { | |
|     "name": "ipython", | |
|     "version": 3 | |
|    }, | |
|    "file_extension": ".py", | |
|    "mimetype": "text/x-python", | |
|    "name": "python", | |
|    "nbconvert_exporter": "python", | |
|    "pygments_lexer": "ipython3", | |
|    "version": "3.10.12" | |
|   }, | |
|   "orig_nbformat": 4 | |
|  }, | |
|  "nbformat": 4, | |
|  "nbformat_minor": 2 | |
| }
 |