You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

4347 lines
162 KiB

#if !defined(sparsepp_h_guard_)
#define sparsepp_h_guard_
// ----------------------------------------------------------------------
// Copyright (c) 2016, Gregory Popovitch - greg7mdp@gmail.com
// All rights reserved.
//
// This work is derived from Google's sparsehash library
//
// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ----------------------------------------------------------------------
// some macros for portability
// ---------------------------
// includes
// --------
#include <cassert>
#include <cstring>
#include <string>
#include <limits> // for numeric_limits
#include <algorithm> // For swap(), eg
#include <iterator> // for iterator tags
#include <functional> // for equal_to<>, select1st<>, std::unary_function, etc
#include <memory> // for alloc, uninitialized_copy, uninitialized_fill
#include <cstdlib> // for malloc/realloc/free
#include <cstddef> // for ptrdiff_t
#include <new> // for placement new
#include <stdexcept> // For length_error
#include <utility> // for pair<>
#include <cstdio>
#include <iosfwd>
#include <ios>
#include <sparsepp/spp_stdint.h> // includes spp_config.h
#include <sparsepp/spp_traits.h>
#include <sparsepp/spp_utils.h>
#ifdef SPP_INCLUDE_SPP_ALLOC
#include <sparsepp/spp_dlalloc.h>
#endif
#if !defined(SPP_NO_CXX11_HDR_INITIALIZER_LIST)
#include <initializer_list>
#endif
#if (SPP_GROUP_SIZE == 32)
#define SPP_SHIFT_ 5
#define SPP_MASK_ 0x1F
typedef uint32_t group_bm_type;
#elif (SPP_GROUP_SIZE == 64)
#define SPP_SHIFT_ 6
#define SPP_MASK_ 0x3F
typedef uint64_t group_bm_type;
#else
#error "SPP_GROUP_SIZE must be either 32 or 64"
#endif
namespace spp_ {
// ----------------------------------------------------------------------
// U T I L F U N C T I O N S
// ----------------------------------------------------------------------
template <class E>
inline void throw_exception(const E& exception)
{
#if !defined(SPP_NO_EXCEPTIONS)
throw exception;
#else
assert(0);
abort();
#endif
}
// ----------------------------------------------------------------------
// M U T A B L E P A I R H A C K
// turn std::pair<const K, V> into mutable std::pair<K, V>
// ----------------------------------------------------------------------
template <class T>
struct cvt
{
typedef T type;
};
template <class K, class V>
struct cvt<std::pair<const K, V> >
{
typedef std::pair<K, V> type;
};
template <class K, class V>
struct cvt<const std::pair<const K, V> >
{
typedef const std::pair<K, V> type;
};
// ----------------------------------------------------------------------
// M O V E I T E R A T O R
// ----------------------------------------------------------------------
#ifdef SPP_NO_CXX11_RVALUE_REFERENCES
#define MK_MOVE_IT(p) (p)
#else
#define MK_MOVE_IT(p) std::make_move_iterator(p)
#endif
// ----------------------------------------------------------------------
// I N T E R N A L S T U F F
// ----------------------------------------------------------------------
#ifdef SPP_NO_CXX11_STATIC_ASSERT
template <bool> struct SppCompileAssert { };
#define SPP_COMPILE_ASSERT(expr, msg) \
SPP_ATTRIBUTE_UNUSED typedef SppCompileAssert<(bool(expr))> spp_bogus_[bool(expr) ? 1 : -1]
#else
#define SPP_COMPILE_ASSERT static_assert
#endif
namespace sparsehash_internal
{
// Adaptor methods for reading/writing data from an INPUT or OUPTUT
// variable passed to serialize() or unserialize(). For now we
// have implemented INPUT/OUTPUT for FILE*, istream*/ostream* (note
// they are pointers, unlike typical use), or else a pointer to
// something that supports a Read()/Write() method.
//
// For technical reasons, we implement read_data/write_data in two
// stages. The actual work is done in *_data_internal, which takes
// the stream argument twice: once as a template type, and once with
// normal type information. (We only use the second version.) We do
// this because of how C++ picks what function overload to use. If we
// implemented this the naive way:
// bool read_data(istream* is, const void* data, size_t length);
// template<typename T> read_data(T* fp, const void* data, size_t length);
// C++ would prefer the second version for every stream type except
// istream. However, we want C++ to prefer the first version for
// streams that are *subclasses* of istream, such as istringstream.
// This is not possible given the way template types are resolved. So
// we split the stream argument in two, one of which is templated and
// one of which is not. The specialized functions (like the istream
// version above) ignore the template arg and use the second, 'type'
// arg, getting subclass matching as normal. The 'catch-all'
// functions (the second version above) use the template arg to deduce
// the type, and use a second, void* arg to achieve the desired
// 'catch-all' semantics.
// ----- low-level I/O for FILE* ----
template<typename Ignored>
inline bool read_data_internal(Ignored* /*unused*/, FILE* fp,
void* data, size_t length)
{
return fread(data, length, 1, fp) == 1;
}
template<typename Ignored>
inline bool write_data_internal(Ignored* /*unused*/, FILE* fp,
const void* data, size_t length)
{
return fwrite(data, length, 1, fp) == 1;
}
// ----- low-level I/O for iostream ----
// We want the caller to be responsible for #including <iostream>, not
// us, because iostream is a big header! According to the standard,
// it's only legal to delay the instantiation the way we want to if
// the istream/ostream is a template type. So we jump through hoops.
template<typename ISTREAM>
inline bool read_data_internal_for_istream(ISTREAM* fp,
void* data, size_t length)
{
return fp->read(reinterpret_cast<char*>(data),
static_cast<std::streamsize>(length)).good();
}
template<typename Ignored>
inline bool read_data_internal(Ignored* /*unused*/, std::istream* fp,
void* data, size_t length)
{
return read_data_internal_for_istream(fp, data, length);
}
template<typename OSTREAM>
inline bool write_data_internal_for_ostream(OSTREAM* fp,
const void* data, size_t length)
{
return fp->write(reinterpret_cast<const char*>(data),
static_cast<std::streamsize>(length)).good();
}
template<typename Ignored>
inline bool write_data_internal(Ignored* /*unused*/, std::ostream* fp,
const void* data, size_t length)
{
return write_data_internal_for_ostream(fp, data, length);
}
// ----- low-level I/O for custom streams ----
// The INPUT type needs to support a Read() method that takes a
// buffer and a length and returns the number of bytes read.
template <typename INPUT>
inline bool read_data_internal(INPUT* fp, void* /*unused*/,
void* data, size_t length)
{
return static_cast<size_t>(fp->Read(data, length)) == length;
}
// The OUTPUT type needs to support a Write() operation that takes
// a buffer and a length and returns the number of bytes written.
template <typename OUTPUT>
inline bool write_data_internal(OUTPUT* fp, void* /*unused*/,
const void* data, size_t length)
{
return static_cast<size_t>(fp->Write(data, length)) == length;
}
// ----- low-level I/O: the public API ----
template <typename INPUT>
inline bool read_data(INPUT* fp, void* data, size_t length)
{
return read_data_internal(fp, fp, data, length);
}
template <typename OUTPUT>
inline bool write_data(OUTPUT* fp, const void* data, size_t length)
{
return write_data_internal(fp, fp, data, length);
}
// Uses read_data() and write_data() to read/write an integer.
// length is the number of bytes to read/write (which may differ
// from sizeof(IntType), allowing us to save on a 32-bit system
// and load on a 64-bit system). Excess bytes are taken to be 0.
// INPUT and OUTPUT must match legal inputs to read/write_data (above).
// --------------------------------------------------------------------
template <typename INPUT, typename IntType>
bool read_bigendian_number(INPUT* fp, IntType* value, size_t length)
{
*value = 0;
unsigned char byte;
// We require IntType to be unsigned or else the shifting gets all screwy.
SPP_COMPILE_ASSERT(static_cast<IntType>(-1) > static_cast<IntType>(0), "serializing_int_requires_an_unsigned_type");
for (size_t i = 0; i < length; ++i)
{
if (!read_data(fp, &byte, sizeof(byte)))
return false;
*value |= static_cast<IntType>(byte) << ((length - 1 - i) * 8);
}
return true;
}
template <typename OUTPUT, typename IntType>
bool write_bigendian_number(OUTPUT* fp, IntType value, size_t length)
{
unsigned char byte;
// We require IntType to be unsigned or else the shifting gets all screwy.
SPP_COMPILE_ASSERT(static_cast<IntType>(-1) > static_cast<IntType>(0), "serializing_int_requires_an_unsigned_type");
for (size_t i = 0; i < length; ++i)
{
byte = (sizeof(value) <= length-1 - i)
? static_cast<unsigned char>(0) : static_cast<unsigned char>((value >> ((length-1 - i) * 8)) & 255);
if (!write_data(fp, &byte, sizeof(byte))) return false;
}
return true;
}
// If your keys and values are simple enough, you can pass this
// serializer to serialize()/unserialize(). "Simple enough" means
// value_type is a POD type that contains no pointers. Note,
// however, we don't try to normalize endianness.
// This is the type used for NopointerSerializer.
// ---------------------------------------------------------------
template <typename value_type> struct pod_serializer
{
template <typename INPUT>
bool operator()(INPUT* fp, value_type* value) const
{
return read_data(fp, value, sizeof(*value));
}
template <typename OUTPUT>
bool operator()(OUTPUT* fp, const value_type& value) const
{
return write_data(fp, &value, sizeof(value));
}
};
// Settings contains parameters for growing and shrinking the table.
// It also packages zero-size functor (ie. hasher).
//
// It does some munging of the hash value for the cases where
// the original hash function is not be very good.
// ---------------------------------------------------------------
template<typename Key, typename HashFunc, typename SizeType, int HT_MIN_BUCKETS>
class sh_hashtable_settings : public HashFunc
{
private:
#ifndef SPP_MIX_HASH
template <class T, int sz> struct Mixer
{
inline T operator()(T h) const { return h; }
};
#else
template <class T, int sz> struct Mixer
{
inline T operator()(T h) const;
};
template <class T> struct Mixer<T, 4>
{
inline T operator()(T h) const
{
// from Thomas Wang - https://gist.github.com/badboy/6267743
// ---------------------------------------------------------
h = (h ^ 61) ^ (h >> 16);
h = h + (h << 3);
h = h ^ (h >> 4);
h = h * 0x27d4eb2d;
h = h ^ (h >> 15);
return h;
}
};
template <class T> struct Mixer<T, 8>
{
inline T operator()(T h) const
{
// from Thomas Wang - https://gist.github.com/badboy/6267743
// ---------------------------------------------------------
h = (~h) + (h << 21); // h = (h << 21) - h - 1;
h = h ^ (h >> 24);
h = (h + (h << 3)) + (h << 8); // h * 265
h = h ^ (h >> 14);
h = (h + (h << 2)) + (h << 4); // h * 21
h = h ^ (h >> 28);
h = h + (h << 31);
return h;
}
};
#endif
public:
typedef Key key_type;
typedef HashFunc hasher;
typedef SizeType size_type;
public:
sh_hashtable_settings(const hasher& hf,
const float ht_occupancy_flt,
const float ht_empty_flt)
: hasher(hf),
enlarge_threshold_(0),
shrink_threshold_(0),
consider_shrink_(false),
num_ht_copies_(0)
{
set_enlarge_factor(ht_occupancy_flt);
set_shrink_factor(ht_empty_flt);
}
size_t hash(const key_type& v) const
{
size_t h = hasher::operator()(v);
Mixer<size_t, sizeof(size_t)> mixer;
return mixer(h);
}
float enlarge_factor() const { return enlarge_factor_; }
void set_enlarge_factor(float f) { enlarge_factor_ = f; }
float shrink_factor() const { return shrink_factor_; }
void set_shrink_factor(float f) { shrink_factor_ = f; }
size_type enlarge_threshold() const { return enlarge_threshold_; }
void set_enlarge_threshold(size_type t) { enlarge_threshold_ = t; }
size_type shrink_threshold() const { return shrink_threshold_; }
void set_shrink_threshold(size_type t) { shrink_threshold_ = t; }
size_type enlarge_size(size_type x) const { return static_cast<size_type>(x * enlarge_factor_); }
size_type shrink_size(size_type x) const { return static_cast<size_type>(x * shrink_factor_); }
bool consider_shrink() const { return consider_shrink_; }
void set_consider_shrink(bool t) { consider_shrink_ = t; }
unsigned int num_ht_copies() const { return num_ht_copies_; }
void inc_num_ht_copies() { ++num_ht_copies_; }
// Reset the enlarge and shrink thresholds
void reset_thresholds(size_type num_buckets)
{
set_enlarge_threshold(enlarge_size(num_buckets));
set_shrink_threshold(shrink_size(num_buckets));
// whatever caused us to reset already considered
set_consider_shrink(false);
}
// Caller is resposible for calling reset_threshold right after
// set_resizing_parameters.
// ------------------------------------------------------------
void set_resizing_parameters(float shrink, float grow)
{
assert(shrink >= 0);
assert(grow <= 1);
if (shrink > grow/2.0f)
shrink = grow / 2.0f; // otherwise we thrash hashtable size
set_shrink_factor(shrink);
set_enlarge_factor(grow);
}
// This is the smallest size a hashtable can be without being too crowded
// If you like, you can give a min #buckets as well as a min #elts
// ----------------------------------------------------------------------
size_type min_buckets(size_type num_elts, size_type min_buckets_wanted)
{
float enlarge = enlarge_factor();
size_type sz = HT_MIN_BUCKETS; // min buckets allowed
while (sz < min_buckets_wanted ||
num_elts >= static_cast<size_type>(sz * enlarge))
{
// This just prevents overflowing size_type, since sz can exceed
// max_size() here.
// -------------------------------------------------------------
if (static_cast<size_type>(sz * 2) < sz)
throw_exception(std::length_error("resize overflow")); // protect against overflow
sz *= 2;
}
return sz;
}
private:
size_type enlarge_threshold_; // table.size() * enlarge_factor
size_type shrink_threshold_; // table.size() * shrink_factor
float enlarge_factor_; // how full before resize
float shrink_factor_; // how empty before resize
bool consider_shrink_; // if we should try to shrink before next insert
unsigned int num_ht_copies_; // num_ht_copies is a counter incremented every Copy/Move
};
} // namespace sparsehash_internal
#undef SPP_COMPILE_ASSERT
// ----------------------------------------------------------------------
// S P A R S E T A B L E
// ----------------------------------------------------------------------
//
// A sparsetable is a random container that implements a sparse array,
// that is, an array that uses very little memory to store unassigned
// indices (in this case, between 1-2 bits per unassigned index). For
// instance, if you allocate an array of size 5 and assign a[2] = <big
// struct>, then a[2] will take up a lot of memory but a[0], a[1],
// a[3], and a[4] will not. Array elements that have a value are
// called "assigned". Array elements that have no value yet, or have
// had their value cleared using erase() or clear(), are called
// "unassigned".
//
// Unassigned values seem to have the default value of T (see below).
// Nevertheless, there is a difference between an unassigned index and
// one explicitly assigned the value of T(). The latter is considered
// assigned.
//
// Access to an array element is constant time, as is insertion and
// deletion. Insertion and deletion may be fairly slow, however:
// because of this container's memory economy, each insert and delete
// causes a memory reallocation.
//
// NOTE: You should not test(), get(), or set() any index that is
// greater than sparsetable.size(). If you need to do that, call
// resize() first.
//
// --- Template parameters
// PARAMETER DESCRIPTION DEFAULT
// T The value of the array: the type of --
// object that is stored in the array.
//
// Alloc: Allocator to use to allocate memory.
//
// --- Model of
// Random Access Container
//
// --- Type requirements
// T must be Copy Constructible. It need not be Assignable.
//
// --- Public base classes
// None.
//
// --- Members
//
// [*] All iterators are const in a sparsetable (though nonempty_iterators
// may not be). Use get() and set() to assign values, not iterators.
//
// [+] iterators are random-access iterators. nonempty_iterators are
// bidirectional iterators.
// [*] If you shrink a sparsetable using resize(), assigned elements
// past the end of the table are removed using erase(). If you grow
// a sparsetable, new unassigned indices are created.
//
// [+] Note that operator[] returns a const reference. You must use
// set() to change the value of a table element.
//
// [!] Unassignment also calls the destructor.
//
// Iterators are invalidated whenever an item is inserted or
// deleted (ie set() or erase() is used) or when the size of
// the table changes (ie resize() or clear() is used).
// ---------------------------------------------------------------------------
// Our iterator as simple as iterators can be: basically it's just
// the index into our table. Dereference, the only complicated
// thing, we punt to the table class. This just goes to show how
// much machinery STL requires to do even the most trivial tasks.
//
// A NOTE ON ASSIGNING:
// A sparse table does not actually allocate memory for entries
// that are not filled. Because of this, it becomes complicated
// to have a non-const iterator: we don't know, if the iterator points
// to a not-filled bucket, whether you plan to fill it with something
// or whether you plan to read its value (in which case you'll get
// the default bucket value). Therefore, while we can define const
// operations in a pretty 'normal' way, for non-const operations, we
// define something that returns a helper object with operator= and
// operator& that allocate a bucket lazily. We use this for table[]
// and also for regular table iterators.
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// Our iterator as simple as iterators can be: basically it's just
// the index into our table. Dereference, the only complicated
// thing, we punt to the table class. This just goes to show how
// much machinery STL requires to do even the most trivial tasks.
//
// By templatizing over tabletype, we have one iterator type which
// we can use for both sparsetables and sparsebins. In fact it
// works on any class that allows size() and operator[] (eg vector),
// as long as it does the standard STL typedefs too (eg value_type).
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
template <class tabletype>
class table_iterator
{
public:
typedef table_iterator iterator;
typedef std::random_access_iterator_tag iterator_category;
typedef typename tabletype::value_type value_type;
typedef typename tabletype::difference_type difference_type;
typedef typename tabletype::size_type size_type;
explicit table_iterator(tabletype *tbl = 0, size_type p = 0) :
table(tbl), pos(p)
{ }
// Helper function to assert things are ok; eg pos is still in range
void check() const
{
assert(table);
assert(pos <= table->size());
}
// Arithmetic: we just do arithmetic on pos. We don't even need to
// do bounds checking, since STL doesn't consider that its job. :-)
iterator& operator+=(size_type t) { pos += t; check(); return *this; }
iterator& operator-=(size_type t) { pos -= t; check(); return *this; }
iterator& operator++() { ++pos; check(); return *this; }
iterator& operator--() { --pos; check(); return *this; }
iterator operator++(int)
{
iterator tmp(*this); // for x++
++pos; check(); return tmp;
}
iterator operator--(int)
{
iterator tmp(*this); // for x--
--pos; check(); return tmp;
}
iterator operator+(difference_type i) const
{
iterator tmp(*this);
tmp += i; return tmp;
}
iterator operator-(difference_type i) const
{
iterator tmp(*this);
tmp -= i; return tmp;
}
difference_type operator-(iterator it) const
{
// for "x = it2 - it"
assert(table == it.table);
return pos - it.pos;
}
// Comparisons.
bool operator==(const iterator& it) const
{
return table == it.table && pos == it.pos;
}
bool operator<(const iterator& it) const
{
assert(table == it.table); // life is bad bad bad otherwise
return pos < it.pos;
}
bool operator!=(const iterator& it) const { return !(*this == it); }
bool operator<=(const iterator& it) const { return !(it < *this); }
bool operator>(const iterator& it) const { return it < *this; }
bool operator>=(const iterator& it) const { return !(*this < it); }
// Here's the info we actually need to be an iterator
tabletype *table; // so we can dereference and bounds-check
size_type pos; // index into the table
};
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
template <class tabletype>
class const_table_iterator
{
public:
typedef table_iterator<tabletype> iterator;
typedef const_table_iterator const_iterator;
typedef std::random_access_iterator_tag iterator_category;
typedef typename tabletype::value_type value_type;
typedef typename tabletype::difference_type difference_type;
typedef typename tabletype::size_type size_type;
typedef typename tabletype::const_reference reference; // we're const-only
typedef typename tabletype::const_pointer pointer;
// The "real" constructor
const_table_iterator(const tabletype *tbl, size_type p)
: table(tbl), pos(p) { }
// The default constructor, used when I define vars of type table::iterator
const_table_iterator() : table(NULL), pos(0) { }
// The copy constructor, for when I say table::iterator foo = tbl.begin()
// Also converts normal iterators to const iterators // not explicit on purpose
const_table_iterator(const iterator &from)
: table(from.table), pos(from.pos) { }
// The default destructor is fine; we don't define one
// The default operator= is fine; we don't define one
// The main thing our iterator does is dereference. If the table entry
// we point to is empty, we return the default value type.
reference operator*() const { return (*table)[pos]; }
pointer operator->() const { return &(operator*()); }
// Helper function to assert things are ok; eg pos is still in range
void check() const
{
assert(table);
assert(pos <= table->size());
}
// Arithmetic: we just do arithmetic on pos. We don't even need to
// do bounds checking, since STL doesn't consider that its job. :-)
const_iterator& operator+=(size_type t) { pos += t; check(); return *this; }
const_iterator& operator-=(size_type t) { pos -= t; check(); return *this; }
const_iterator& operator++() { ++pos; check(); return *this; }
const_iterator& operator--() { --pos; check(); return *this; }
const_iterator operator++(int)
{
const_iterator tmp(*this); // for x++
++pos; check();
return tmp;
}
const_iterator operator--(int)
{
const_iterator tmp(*this); // for x--
--pos; check();
return tmp;
}
const_iterator operator+(difference_type i) const
{
const_iterator tmp(*this);
tmp += i;
return tmp;
}
const_iterator operator-(difference_type i) const
{
const_iterator tmp(*this);
tmp -= i;
return tmp;
}
difference_type operator-(const_iterator it) const
{
// for "x = it2 - it"
assert(table == it.table);
return pos - it.pos;
}
reference operator[](difference_type n) const
{
return *(*this + n); // simple though not totally efficient
}
// Comparisons.
bool operator==(const const_iterator& it) const
{
return table == it.table && pos == it.pos;
}
bool operator<(const const_iterator& it) const
{
assert(table == it.table); // life is bad bad bad otherwise
return pos < it.pos;
}
bool operator!=(const const_iterator& it) const { return !(*this == it); }
bool operator<=(const const_iterator& it) const { return !(it < *this); }
bool operator>(const const_iterator& it) const { return it < *this; }
bool operator>=(const const_iterator& it) const { return !(*this < it); }
// Here's the info we actually need to be an iterator
const tabletype *table; // so we can dereference and bounds-check
size_type pos; // index into the table
};
// ---------------------------------------------------------------------------
// This is a 2-D iterator. You specify a begin and end over a list
// of *containers*. We iterate over each container by iterating over
// it. It's actually simple:
// VECTOR.begin() VECTOR[0].begin() --------> VECTOR[0].end() ---,
// | ________________________________________________/
// | \_> VECTOR[1].begin() --------> VECTOR[1].end() -,
// | ___________________________________________________/
// v \_> ......
// VECTOR.end()
//
// It's impossible to do random access on one of these things in constant
// time, so it's just a bidirectional iterator.
//
// Unfortunately, because we need to use this for a non-empty iterator,
// we use ne_begin() and ne_end() instead of begin() and end()
// (though only going across, not down).
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
template <class T, class row_it, class col_it, class iter_type>
class Two_d_iterator : public std::iterator<iter_type, T>
{
public:
typedef Two_d_iterator iterator;
typedef T value_type;
explicit Two_d_iterator(row_it curr) : row_current(curr), col_current(0)
{
if (row_current && !row_current->is_marked())
{
col_current = row_current->ne_begin();
advance_past_end(); // in case cur->begin() == cur->end()
}
}
explicit Two_d_iterator(row_it curr, col_it col) : row_current(curr), col_current(col)
{
assert(col);
}
// The default constructor
Two_d_iterator() : row_current(0), col_current(0) { }
// Need this explicitly so we can convert normal iterators <=> const iterators
// not explicit on purpose
// ---------------------------------------------------------------------------
template <class T2, class row_it2, class col_it2, class iter_type2>
Two_d_iterator(const Two_d_iterator<T2, row_it2, col_it2, iter_type2>& it) :
row_current (*(row_it *)&it.row_current),
col_current (*(col_it *)&it.col_current)
{ }
// The default destructor is fine; we don't define one
// The default operator= is fine; we don't define one
value_type& operator*() const { return *(col_current); }
value_type* operator->() const { return &(operator*()); }
// Arithmetic: we just do arithmetic on pos. We don't even need to
// do bounds checking, since STL doesn't consider that its job. :-)
// NOTE: this is not amortized constant time! What do we do about it?
// ------------------------------------------------------------------
void advance_past_end()
{
// used when col_current points to end()
while (col_current == row_current->ne_end())
{
// end of current row
// ------------------
++row_current; // go to beginning of next
if (!row_current->is_marked()) // col is irrelevant at end
col_current = row_current->ne_begin();
else
break; // don't go past row_end
}
}
friend size_t operator-(iterator l, iterator f)
{
if (f.row_current->is_marked())
return 0;
size_t diff(0);
while (f != l)
{
++diff;
++f;
}
return diff;
}
iterator& operator++()
{
// assert(!row_current->is_marked()); // how to ++ from there?
++col_current;
advance_past_end(); // in case col_current is at end()
return *this;
}
iterator& operator--()
{
while (row_current->is_marked() ||
col_current == row_current->ne_begin())
{
--row_current;
col_current = row_current->ne_end(); // this is 1 too far
}
--col_current;
return *this;
}
iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
iterator operator--(int) { iterator tmp(*this); --*this; return tmp; }
// Comparisons.
bool operator==(const iterator& it) const
{
return (row_current == it.row_current &&
(!row_current || row_current->is_marked() || col_current == it.col_current));
}
bool operator!=(const iterator& it) const { return !(*this == it); }
// Here's the info we actually need to be an iterator
// These need to be public so we convert from iterator to const_iterator
// ---------------------------------------------------------------------
row_it row_current;
col_it col_current;
};
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
template <class T, class row_it, class col_it, class iter_type, class Alloc>
class Two_d_destructive_iterator : public Two_d_iterator<T, row_it, col_it, iter_type>
{
public:
typedef Two_d_destructive_iterator iterator;
Two_d_destructive_iterator(Alloc &alloc, row_it curr) :
_alloc(alloc)
{
this->row_current = curr;
this->col_current = 0;
if (this->row_current && !this->row_current->is_marked())
{
this->col_current = this->row_current->ne_begin();
advance_past_end(); // in case cur->begin() == cur->end()
}
}
// Arithmetic: we just do arithmetic on pos. We don't even need to
// do bounds checking, since STL doesn't consider that its job. :-)
// NOTE: this is not amortized constant time! What do we do about it?
// ------------------------------------------------------------------
void advance_past_end()
{
// used when col_current points to end()
while (this->col_current == this->row_current->ne_end())
{
this->row_current->clear(_alloc, true); // This is what differs from non-destructive iterators above
// end of current row
// ------------------
++this->row_current; // go to beginning of next
if (!this->row_current->is_marked()) // col is irrelevant at end
this->col_current = this->row_current->ne_begin();
else
break; // don't go past row_end
}
}
iterator& operator++()
{
// assert(!this->row_current->is_marked()); // how to ++ from there?
++this->col_current;
advance_past_end(); // in case col_current is at end()
return *this;
}
private:
Two_d_destructive_iterator& operator=(const Two_d_destructive_iterator &o);
Alloc &_alloc;
};
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
#if defined(SPP_POPCNT_CHECK)
static inline bool spp_popcount_check()
{
int cpuInfo[4] = { -1 };
spp_cpuid(cpuInfo, 1);
if (cpuInfo[2] & (1 << 23))
return true; // means SPP_POPCNT supported
return false;
}
#endif
#if defined(SPP_POPCNT_CHECK) && defined(SPP_POPCNT)
static inline uint32_t spp_popcount(uint32_t i)
{
static const bool s_ok = spp_popcount_check();
return s_ok ? SPP_POPCNT(i) : s_spp_popcount_default(i);
}
#else
static inline uint32_t spp_popcount(uint32_t i)
{
#if defined(SPP_POPCNT)
return static_cast<uint32_t>(SPP_POPCNT(i));
#else
return s_spp_popcount_default(i);
#endif
}
#endif
#if defined(SPP_POPCNT_CHECK) && defined(SPP_POPCNT64)
static inline uint32_t spp_popcount(uint64_t i)
{
static const bool s_ok = spp_popcount_check();
return s_ok ? (uint32_t)SPP_POPCNT64(i) : s_spp_popcount_default(i);
}
#else
static inline uint32_t spp_popcount(uint64_t i)
{
#if defined(SPP_POPCNT64)
return static_cast<uint32_t>(SPP_POPCNT64(i));
#elif 1
return s_spp_popcount_default(i);
#endif
}
#endif
// ---------------------------------------------------------------------------
// SPARSE-TABLE
// ------------
// The idea is that a table with (logically) t buckets is divided
// into t/M *groups* of M buckets each. (M is a constant, typically
// 32) Each group is stored sparsely.
// Thus, inserting into the table causes some array to grow, which is
// slow but still constant time. Lookup involves doing a
// logical-position-to-sparse-position lookup, which is also slow but
// constant time. The larger M is, the slower these operations are
// but the less overhead (slightly).
//
// To store the sparse array, we store a bitmap B, where B[i] = 1 iff
// bucket i is non-empty. Then to look up bucket i we really look up
// array[# of 1s before i in B]. This is constant time for fixed M.
//
// Terminology: the position of an item in the overall table (from
// 1 .. t) is called its "location." The logical position in a group
// (from 1 .. M) is called its "position." The actual location in
// the array (from 1 .. # of non-empty buckets in the group) is
// called its "offset."
// ---------------------------------------------------------------------------
template <class T, class Alloc>
class sparsegroup
{
public:
// Basic types
typedef T value_type;
typedef Alloc allocator_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef uint8_t size_type; // max # of buckets
// These are our special iterators, that go over non-empty buckets in a
// group. These aren't const-only because you can change non-empty bcks.
// ---------------------------------------------------------------------
typedef pointer ne_iterator;
typedef const_pointer const_ne_iterator;
typedef std::reverse_iterator<ne_iterator> reverse_ne_iterator;
typedef std::reverse_iterator<const_ne_iterator> const_reverse_ne_iterator;
// We'll have versions for our special non-empty iterator too
// ----------------------------------------------------------
ne_iterator ne_begin() { return reinterpret_cast<pointer>(_group); }
const_ne_iterator ne_begin() const { return reinterpret_cast<pointer>(_group); }
const_ne_iterator ne_cbegin() const { return reinterpret_cast<pointer>(_group); }
ne_iterator ne_end() { return reinterpret_cast<pointer>(_group + _num_items()); }
const_ne_iterator ne_end() const { return reinterpret_cast<pointer>(_group + _num_items()); }
const_ne_iterator ne_cend() const { return reinterpret_cast<pointer>(_group + _num_items()); }
reverse_ne_iterator ne_rbegin() { return reverse_ne_iterator(ne_end()); }
const_reverse_ne_iterator ne_rbegin() const { return const_reverse_ne_iterator(ne_cend()); }
const_reverse_ne_iterator ne_crbegin() const { return const_reverse_ne_iterator(ne_cend()); }
reverse_ne_iterator ne_rend() { return reverse_ne_iterator(ne_begin()); }
const_reverse_ne_iterator ne_rend() const { return const_reverse_ne_iterator(ne_cbegin()); }
const_reverse_ne_iterator ne_crend() const { return const_reverse_ne_iterator(ne_cbegin()); }
private:
// T can be std::pair<const K, V>, but sometime we need to cast to a mutable type
// ------------------------------------------------------------------------------
typedef typename spp_::cvt<T>::type mutable_value_type;
typedef mutable_value_type * mutable_pointer;
typedef const mutable_value_type * const_mutable_pointer;
bool _bmtest(size_type i) const { return !!(_bitmap & (static_cast<group_bm_type>(1) << i)); }
void _bmset(size_type i) { _bitmap |= static_cast<group_bm_type>(1) << i; }
void _bmclear(size_type i) { _bitmap &= ~(static_cast<group_bm_type>(1) << i); }
bool _bme_test(size_type i) const { return !!(_bm_erased & (static_cast<group_bm_type>(1) << i)); }
void _bme_set(size_type i) { _bm_erased |= static_cast<group_bm_type>(1) << i; }
void _bme_clear(size_type i) { _bm_erased &= ~(static_cast<group_bm_type>(1) << i); }
bool _bmtest_strict(size_type i) const
{ return !!((_bitmap | _bm_erased) & (static_cast<group_bm_type>(1) << i)); }
static uint32_t _sizing(uint32_t n)
{
#if !defined(SPP_ALLOC_SZ) || (SPP_ALLOC_SZ == 0)
// aggressive allocation first, then decreasing as sparsegroups fill up
// --------------------------------------------------------------------
static uint8_t s_alloc_batch_sz[SPP_GROUP_SIZE] = { 0 };
if (!s_alloc_batch_sz[0])
{
// 32 bit bitmap
// ........ .... .... .. .. .. .. . . . . . . . .
// 8 12 16 18 20 22 24 25 26 ... 32
// ------------------------------------------------------
uint8_t group_sz = SPP_GROUP_SIZE / 4;
uint8_t group_start_alloc = SPP_GROUP_SIZE / 8; //4;
uint8_t alloc_sz = group_start_alloc;
for (int i=0; i<4; ++i)
{
for (int j=0; j<group_sz; ++j)
{
if (j && j % group_start_alloc == 0)
alloc_sz += group_start_alloc;
s_alloc_batch_sz[i * group_sz + j] = alloc_sz;
}
if (group_start_alloc > 2)
group_start_alloc /= 2;
alloc_sz += group_start_alloc;
}
}
return n ? static_cast<uint32_t>(s_alloc_batch_sz[n-1]) : 0; // more aggressive alloc at the beginning
#elif (SPP_ALLOC_SZ == 1)
// use as little memory as possible - slowest insert/delete in table
// -----------------------------------------------------------------
return n;
#else
// decent compromise when SPP_ALLOC_SZ == 2
// ----------------------------------------
static size_type sz_minus_1 = SPP_ALLOC_SZ - 1;
return (n + sz_minus_1) & ~sz_minus_1;
#endif
}
pointer _allocate_group(allocator_type &alloc, uint32_t n /* , bool tight = false */)
{
// ignore tight since we don't store num_alloc
// num_alloc = (uint8_t)(tight ? n : _sizing(n));
uint32_t num_alloc = (uint8_t)_sizing(n);
_set_num_alloc(num_alloc);
pointer retval = alloc.allocate(static_cast<size_type>(num_alloc));
if (retval == NULL)
{
// the allocator is supposed to throw an exception if the allocation fails.
fprintf(stderr, "sparsehash FATAL ERROR: failed to allocate %d groups\n", num_alloc);
exit(1);
}
return retval;
}
void _free_group(allocator_type &alloc, uint32_t num_alloc)
{
if (_group)
{
uint32_t num_buckets = _num_items();
if (num_buckets)
{
mutable_pointer end_it = (mutable_pointer)(_group + num_buckets);
for (mutable_pointer p = (mutable_pointer)_group; p != end_it; ++p)
p->~mutable_value_type();
}
alloc.deallocate(_group, (typename allocator_type::size_type)num_alloc);
_group = NULL;
}
}
// private because should not be called - no allocator!
sparsegroup &operator=(const sparsegroup& x);
static size_type _pos_to_offset(group_bm_type bm, size_type pos)
{
//return (size_type)((uint32_t)~((int32_t(-1) + pos) >> 31) & spp_popcount(bm << (SPP_GROUP_SIZE - pos)));
//return (size_type)(pos ? spp_popcount(bm << (SPP_GROUP_SIZE - pos)) : 0);
return static_cast<size_type>(spp_popcount(bm & ((static_cast<group_bm_type>(1) << pos) - 1)));
}
public:
// get_iter() in sparsetable needs it
size_type pos_to_offset(size_type pos) const
{
return _pos_to_offset(_bitmap, pos);
}
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4146)
#endif
// Returns the (logical) position in the bm[] array, i, such that
// bm[i] is the offset-th set bit in the array. It is the inverse
// of pos_to_offset. get_pos() uses this function to find the index
// of an ne_iterator in the table. Bit-twiddling from
// http://hackersdelight.org/basics.pdf
// -----------------------------------------------------------------
static size_type offset_to_pos(group_bm_type bm, size_type offset)
{
for (; offset > 0; offset--)
bm &= (bm-1); // remove right-most set bit
// Clear all bits to the left of the rightmost bit (the &),
// and then clear the rightmost bit but set all bits to the
// right of it (the -1).
// --------------------------------------------------------
bm = (bm & -bm) - 1;
return static_cast<size_type>(spp_popcount(bm));
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
size_type offset_to_pos(size_type offset) const
{
return offset_to_pos(_bitmap, offset);
}
public:
// Constructors -- default and copy -- and destructor
explicit sparsegroup() :
_group(0), _bitmap(0), _bm_erased(0)
{
_set_num_items(0);
_set_num_alloc(0);
}
sparsegroup(const sparsegroup& x) :
_group(0), _bitmap(x._bitmap), _bm_erased(x._bm_erased)
{
_set_num_items(0);
_set_num_alloc(0);
assert(_group == 0); if (_group) exit(1);
}
sparsegroup(const sparsegroup& x, allocator_type& a) :
_group(0), _bitmap(x._bitmap), _bm_erased(x._bm_erased)
{
_set_num_items(0);
_set_num_alloc(0);
uint32_t num_items = x._num_items();
if (num_items)
{
_group = _allocate_group(a, num_items /* , true */);
_set_num_items(num_items);
std::uninitialized_copy(x._group, x._group + num_items, _group);
}
}
~sparsegroup() { assert(_group == 0); if (_group) exit(1); }
void destruct(allocator_type& a) { _free_group(a, _num_alloc()); }
// Many STL algorithms use swap instead of copy constructors
void swap(sparsegroup& x)
{
using std::swap;
swap(_group, x._group);
swap(_bitmap, x._bitmap);
swap(_bm_erased, x._bm_erased);
#ifdef SPP_STORE_NUM_ITEMS
swap(_num_buckets, x._num_buckets);
swap(_num_allocated, x._num_allocated);
#endif
}
// It's always nice to be able to clear a table without deallocating it
void clear(allocator_type &alloc, bool erased)
{
_free_group(alloc, _num_alloc());
_bitmap = 0;
if (erased)
_bm_erased = 0;
_set_num_items(0);
_set_num_alloc(0);
}
// Functions that tell you about size. Alas, these aren't so useful
// because our table is always fixed size.
size_type size() const { return static_cast<size_type>(SPP_GROUP_SIZE); }
size_type max_size() const { return static_cast<size_type>(SPP_GROUP_SIZE); }
bool empty() const { return false; }
// We also may want to know how many *used* buckets there are
size_type num_nonempty() const { return (size_type)_num_items(); }
// TODO(csilvers): make protected + friend
// This is used by sparse_hashtable to get an element from the table
// when we know it exists.
reference unsafe_get(size_type i) const
{
// assert(_bmtest(i));
return (reference)_group[pos_to_offset(i)];
}
typedef std::pair<pointer, bool> SetResult;
private:
//typedef spp_::integral_constant<bool, spp_::is_relocatable<value_type>::value> check_relocatable;
typedef spp_::true_type realloc_ok_type;
typedef spp_::false_type realloc_not_ok_type;
//typedef spp_::zero_type libc_reloc_type;
//typedef spp_::one_type spp_reloc_type;
//typedef spp_::two_type spp_not_reloc_type;
//typedef spp_::three_type generic_alloc_type;
#if 1
typedef typename if_<((spp_::is_same<allocator_type, libc_allocator<value_type> >::value ||
spp_::is_same<allocator_type, spp_allocator<value_type> >::value) &&
spp_::is_relocatable<value_type>::value), realloc_ok_type, realloc_not_ok_type>::type
check_alloc_type;
#else
typedef typename if_<spp_::is_same<allocator_type, spp_allocator<value_type> >::value,
typename if_<spp_::is_relocatable<value_type>::value, spp_reloc_type, spp_not_reloc_type>::type,
typename if_<(spp_::is_same<allocator_type, libc_allocator<value_type> >::value &&
spp_::is_relocatable<value_type>::value), libc_reloc_type, generic_alloc_type>::type >::type
check_alloc_type;
#endif
//typedef if_<spp_::is_same<allocator_type, libc_allocator<value_type> >::value,
// libc_alloc_type,
// if_<spp_::is_same<allocator_type, spp_allocator<value_type> >::value,
// spp_alloc_type, user_alloc_type> > check_alloc_type;
//typedef spp_::integral_constant<bool,
// (spp_::is_relocatable<value_type>::value &&
// (spp_::is_same<allocator_type, spp_allocator<value_type> >::value ||
// spp_::is_same<allocator_type, libc_allocator<value_type> >::value)) >
// realloc_and_memmove_ok;
// ------------------------- memory at *p is uninitialized => need to construct
void _init_val(mutable_value_type *p, reference val)
{
#if !defined(SPP_NO_CXX11_RVALUE_REFERENCES)
::new (p) value_type(std::move(val));
#else
::new (p) value_type(val);
#endif
}
// ------------------------- memory at *p is uninitialized => need to construct
void _init_val(mutable_value_type *p, const_reference val)
{
::new (p) value_type(val);
}
// ------------------------------------------------ memory at *p is initialized
void _set_val(value_type *p, reference val)
{
#if !defined(SPP_NO_CXX11_RVALUE_REFERENCES)
*(mutable_pointer)p = std::move(val);
#else
using std::swap;
swap(*(mutable_pointer)p, *(mutable_pointer)&val);
#endif
}
// ------------------------------------------------ memory at *p is initialized
void _set_val(value_type *p, const_reference val)
{
*(mutable_pointer)p = *(const_mutable_pointer)&val;
}
// Create space at _group[offset], assuming value_type is relocatable, and the
// allocator_type is the spp allocator.
// return true if the slot was constructed (i.e. contains a valid value_type
// ---------------------------------------------------------------------------------
template <class Val>
void _set_aux(allocator_type &alloc, size_type offset, Val &val, realloc_ok_type)
{
//static int x=0; if (++x < 10) printf("x\n"); // check we are getting here
uint32_t num_items = _num_items();
uint32_t num_alloc = _sizing(num_items);
if (num_items == num_alloc)
{
num_alloc = _sizing(num_items + 1);
_group = alloc.reallocate(_group, num_alloc);
_set_num_alloc(num_alloc);
}
for (uint32_t i = num_items; i > offset; --i)
memcpy(_group + i, _group + i-1, sizeof(*_group));
_init_val((mutable_pointer)(_group + offset), val);
}
// Create space at _group[offset], assuming value_type is *not* relocatable, and the
// allocator_type is the spp allocator.
// return true if the slot was constructed (i.e. contains a valid value_type
// ---------------------------------------------------------------------------------
template <class Val>
void _set_aux(allocator_type &alloc, size_type offset, Val &val, realloc_not_ok_type)
{
uint32_t num_items = _num_items();
uint32_t num_alloc = _sizing(num_items);
//assert(num_alloc == (uint32_t)_num_allocated);
if (num_items < num_alloc)
{
// create new object at end and rotate it to position
_init_val((mutable_pointer)&_group[num_items], val);
std::rotate((mutable_pointer)(_group + offset),
(mutable_pointer)(_group + num_items),
(mutable_pointer)(_group + num_items + 1));
return;
}
// This is valid because 0 <= offset <= num_items
pointer p = _allocate_group(alloc, _sizing(num_items + 1));
if (offset)
std::uninitialized_copy(MK_MOVE_IT((mutable_pointer)_group),
MK_MOVE_IT((mutable_pointer)(_group + offset)),
(mutable_pointer)p);
if (num_items > offset)
std::uninitialized_copy(MK_MOVE_IT((mutable_pointer)(_group + offset)),
MK_MOVE_IT((mutable_pointer)(_group + num_items)),
(mutable_pointer)(p + offset + 1));
_init_val((mutable_pointer)(p + offset), val);
_free_group(alloc, num_alloc);
_group = p;
}
// ----------------------------------------------------------------------------------
template <class Val>
void _set(allocator_type &alloc, size_type i, size_type offset, Val &val)
{
if (!_bmtest(i))
{
_set_aux(alloc, offset, val, check_alloc_type());
_incr_num_items();
_bmset(i);
}
else
_set_val(&_group[offset], val);
}
public:
// This returns the pointer to the inserted item
// ---------------------------------------------
template <class Val>
pointer set(allocator_type &alloc, size_type i, Val &val)
{
_bme_clear(i); // in case this was an "erased" location
size_type offset = pos_to_offset(i);
_set(alloc, i, offset, val); // may change _group pointer
return (pointer)(_group + offset);
}
// We let you see if a bucket is non-empty without retrieving it
// -------------------------------------------------------------
bool test(size_type i) const
{
return _bmtest(i);
}
// also tests for erased values
// ----------------------------
bool test_strict(size_type i) const
{
return _bmtest_strict(i);
}
private:
// Shrink the array, assuming value_type is relocatable, and the
// allocator_type is the libc allocator (supporting reallocate).
// -------------------------------------------------------------
void _group_erase_aux(allocator_type &alloc, size_type offset, realloc_ok_type)
{
// static int x=0; if (++x < 10) printf("Y\n"); // check we are getting here
uint32_t num_items = _num_items();
uint32_t num_alloc = _sizing(num_items);
if (num_items == 1)
{
assert(offset == 0);
_free_group(alloc, num_alloc);
_set_num_alloc(0);
return;
}
_group[offset].~value_type();
for (size_type i = offset; i < num_items - 1; ++i)
memcpy(_group + i, _group + i + 1, sizeof(*_group));
if (_sizing(num_items - 1) != num_alloc)
{
num_alloc = _sizing(num_items - 1);
assert(num_alloc); // because we have at least 1 item left
_set_num_alloc(num_alloc);
_group = alloc.reallocate(_group, num_alloc);
}
}
// Shrink the array, without any special assumptions about value_type and
// allocator_type.
// --------------------------------------------------------------------------
void _group_erase_aux(allocator_type &alloc, size_type offset, realloc_not_ok_type)
{
uint32_t num_items = _num_items();
uint32_t num_alloc = _sizing(num_items);
if (_sizing(num_items - 1) != num_alloc)
{
pointer p = 0;
if (num_items > 1)
{
p = _allocate_group(alloc, num_items - 1);
if (offset)
std::uninitialized_copy(MK_MOVE_IT((mutable_pointer)(_group)),
MK_MOVE_IT((mutable_pointer)(_group + offset)),
(mutable_pointer)(p));
if (static_cast<uint32_t>(offset + 1) < num_items)
std::uninitialized_copy(MK_MOVE_IT((mutable_pointer)(_group + offset + 1)),
MK_MOVE_IT((mutable_pointer)(_group + num_items)),
(mutable_pointer)(p + offset));
}
else
{
assert(offset == 0);
_set_num_alloc(0);
}
_free_group(alloc, num_alloc);
_group = p;
}
else
{
std::rotate((mutable_pointer)(_group + offset),
(mutable_pointer)(_group + offset + 1),
(mutable_pointer)(_group + num_items));
((mutable_pointer)(_group + num_items - 1))->~mutable_value_type();
}
}
void _group_erase(allocator_type &alloc, size_type offset)
{
_group_erase_aux(alloc, offset, check_alloc_type());
}
public:
template <class twod_iter>
bool erase_ne(allocator_type &alloc, twod_iter &it)
{
assert(_group && it.col_current != ne_end());
size_type offset = (size_type)(it.col_current - ne_begin());
size_type pos = offset_to_pos(offset);
if (_num_items() <= 1)
{
clear(alloc, false);
it.col_current = 0;
}
else
{
_group_erase(alloc, offset);
_decr_num_items();
_bmclear(pos);
// in case _group_erase reallocated the buffer
it.col_current = reinterpret_cast<pointer>(_group) + offset;
}
_bme_set(pos); // remember that this position has been erased
it.advance_past_end();
return true;
}
// This takes the specified elements out of the group. This is
// "undefining", rather than "clearing".
// TODO(austern): Make this exception safe: handle exceptions from
// value_type's copy constructor.
// ---------------------------------------------------------------
void erase(allocator_type &alloc, size_type i)
{
if (_bmtest(i))
{
// trivial to erase empty bucket
if (_num_items() == 1)
clear(alloc, false);
else
{
_group_erase(alloc, pos_to_offset(i));
_decr_num_items();
_bmclear(i);
}
_bme_set(i); // remember that this position has been erased
}
}
// I/O
// We support reading and writing groups to disk. We don't store
// the actual array contents (which we don't know how to store),
// just the bitmap and size. Meant to be used with table I/O.
// --------------------------------------------------------------
template <typename OUTPUT> bool write_metadata(OUTPUT *fp) const
{
// warning: we write 4 or 8 bytes for the bitmap, instead of 6 in the
// original google sparsehash
// ------------------------------------------------------------------
if (!sparsehash_internal::write_data(fp, &_bitmap, sizeof(_bitmap)))
return false;
return true;
}
// Reading destroys the old group contents! Returns true if all was ok.
template <typename INPUT> bool read_metadata(allocator_type &alloc, INPUT *fp)
{
clear(alloc, true);
if (!sparsehash_internal::read_data(fp, &_bitmap, sizeof(_bitmap)))
return false;
// We'll allocate the space, but we won't fill it: it will be
// left as uninitialized raw memory.
uint32_t num_items = spp_popcount(_bitmap); // yes, _num_buckets not set
_set_num_items(num_items);
_group = num_items ? _allocate_group(alloc, num_items/* , true */) : 0;
return true;
}
// Again, only meaningful if value_type is a POD.
template <typename INPUT> bool read_nopointer_data(INPUT *fp)
{
for (ne_iterator it = ne_begin(); it != ne_end(); ++it)
if (!sparsehash_internal::read_data(fp, &(*it), sizeof(*it)))
return false;
return true;
}
// If your keys and values are simple enough, we can write them
// to disk for you. "simple enough" means POD and no pointers.
// However, we don't try to normalize endianness.
// ------------------------------------------------------------
template <typename OUTPUT> bool write_nopointer_data(OUTPUT *fp) const
{
for (const_ne_iterator it = ne_begin(); it != ne_end(); ++it)
if (!sparsehash_internal::write_data(fp, &(*it), sizeof(*it)))
return false;
return true;
}
// Comparisons. We only need to define == and < -- we get
// != > <= >= via relops.h (which we happily included above).
// Note the comparisons are pretty arbitrary: we compare
// values of the first index that isn't equal (using default
// value for empty buckets).
// ---------------------------------------------------------
bool operator==(const sparsegroup& x) const
{
return (_bitmap == x._bitmap &&
_bm_erased == x._bm_erased &&
std::equal(_group, _group + _num_items(), x._group));
}
bool operator<(const sparsegroup& x) const
{
// also from <algorithm>
return std::lexicographical_compare(_group, _group + _num_items(),
x._group, x._group + x._num_items());
}
bool operator!=(const sparsegroup& x) const { return !(*this == x); }
bool operator<=(const sparsegroup& x) const { return !(x < *this); }
bool operator> (const sparsegroup& x) const { return x < *this; }
bool operator>=(const sparsegroup& x) const { return !(*this < x); }
void mark() { _group = (value_type *)static_cast<uintptr_t>(-1); }
bool is_marked() const { return _group == (value_type *)static_cast<uintptr_t>(-1); }
private:
// ---------------------------------------------------------------------------
template <class A>
class alloc_impl : public A
{
public:
typedef typename A::pointer pointer;
typedef typename A::size_type size_type;
// Convert a normal allocator to one that has realloc_or_die()
explicit alloc_impl(const A& a) : A(a) { }
// realloc_or_die should only be used when using the default
// allocator (spp::spp_allocator).
pointer realloc_or_die(pointer /*ptr*/, size_type /*n*/)
{
fprintf(stderr, "realloc_or_die is only supported for "
"spp::spp_allocator\n");
exit(1);
return NULL;
}
};
// A template specialization of alloc_impl for
// spp::libc_allocator that can handle realloc_or_die.
// -----------------------------------------------------------
template <class A>
class alloc_impl<spp_::libc_allocator<A> > : public spp_::libc_allocator<A>
{
public:
typedef typename spp_::libc_allocator<A>::pointer pointer;
typedef typename spp_::libc_allocator<A>::size_type size_type;
explicit alloc_impl(const spp_::libc_allocator<A>& a)
: spp_::libc_allocator<A>(a)
{ }
pointer realloc_or_die(pointer ptr, size_type n)
{
pointer retval = this->reallocate(ptr, n);
if (retval == NULL)
{
fprintf(stderr, "sparsehash: FATAL ERROR: failed to reallocate "
"%lu elements for ptr %p", static_cast<unsigned long>(n), ptr);
exit(1);
}
return retval;
}
};
// A template specialization of alloc_impl for
// spp::spp_allocator that can handle realloc_or_die.
// -----------------------------------------------------------
template <class A>
class alloc_impl<spp_::spp_allocator<A> > : public spp_::spp_allocator<A>
{
public:
typedef typename spp_::spp_allocator<A>::pointer pointer;
typedef typename spp_::spp_allocator<A>::size_type size_type;
explicit alloc_impl(const spp_::spp_allocator<A>& a)
: spp_::spp_allocator<A>(a)
{ }
pointer realloc_or_die(pointer ptr, size_type n)
{
pointer retval = this->reallocate(ptr, n);
if (retval == NULL)
{
fprintf(stderr, "sparsehash: FATAL ERROR: failed to reallocate "
"%lu elements for ptr %p", static_cast<unsigned long>(n), ptr);
exit(1);
}
return retval;
}
};
#ifdef SPP_STORE_NUM_ITEMS
uint32_t _num_items() const { return (uint32_t)_num_buckets; }
void _set_num_items(uint32_t val) { _num_buckets = static_cast<size_type>(val); }
void _incr_num_items() { ++_num_buckets; }
void _decr_num_items() { --_num_buckets; }
uint32_t _num_alloc() const { return (uint32_t)_num_allocated; }
void _set_num_alloc(uint32_t val) { _num_allocated = static_cast<size_type>(val); }
#else
uint32_t _num_items() const { return spp_popcount(_bitmap); }
void _set_num_items(uint32_t ) { }
void _incr_num_items() { }
void _decr_num_items() { }
uint32_t _num_alloc() const { return _sizing(_num_items()); }
void _set_num_alloc(uint32_t val) { }
#endif
// The actual data
// ---------------
value_type * _group; // (small) array of T's
group_bm_type _bitmap;
group_bm_type _bm_erased; // ones where items have been erased
#ifdef SPP_STORE_NUM_ITEMS
size_type _num_buckets;
size_type _num_allocated;
#endif
};
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
template <class T, class Alloc>
class sparsetable
{
public:
typedef T value_type;
typedef Alloc allocator_type;
typedef sparsegroup<value_type, allocator_type> group_type;
private:
typedef typename Alloc::template rebind<group_type>::other group_alloc_type;
typedef typename group_alloc_type::size_type group_size_type;
public:
// Basic types
// -----------
typedef typename allocator_type::size_type size_type;
typedef typename allocator_type::difference_type difference_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef group_type& GroupsReference;
typedef const group_type& GroupsConstReference;
typedef typename group_type::ne_iterator ColIterator;
typedef typename group_type::const_ne_iterator ColConstIterator;
typedef table_iterator<sparsetable<T, allocator_type> > iterator; // defined with index
typedef const_table_iterator<sparsetable<T, allocator_type> > const_iterator; // defined with index
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
// These are our special iterators, that go over non-empty buckets in a
// table. These aren't const only because you can change non-empty bcks.
// ----------------------------------------------------------------------
typedef Two_d_iterator<T,
group_type *,
ColIterator,
std::bidirectional_iterator_tag> ne_iterator;
typedef Two_d_iterator<const T,
const group_type *,
ColConstIterator,
std::bidirectional_iterator_tag> const_ne_iterator;
// Another special iterator: it frees memory as it iterates (used to resize).
// Obviously, you can only iterate over it once, which is why it's an input iterator
// ---------------------------------------------------------------------------------
typedef Two_d_destructive_iterator<T,
group_type *,
ColIterator,
std::input_iterator_tag,
allocator_type> destructive_iterator;
typedef std::reverse_iterator<ne_iterator> reverse_ne_iterator;
typedef std::reverse_iterator<const_ne_iterator> const_reverse_ne_iterator;
// Iterator functions
// ------------------
iterator begin() { return iterator(this, 0); }
const_iterator begin() const { return const_iterator(this, 0); }
const_iterator cbegin() const { return const_iterator(this, 0); }
iterator end() { return iterator(this, size()); }
const_iterator end() const { return const_iterator(this, size()); }
const_iterator cend() const { return const_iterator(this, size()); }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(cend()); }
const_reverse_iterator crbegin() const { return const_reverse_iterator(cend()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const { return const_reverse_iterator(cbegin()); }
const_reverse_iterator crend() const { return const_reverse_iterator(cbegin()); }
// Versions for our special non-empty iterator
// ------------------------------------------
ne_iterator ne_begin() { return ne_iterator (_first_group); }
const_ne_iterator ne_begin() const { return const_ne_iterator(_first_group); }
const_ne_iterator ne_cbegin() const { return const_ne_iterator(_first_group); }
ne_iterator ne_end() { return ne_iterator (_last_group); }
const_ne_iterator ne_end() const { return const_ne_iterator(_last_group); }
const_ne_iterator ne_cend() const { return const_ne_iterator(_last_group); }
reverse_ne_iterator ne_rbegin() { return reverse_ne_iterator(ne_end()); }
const_reverse_ne_iterator ne_rbegin() const { return const_reverse_ne_iterator(ne_end()); }
const_reverse_ne_iterator ne_crbegin() const { return const_reverse_ne_iterator(ne_end()); }
reverse_ne_iterator ne_rend() { return reverse_ne_iterator(ne_begin()); }
const_reverse_ne_iterator ne_rend() const { return const_reverse_ne_iterator(ne_begin()); }
const_reverse_ne_iterator ne_crend() const { return const_reverse_ne_iterator(ne_begin()); }
destructive_iterator destructive_begin()
{
return destructive_iterator(_alloc, _first_group);
}
destructive_iterator destructive_end()
{
return destructive_iterator(_alloc, _last_group);
}
// How to deal with the proper group
static group_size_type num_groups(size_type num)
{
// how many to hold num buckets
return num == 0 ? (group_size_type)0 :
(group_size_type)(((num-1) / SPP_GROUP_SIZE) + 1);
}
typename group_type::size_type pos_in_group(size_type i) const
{
return static_cast<typename group_type::size_type>(i & SPP_MASK_);
}
size_type group_num(size_type i) const
{
return (size_type)(i >> SPP_SHIFT_);
}
GroupsReference which_group(size_type i)
{
return _first_group[group_num(i)];
}
GroupsConstReference which_group(size_type i) const
{
return _first_group[group_num(i)];
}
void _alloc_group_array(group_size_type sz, group_type *&first, group_type *&last)
{
if (sz)
{
first = _group_alloc.allocate((size_type)(sz + 1)); // + 1 for end marker
first[sz].mark(); // for the ne_iterator
last = first + sz;
}
}
void _free_group_array(group_type *&first, group_type *&last)
{
if (first)
{
_group_alloc.deallocate(first, (group_size_type)(last - first + 1)); // + 1 for end marker
first = last = 0;
}
}
void _allocate_groups(size_type sz)
{
if (sz)
{
_alloc_group_array(sz, _first_group, _last_group);
std::uninitialized_fill(_first_group, _last_group, group_type());
}
}
void _free_groups()
{
if (_first_group)
{
for (group_type *g = _first_group; g != _last_group; ++g)
g->destruct(_alloc);
_free_group_array(_first_group, _last_group);
}
}
void _cleanup()
{
_free_groups(); // sets _first_group = _last_group = 0
_table_size = 0;
_num_buckets = 0;
}
void _init()
{
_first_group = 0;
_last_group = 0;
_table_size = 0;
_num_buckets = 0;
}
void _copy(const sparsetable &o)
{
_table_size = o._table_size;
_num_buckets = o._num_buckets;
_alloc = o._alloc; // todo - copy or move allocator according to...
_group_alloc = o._group_alloc; // http://en.cppreference.com/w/cpp/container/unordered_map/unordered_map
group_size_type sz = (group_size_type)(o._last_group - o._first_group);
if (sz)
{
_alloc_group_array(sz, _first_group, _last_group);
for (group_size_type i=0; i<sz; ++i)
new (_first_group + i) group_type(o._first_group[i], _alloc);
}
}
public:
// Constructors -- default, normal (when you specify size), and copy
explicit sparsetable(size_type sz = 0, const allocator_type &alloc = allocator_type()) :
_first_group(0),
_last_group(0),
_table_size(sz),
_num_buckets(0),
_alloc(alloc)
// todo - copy or move allocator according to
// http://en.cppreference.com/w/cpp/container/unordered_map/unordered_map
{
_allocate_groups(num_groups(sz));
}
~sparsetable()
{
_free_groups();
}
sparsetable(const sparsetable &o)
{
_init();
_copy(o);
}
sparsetable& operator=(const sparsetable &o)
{
_cleanup();
_copy(o);
return *this;
}
#if !defined(SPP_NO_CXX11_RVALUE_REFERENCES)
sparsetable(sparsetable&& o)
{
_init();
this->swap(o);
}
sparsetable(sparsetable&& o, const allocator_type &alloc)
{
_init();
this->swap(o);
_alloc = alloc; // [gp todo] is this correct?
}
sparsetable& operator=(sparsetable&& o)
{
_cleanup();
this->swap(o);
return *this;
}
#endif
// Many STL algorithms use swap instead of copy constructors
void swap(sparsetable& o)
{
using std::swap;
swap(_first_group, o._first_group);
swap(_last_group, o._last_group);
swap(_table_size, o._table_size);
swap(_num_buckets, o._num_buckets);
if (_alloc != o._alloc)
swap(_alloc, o._alloc);
if (_group_alloc != o._group_alloc)
swap(_group_alloc, o._group_alloc);
}
// It's always nice to be able to clear a table without deallocating it
void clear()
{
_free_groups();
_num_buckets = 0;
_table_size = 0;
}
inline allocator_type get_allocator() const
{
return _alloc;
}
// Functions that tell you about size.
// NOTE: empty() is non-intuitive! It does not tell you the number
// of not-empty buckets (use num_nonempty() for that). Instead
// it says whether you've allocated any buckets or not.
// ----------------------------------------------------------------
size_type size() const { return _table_size; }
size_type max_size() const { return _alloc.max_size(); }
bool empty() const { return _table_size == 0; }
size_type num_nonempty() const { return _num_buckets; }
// OK, we'll let you resize one of these puppies
void resize(size_type new_size)
{
group_size_type sz = num_groups(new_size);
group_size_type old_sz = (group_size_type)(_last_group - _first_group);
if (sz != old_sz)
{
// resize group array
// ------------------
group_type *first = 0, *last = 0;
if (sz)
{
_alloc_group_array(sz, first, last);
memcpy(first, _first_group, sizeof(*first) * (std::min)(sz, old_sz));
}
if (sz < old_sz)
{
for (group_type *g = _first_group + sz; g != _last_group; ++g)
g->destruct(_alloc);
}
else
std::uninitialized_fill(first + old_sz, last, group_type());
_free_group_array(_first_group, _last_group);
_first_group = first;
_last_group = last;
}
#if 0
// used only in test program
// todo: fix if sparsetable to be used directly
// --------------------------------------------
if (new_size < _table_size)
{
// lower num_buckets, clear last group
if (pos_in_group(new_size) > 0) // need to clear inside last group
groups.back().erase(_alloc, groups.back().begin() + pos_in_group(new_size),
groups.back().end());
_num_buckets = 0; // refigure # of used buckets
for (const group_type *group = _first_group; group != _last_group; ++group)
_num_buckets += group->num_nonempty();
}
#endif
_table_size = new_size;
}
// We let you see if a bucket is non-empty without retrieving it
// -------------------------------------------------------------
bool test(size_type i) const
{
// assert(i < _table_size);
return which_group(i).test(pos_in_group(i));
}
// also tests for erased values
// ----------------------------
bool test_strict(size_type i) const
{
// assert(i < _table_size);
return which_group(i).test_strict(pos_in_group(i));
}
friend struct GrpPos;
struct GrpPos
{
typedef typename sparsetable::ne_iterator ne_iter;
GrpPos(const sparsetable &table, size_type i) :
grp(table.which_group(i)), pos(table.pos_in_group(i)) {}
bool test_strict() const { return grp.test_strict(pos); }
bool test() const { return grp.test(pos); }
typename sparsetable::reference unsafe_get() const { return grp.unsafe_get(pos); }
ne_iter get_iter(typename sparsetable::reference ref)
{
return ne_iter((group_type *)&grp, &ref);
}
void erase(sparsetable &table) // item *must* be present
{
assert(table._num_buckets);
((group_type &)grp).erase(table._alloc, pos);
--table._num_buckets;
}
private:
GrpPos* operator=(const GrpPos&);
const group_type &grp;
typename group_type::size_type pos;
};
bool test(iterator pos) const
{
return which_group(pos.pos).test(pos_in_group(pos.pos));
}
bool test(const_iterator pos) const
{
return which_group(pos.pos).test(pos_in_group(pos.pos));
}
// TODO(csilvers): make protected + friend
// This is used by sparse_hashtable to get an element from the table
// when we know it exists (because the caller has called test(i)).
// -----------------------------------------------------------------
reference unsafe_get(size_type i) const
{
assert(i < _table_size);
// assert(test(i));
return which_group(i).unsafe_get(pos_in_group(i));
}
// Needed for hashtables, gets as a ne_iterator. Crashes for empty bcks
const_ne_iterator get_iter(size_type i) const
{
//assert(test(i)); // how can a ne_iterator point to an empty bucket?
size_type grp_idx = group_num(i);
return const_ne_iterator(_first_group + grp_idx,
(_first_group[grp_idx].ne_begin() +
_first_group[grp_idx].pos_to_offset(pos_in_group(i))));
}
const_ne_iterator get_iter(size_type i, ColIterator col_it) const
{
return const_ne_iterator(_first_group + group_num(i), col_it);
}
// For nonempty we can return a non-const version
ne_iterator get_iter(size_type i)
{
//assert(test(i)); // how can a nonempty_iterator point to an empty bucket?
size_type grp_idx = group_num(i);
return ne_iterator(_first_group + grp_idx,
(_first_group[grp_idx].ne_begin() +
_first_group[grp_idx].pos_to_offset(pos_in_group(i))));
}
ne_iterator get_iter(size_type i, ColIterator col_it)
{
return ne_iterator(_first_group + group_num(i), col_it);
}
// And the reverse transformation.
size_type get_pos(const const_ne_iterator& it) const
{
difference_type current_row = it.row_current - _first_group;
difference_type current_col = (it.col_current - _first_group[current_row].ne_begin());
return ((current_row * SPP_GROUP_SIZE) +
_first_group[current_row].offset_to_pos(current_col));
}
// Val can be reference or const_reference
// ---------------------------------------
template <class Val>
reference set(size_type i, Val &val)
{
assert(i < _table_size);
group_type &group = which_group(i);
typename group_type::size_type old_numbuckets = group.num_nonempty();
pointer p(group.set(_alloc, pos_in_group(i), val));
_num_buckets += group.num_nonempty() - old_numbuckets;
return *p;
}
// used in _move_from (where we can move the old value instead of copying it
void move(size_type i, reference val)
{
assert(i < _table_size);
which_group(i).set(_alloc, pos_in_group(i), val);
++_num_buckets;
}
// This takes the specified elements out of the table.
// --------------------------------------------------
void erase(size_type i)
{
assert(i < _table_size);
GroupsReference grp(which_group(i));
typename group_type::size_type old_numbuckets = grp.num_nonempty();
grp.erase(_alloc, pos_in_group(i));
_num_buckets += grp.num_nonempty() - old_numbuckets;
}
void erase(iterator pos)
{
erase(pos.pos);
}
void erase(iterator start_it, iterator end_it)
{
// This could be more efficient, but then we'd need to figure
// out if we spanned groups or not. Doesn't seem worth it.
for (; start_it != end_it; ++start_it)
erase(start_it);
}
const_ne_iterator erase(const_ne_iterator it)
{
ne_iterator res(it);
if (res.row_current->erase_ne(_alloc, res))
_num_buckets--;
return res;
}
const_ne_iterator erase(const_ne_iterator f, const_ne_iterator l)
{
size_t diff = l - f;
while (diff--)
f = erase(f);
return f;
}
// We support reading and writing tables to disk. We don't store
// the actual array contents (which we don't know how to store),
// just the groups and sizes. Returns true if all went ok.
private:
// Every time the disk format changes, this should probably change too
typedef unsigned long MagicNumberType;
static const MagicNumberType MAGIC_NUMBER = 0x24687531;
// Old versions of this code write all data in 32 bits. We need to
// support these files as well as having support for 64-bit systems.
// So we use the following encoding scheme: for values < 2^32-1, we
// store in 4 bytes in big-endian order. For values > 2^32, we
// store 0xFFFFFFF followed by 8 bytes in big-endian order. This
// causes us to mis-read old-version code that stores exactly
// 0xFFFFFFF, but I don't think that is likely to have happened for
// these particular values.
template <typename OUTPUT, typename IntType>
static bool write_32_or_64(OUTPUT* fp, IntType value)
{
if (value < 0xFFFFFFFFULL) // fits in 4 bytes
{
if (!sparsehash_internal::write_bigendian_number(fp, value, 4))
return false;
}
else
{
if (!sparsehash_internal::write_bigendian_number(fp, 0xFFFFFFFFUL, 4))
return false;
if (!sparsehash_internal::write_bigendian_number(fp, value, 8))
return false;
}
return true;
}
template <typename INPUT, typename IntType>
static bool read_32_or_64(INPUT* fp, IntType *value)
{
// reads into value
MagicNumberType first4 = 0; // a convenient 32-bit unsigned type
if (!sparsehash_internal::read_bigendian_number(fp, &first4, 4))
return false;
if (first4 < 0xFFFFFFFFULL)
{
*value = first4;
}
else
{
if (!sparsehash_internal::read_bigendian_number(fp, value, 8))
return false;
}
return true;
}
public:
// read/write_metadata() and read_write/nopointer_data() are DEPRECATED.
// Use serialize() and unserialize(), below, for new code.
template <typename OUTPUT>
bool write_metadata(OUTPUT *fp) const
{
if (!write_32_or_64(fp, MAGIC_NUMBER)) return false;
if (!write_32_or_64(fp, _table_size)) return false;
if (!write_32_or_64(fp, _num_buckets)) return false;
for (const group_type *group = _first_group; group != _last_group; ++group)
if (group->write_metadata(fp) == false)
return false;
return true;
}
// Reading destroys the old table contents! Returns true if read ok.
template <typename INPUT>
bool read_metadata(INPUT *fp)
{
size_type magic_read = 0;
if (!read_32_or_64(fp, &magic_read)) return false;
if (magic_read != MAGIC_NUMBER)
{
clear(); // just to be consistent
return false;
}
if (!read_32_or_64(fp, &_table_size)) return false;
if (!read_32_or_64(fp, &_num_buckets)) return false;
resize(_table_size); // so the vector's sized ok
for (group_type *group = _first_group; group != _last_group; ++group)
if (group->read_metadata(_alloc, fp) == false)
return false;
return true;
}
// This code is identical to that for SparseGroup
// If your keys and values are simple enough, we can write them
// to disk for you. "simple enough" means no pointers.
// However, we don't try to normalize endianness
bool write_nopointer_data(FILE *fp) const
{
for (const_ne_iterator it = ne_begin(); it != ne_end(); ++it)
if (!fwrite(&*it, sizeof(*it), 1, fp))
return false;
return true;
}
// When reading, we have to override the potential const-ness of *it
bool read_nopointer_data(FILE *fp)
{
for (ne_iterator it = ne_begin(); it != ne_end(); ++it)
if (!fread(reinterpret_cast<void*>(&(*it)), sizeof(*it), 1, fp))
return false;
return true;
}
// INPUT and OUTPUT must be either a FILE, *or* a C++ stream
// (istream, ostream, etc) *or* a class providing
// Read(void*, size_t) and Write(const void*, size_t)
// (respectively), which writes a buffer into a stream
// (which the INPUT/OUTPUT instance presumably owns).
typedef sparsehash_internal::pod_serializer<value_type> NopointerSerializer;
// ValueSerializer: a functor. operator()(OUTPUT*, const value_type&)
template <typename ValueSerializer, typename OUTPUT>
bool serialize(ValueSerializer serializer, OUTPUT *fp)
{
if (!write_metadata(fp))
return false;
for (const_ne_iterator it = ne_begin(); it != ne_end(); ++it)
if (!serializer(fp, *it))
return false;
return true;
}
// ValueSerializer: a functor. operator()(INPUT*, value_type*)
template <typename ValueSerializer, typename INPUT>
bool unserialize(ValueSerializer serializer, INPUT *fp)
{
clear();
if (!read_metadata(fp))
return false;
for (ne_iterator it = ne_begin(); it != ne_end(); ++it)
if (!serializer(fp, &*it))
return false;
return true;
}
// Comparisons. Note the comparisons are pretty arbitrary: we
// compare values of the first index that isn't equal (using default
// value for empty buckets).
bool operator==(const sparsetable& x) const
{
return (_table_size == x._table_size &&
_num_buckets == x._num_buckets &&
_first_group == x._first_group);
}
bool operator<(const sparsetable& x) const
{
return std::lexicographical_compare(begin(), end(), x.begin(), x.end());
}
bool operator!=(const sparsetable& x) const { return !(*this == x); }
bool operator<=(const sparsetable& x) const { return !(x < *this); }
bool operator>(const sparsetable& x) const { return x < *this; }
bool operator>=(const sparsetable& x) const { return !(*this < x); }
private:
// The actual data
// ---------------
group_type * _first_group;
group_type * _last_group;
size_type _table_size; // how many buckets they want
size_type _num_buckets; // number of non-empty buckets
group_alloc_type _group_alloc;
allocator_type _alloc;
};
// ----------------------------------------------------------------------
// S P A R S E _ H A S H T A B L E
// ----------------------------------------------------------------------
// Hashtable class, used to implement the hashed associative containers
// hash_set and hash_map.
//
// Value: what is stored in the table (each bucket is a Value).
// Key: something in a 1-to-1 correspondence to a Value, that can be used
// to search for a Value in the table (find() takes a Key).
// HashFcn: Takes a Key and returns an integer, the more unique the better.
// ExtractKey: given a Value, returns the unique Key associated with it.
// Must inherit from unary_function, or at least have a
// result_type enum indicating the return type of operator().
// EqualKey: Given two Keys, says whether they are the same (that is,
// if they are both associated with the same Value).
// Alloc: STL allocator to use to allocate memory.
//
// ----------------------------------------------------------------------
// The probing method
// ------------------
// Linear probing
// #define JUMP_(key, num_probes) ( 1 )
// Quadratic probing
#define JUMP_(key, num_probes) ( num_probes )
// -------------------------------------------------------------------
// -------------------------------------------------------------------
template <class Value, class Key, class HashFcn,
class ExtractKey, class SetKey, class EqualKey, class Alloc>
class sparse_hashtable
{
public:
typedef Key key_type;
typedef Value value_type;
typedef HashFcn hasher; // user provided or spp_hash<Key>
typedef EqualKey key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::size_type size_type;
typedef typename allocator_type::difference_type difference_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
// Table is the main storage class.
typedef sparsetable<value_type, allocator_type> Table;
typedef typename Table::ne_iterator ne_it;
typedef typename Table::const_ne_iterator cne_it;
typedef typename Table::destructive_iterator dest_it;
typedef typename Table::ColIterator ColIterator;
typedef ne_it iterator;
typedef cne_it const_iterator;
typedef dest_it destructive_iterator;
// These come from tr1. For us they're the same as regular iterators.
// -------------------------------------------------------------------
typedef iterator local_iterator;
typedef const_iterator const_local_iterator;
// How full we let the table get before we resize
// ----------------------------------------------
static const int HT_OCCUPANCY_PCT; // = 80 (out of 100);
// How empty we let the table get before we resize lower, by default.
// (0.0 means never resize lower.)
// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
// ------------------------------------------------------------------
static const int HT_EMPTY_PCT; // = 0.4 * HT_OCCUPANCY_PCT;
// Minimum size we're willing to let hashtables be.
// Must be a power of two, and at least 4.
// Note, however, that for a given hashtable, the initial size is a
// function of the first constructor arg, and may be >HT_MIN_BUCKETS.
// ------------------------------------------------------------------
static const size_type HT_MIN_BUCKETS = 4;
// By default, if you don't specify a hashtable size at
// construction-time, we use this size. Must be a power of two, and
// at least HT_MIN_BUCKETS.
// -----------------------------------------------------------------
static const size_type HT_DEFAULT_STARTING_BUCKETS = 32;
// iterators
// ---------
iterator begin() { return _mk_iterator(table.ne_begin()); }
iterator end() { return _mk_iterator(table.ne_end()); }
const_iterator begin() const { return _mk_const_iterator(table.ne_cbegin()); }
const_iterator end() const { return _mk_const_iterator(table.ne_cend()); }
const_iterator cbegin() const { return _mk_const_iterator(table.ne_cbegin()); }
const_iterator cend() const { return _mk_const_iterator(table.ne_cend()); }
// These come from tr1 unordered_map. They iterate over 'bucket' n.
// For sparsehashtable, we could consider each 'group' to be a bucket,
// I guess, but I don't really see the point. We'll just consider
// bucket n to be the n-th element of the sparsetable, if it's occupied,
// or some empty element, otherwise.
// ---------------------------------------------------------------------
local_iterator begin(size_type i)
{
return _mk_iterator(table.test(i) ? table.get_iter(i) : table.ne_end());
}
local_iterator end(size_type i)
{
local_iterator it = begin(i);
if (table.test(i))
++it;
return _mk_iterator(it);
}
const_local_iterator begin(size_type i) const
{
return _mk_const_iterator(table.test(i) ? table.get_iter(i) : table.ne_cend());
}
const_local_iterator end(size_type i) const
{
const_local_iterator it = begin(i);
if (table.test(i))
++it;
return _mk_const_iterator(it);
}
const_local_iterator cbegin(size_type i) const { return begin(i); }
const_local_iterator cend(size_type i) const { return end(i); }
// This is used when resizing
// --------------------------
destructive_iterator destructive_begin() { return _mk_destructive_iterator(table.destructive_begin()); }
destructive_iterator destructive_end() { return _mk_destructive_iterator(table.destructive_end()); }
// accessor functions for the things we templatize on, basically
// -------------------------------------------------------------
hasher hash_funct() const { return settings; }
key_equal key_eq() const { return key_info; }
allocator_type get_allocator() const { return table.get_allocator(); }
// Accessor function for statistics gathering.
unsigned int num_table_copies() const { return settings.num_ht_copies(); }
private:
// This is used as a tag for the copy constructor, saying to destroy its
// arg We have two ways of destructively copying: with potentially growing
// the hashtable as we copy, and without. To make sure the outside world
// can't do a destructive copy, we make the typename private.
// -----------------------------------------------------------------------
enum MoveDontCopyT {MoveDontCopy, MoveDontGrow};
void _squash_deleted()
{
// gets rid of any deleted entries we have
// ---------------------------------------
if (num_deleted)
{
// get rid of deleted before writing
sparse_hashtable tmp(MoveDontGrow, *this);
swap(tmp); // now we are tmp
}
assert(num_deleted == 0);
}
// creating iterators from sparsetable::ne_iterators
// -------------------------------------------------
iterator _mk_iterator(ne_it it) const { return it; }
const_iterator _mk_const_iterator(cne_it it) const { return it; }
destructive_iterator _mk_destructive_iterator(dest_it it) const { return it; }
public:
size_type size() const { return table.num_nonempty(); }
size_type max_size() const { return table.max_size(); }
bool empty() const { return size() == 0; }
size_type bucket_count() const { return table.size(); }
size_type max_bucket_count() const { return max_size(); }
// These are tr1 methods. Their idea of 'bucket' doesn't map well to
// what we do. We just say every bucket has 0 or 1 items in it.
size_type bucket_size(size_type i) const
{
return (size_type)(begin(i) == end(i) ? 0 : 1);
}
private:
// Because of the above, size_type(-1) is never legal; use it for errors
// ---------------------------------------------------------------------
static const size_type ILLEGAL_BUCKET = size_type(-1);
// Used after a string of deletes. Returns true if we actually shrunk.
// TODO(csilvers): take a delta so we can take into account inserts
// done after shrinking. Maybe make part of the Settings class?
// --------------------------------------------------------------------
bool _maybe_shrink()
{
assert((bucket_count() & (bucket_count()-1)) == 0); // is a power of two
assert(bucket_count() >= HT_MIN_BUCKETS);
bool retval = false;
// If you construct a hashtable with < HT_DEFAULT_STARTING_BUCKETS,
// we'll never shrink until you get relatively big, and we'll never
// shrink below HT_DEFAULT_STARTING_BUCKETS. Otherwise, something
// like "dense_hash_set<int> x; x.insert(4); x.erase(4);" will
// shrink us down to HT_MIN_BUCKETS buckets, which is too small.
// ---------------------------------------------------------------
const size_type num_remain = table.num_nonempty();
const size_type shrink_threshold = settings.shrink_threshold();
if (shrink_threshold > 0 && num_remain < shrink_threshold &&
bucket_count() > HT_DEFAULT_STARTING_BUCKETS)
{
const float shrink_factor = settings.shrink_factor();
size_type sz = (size_type)(bucket_count() / 2); // find how much we should shrink
while (sz > HT_DEFAULT_STARTING_BUCKETS &&
num_remain < static_cast<size_type>(sz * shrink_factor))
{
sz /= 2; // stay a power of 2
}
sparse_hashtable tmp(MoveDontCopy, *this, sz);
swap(tmp); // now we are tmp
retval = true;
}
settings.set_consider_shrink(false); // because we just considered it
return retval;
}
// We'll let you resize a hashtable -- though this makes us copy all!
// When you resize, you say, "make it big enough for this many more elements"
// Returns true if we actually resized, false if size was already ok.
// --------------------------------------------------------------------------
bool _resize_delta(size_type delta)
{
bool did_resize = false;
if (settings.consider_shrink())
{
// see if lots of deletes happened
if (_maybe_shrink())
did_resize = true;
}
if (table.num_nonempty() >=
(std::numeric_limits<size_type>::max)() - delta)
{
throw_exception(std::length_error("resize overflow"));
}
size_type num_occupied = (size_type)(table.num_nonempty() + num_deleted);
if (bucket_count() >= HT_MIN_BUCKETS &&
(num_occupied + delta) <= settings.enlarge_threshold())
return did_resize; // we're ok as we are
// Sometimes, we need to resize just to get rid of all the
// "deleted" buckets that are clogging up the hashtable. So when
// deciding whether to resize, count the deleted buckets (which
// are currently taking up room).
// -------------------------------------------------------------
const size_type needed_size =
settings.min_buckets((size_type)(num_occupied + delta), (size_type)0);
if (needed_size <= bucket_count()) // we have enough buckets
return did_resize;
size_type resize_to = settings.min_buckets((size_type)(num_occupied + delta), bucket_count());
if (resize_to < needed_size && // may double resize_to
resize_to < (std::numeric_limits<size_type>::max)() / 2)
{
// This situation means that we have enough deleted elements,
// that once we purge them, we won't actually have needed to
// grow. But we may want to grow anyway: if we just purge one
// element, say, we'll have to grow anyway next time we
// insert. Might as well grow now, since we're already going
// through the trouble of copying (in order to purge the
// deleted elements).
const size_type target =
static_cast<size_type>(settings.shrink_size((size_type)(resize_to*2)));
if (table.num_nonempty() + delta >= target)
{
// Good, we won't be below the shrink threshhold even if we double.
resize_to *= 2;
}
}
sparse_hashtable tmp(MoveDontCopy, *this, resize_to);
swap(tmp); // now we are tmp
return true;
}
// Used to actually do the rehashing when we grow/shrink a hashtable
// -----------------------------------------------------------------
void _copy_from(const sparse_hashtable &ht, size_type min_buckets_wanted)
{
clear(); // clear table, set num_deleted to 0
// If we need to change the size of our table, do it now
const size_type resize_to = settings.min_buckets(ht.size(), min_buckets_wanted);
if (resize_to > bucket_count())
{
// we don't have enough buckets
table.resize(resize_to); // sets the number of buckets
settings.reset_thresholds(bucket_count());
}
// We use a normal iterator to get bcks from ht
// We could use insert() here, but since we know there are
// no duplicates, we can be more efficient
assert((bucket_count() & (bucket_count()-1)) == 0); // a power of two
for (const_iterator it = ht.begin(); it != ht.end(); ++it)
{
size_type num_probes = 0; // how many times we've probed
size_type bucknum;
const size_type bucket_count_minus_one = bucket_count() - 1;
for (bucknum = hash(get_key(*it)) & bucket_count_minus_one;
table.test(bucknum); // table.test() OK since no erase()
bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one)
{
++num_probes;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
table.set(bucknum, *it); // copies the value to here
}
settings.inc_num_ht_copies();
}
// Implementation is like _copy_from, but it destroys the table of the
// "from" guy by freeing sparsetable memory as we iterate. This is
// useful in resizing, since we're throwing away the "from" guy anyway.
// --------------------------------------------------------------------
void _move_from(MoveDontCopyT mover, sparse_hashtable &ht,
size_type min_buckets_wanted)
{
clear();
// If we need to change the size of our table, do it now
size_type resize_to;
if (mover == MoveDontGrow)
resize_to = ht.bucket_count(); // keep same size as old ht
else // MoveDontCopy
resize_to = settings.min_buckets(ht.size(), min_buckets_wanted);
if (resize_to > bucket_count())
{
// we don't have enough buckets
table.resize(resize_to); // sets the number of buckets
settings.reset_thresholds(bucket_count());
}
// We use a normal iterator to get bcks from ht
// We could use insert() here, but since we know there are
// no duplicates, we can be more efficient
assert((bucket_count() & (bucket_count()-1)) == 0); // a power of two
const size_type bucket_count_minus_one = (const size_type)(bucket_count() - 1);
// THIS IS THE MAJOR LINE THAT DIFFERS FROM COPY_FROM():
for (destructive_iterator it = ht.destructive_begin();
it != ht.destructive_end(); ++it)
{
size_type num_probes = 0;
size_type bucknum;
for (bucknum = hash(get_key(*it)) & bucket_count_minus_one;
table.test(bucknum); // table.test() OK since no erase()
bucknum = (size_type)((bucknum + JUMP_(key, num_probes)) & (bucket_count()-1)))
{
++num_probes;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
table.move(bucknum, *it); // moves the value to here
}
settings.inc_num_ht_copies();
}
// Required by the spec for hashed associative container
public:
// Though the docs say this should be num_buckets, I think it's much
// more useful as num_elements. As a special feature, calling with
// req_elements==0 will cause us to shrink if we can, saving space.
// -----------------------------------------------------------------
void resize(size_type req_elements)
{
// resize to this or larger
if (settings.consider_shrink() || req_elements == 0)
_maybe_shrink();
if (req_elements > table.num_nonempty()) // we only grow
_resize_delta((size_type)(req_elements - table.num_nonempty()));
}
// Get and change the value of shrink_factor and enlarge_factor. The
// description at the beginning of this file explains how to choose
// the values. Setting the shrink parameter to 0.0 ensures that the
// table never shrinks.
// ------------------------------------------------------------------
void get_resizing_parameters(float* shrink, float* grow) const
{
*shrink = settings.shrink_factor();
*grow = settings.enlarge_factor();
}
float get_shrink_factor() const { return settings.shrink_factor(); }
float get_enlarge_factor() const { return settings.enlarge_factor(); }
void set_resizing_parameters(float shrink, float grow)
{
settings.set_resizing_parameters(shrink, grow);
settings.reset_thresholds(bucket_count());
}
void set_shrink_factor(float shrink)
{
set_resizing_parameters(shrink, get_enlarge_factor());
}
void set_enlarge_factor(float grow)
{
set_resizing_parameters(get_shrink_factor(), grow);
}
// CONSTRUCTORS -- as required by the specs, we take a size,
// but also let you specify a hashfunction, key comparator,
// and key extractor. We also define a copy constructor and =.
// DESTRUCTOR -- the default is fine, surprisingly.
// ------------------------------------------------------------
explicit sparse_hashtable(size_type expected_max_items_in_table = 0,
const HashFcn& hf = HashFcn(),
const EqualKey& eql = EqualKey(),
const ExtractKey& ext = ExtractKey(),
const SetKey& set = SetKey(),
const allocator_type& alloc = allocator_type())
: settings(hf),
key_info(ext, set, eql),
num_deleted(0),
table((expected_max_items_in_table == 0
? HT_DEFAULT_STARTING_BUCKETS
: settings.min_buckets(expected_max_items_in_table, 0)),
alloc)
{
settings.reset_thresholds(bucket_count());
}
// As a convenience for resize(), we allow an optional second argument
// which lets you make this new hashtable a different size than ht.
// We also provide a mechanism of saying you want to "move" the ht argument
// into us instead of copying.
// ------------------------------------------------------------------------
sparse_hashtable(const sparse_hashtable& ht,
size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
: settings(ht.settings),
key_info(ht.key_info),
num_deleted(0),
table(0)
{
settings.reset_thresholds(bucket_count());
_copy_from(ht, min_buckets_wanted);
}
#if !defined(SPP_NO_CXX11_RVALUE_REFERENCES)
sparse_hashtable(sparse_hashtable&& o) :
settings(std::move(o.settings)),
key_info(std::move(o.key_info)),
num_deleted(o.num_deleted),
table(std::move(o.table))
{
}
sparse_hashtable(sparse_hashtable&& o, const allocator_type& alloc) :
settings(std::move(o.settings)),
key_info(std::move(o.key_info)),
num_deleted(o.num_deleted),
table(std::move(o.table), alloc)
{
}
sparse_hashtable& operator=(sparse_hashtable&& o)
{
using std::swap;
sparse_hashtable tmp(std::move(o));
swap(tmp, *this);
return *this;
}
#endif
sparse_hashtable(MoveDontCopyT mover,
sparse_hashtable& ht,
size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
: settings(ht.settings),
key_info(ht.key_info),
num_deleted(0),
table(min_buckets_wanted, ht.table.get_allocator())
//table(min_buckets_wanted)
{
settings.reset_thresholds(bucket_count());
_move_from(mover, ht, min_buckets_wanted);
}
sparse_hashtable& operator=(const sparse_hashtable& ht)
{
if (&ht == this)
return *this; // don't copy onto ourselves
settings = ht.settings;
key_info = ht.key_info;
num_deleted = ht.num_deleted;
// _copy_from() calls clear and sets num_deleted to 0 too
_copy_from(ht, HT_MIN_BUCKETS);
// we purposefully don't copy the allocator, which may not be copyable
return *this;
}
// Many STL algorithms use swap instead of copy constructors
void swap(sparse_hashtable& ht)
{
using std::swap;
swap(settings, ht.settings);
swap(key_info, ht.key_info);
swap(num_deleted, ht.num_deleted);
table.swap(ht.table);
settings.reset_thresholds(bucket_count()); // also resets consider_shrink
ht.settings.reset_thresholds(ht.bucket_count());
// we purposefully don't swap the allocator, which may not be swap-able
}
// It's always nice to be able to clear a table without deallocating it
void clear()
{
if (!empty() || num_deleted != 0)
{
table.clear();
table = Table(HT_DEFAULT_STARTING_BUCKETS);
}
settings.reset_thresholds(bucket_count());
num_deleted = 0;
}
// LOOKUP ROUTINES
private:
enum pos_type { pt_empty = 0, pt_erased, pt_full };
// -------------------------------------------------------------------
class Position
{
public:
Position() : _t(pt_empty) {}
Position(pos_type t, size_type idx) : _t(t), _idx(idx) {}
pos_type _t;
size_type _idx;
};
// Returns a pair:
// - 'first' is a code, 2 if key already present, 0 or 1 otherwise.
// - 'second' is a position, where the key should go
// Note: because of deletions where-to-insert is not trivial: it's the
// first deleted bucket we see, as long as we don't find the key later
// -------------------------------------------------------------------
Position _find_position(const key_type &key) const
{
size_type num_probes = 0; // how many times we've probed
const size_type bucket_count_minus_one = (const size_type)(bucket_count() - 1);
size_type bucknum = hash(key) & bucket_count_minus_one;
Position pos;
while (1)
{
// probe until something happens
// -----------------------------
typename Table::GrpPos grp_pos(table, bucknum);
if (!grp_pos.test_strict())
{
// bucket is empty => key not present
return pos._t ? pos : Position(pt_empty, bucknum);
}
else if (grp_pos.test())
{
reference ref(grp_pos.unsafe_get());
if (equals(key, get_key(ref)))
return Position(pt_full, bucknum);
}
else if (pos._t == pt_empty)
{
// first erased position
pos._t = pt_erased;
pos._idx = bucknum;
}
++num_probes; // we're doing another probe
bucknum = (size_type)((bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one);
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
}
public:
// I hate to duplicate find() like that, but it is
// significantly faster to not have the intermediate pair
// ------------------------------------------------------------------
iterator find(const key_type& key)
{
size_type num_probes = 0; // how many times we've probed
const size_type bucket_count_minus_one = bucket_count() - 1;
size_type bucknum = hash(key) & bucket_count_minus_one;
while (1) // probe until something happens
{
typename Table::GrpPos grp_pos(table, bucknum);
if (!grp_pos.test_strict())
return end(); // bucket is empty
if (grp_pos.test())
{
reference ref(grp_pos.unsafe_get());
if (equals(key, get_key(ref)))
return grp_pos.get_iter(ref);
}
++num_probes; // we're doing another probe
bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
}
// Wish I could avoid the duplicate find() const and non-const.
// ------------------------------------------------------------
const_iterator find(const key_type& key) const
{
size_type num_probes = 0; // how many times we've probed
const size_type bucket_count_minus_one = bucket_count() - 1;
size_type bucknum = hash(key) & bucket_count_minus_one;
while (1) // probe until something happens
{
typename Table::GrpPos grp_pos(table, bucknum);
if (!grp_pos.test_strict())
return end(); // bucket is empty
else if (grp_pos.test())
{
reference ref(grp_pos.unsafe_get());
if (equals(key, get_key(ref)))
return _mk_const_iterator(table.get_iter(bucknum, &ref));
}
++num_probes; // we're doing another probe
bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
}
// This is a tr1 method: the bucket a given key is in, or what bucket
// it would be put in, if it were to be inserted. Shrug.
// ------------------------------------------------------------------
size_type bucket(const key_type& key) const
{
Position pos = _find_position(key);
return pos._idx;
}
// Counts how many elements have key key. For maps, it's either 0 or 1.
// ---------------------------------------------------------------------
size_type count(const key_type &key) const
{
Position pos = _find_position(key);
return (size_type)(pos._t == pt_full ? 1 : 0);
}
// Likewise, equal_range doesn't really make sense for us. Oh well.
// -----------------------------------------------------------------
std::pair<iterator,iterator> equal_range(const key_type& key)
{
iterator pos = find(key); // either an iterator or end
if (pos == end())
return std::pair<iterator,iterator>(pos, pos);
else
{
const iterator startpos = pos++;
return std::pair<iterator,iterator>(startpos, pos);
}
}
std::pair<const_iterator,const_iterator> equal_range(const key_type& key) const
{
const_iterator pos = find(key); // either an iterator or end
if (pos == end())
return std::pair<const_iterator,const_iterator>(pos, pos);
else
{
const const_iterator startpos = pos++;
return std::pair<const_iterator,const_iterator>(startpos, pos);
}
}
// INSERTION ROUTINES
private:
// Private method used by insert_noresize and find_or_insert.
template <class T>
reference _insert_at(T& obj, size_type pos, bool erased)
{
if (size() >= max_size())
{
throw_exception(std::length_error("insert overflow"));
}
if (erased)
{
assert(num_deleted);
--num_deleted;
}
return table.set(pos, obj);
}
// If you know *this is big enough to hold obj, use this routine
template <class T>
std::pair<iterator, bool> _insert_noresize(T& obj)
{
Position pos = _find_position(get_key(obj));
bool already_there = (pos._t == pt_full);
if (!already_there)
{
reference ref(_insert_at(obj, pos._idx, pos._t == pt_erased));
return std::pair<iterator, bool>(_mk_iterator(table.get_iter(pos._idx, &ref)), true);
}
return std::pair<iterator,bool>(_mk_iterator(table.get_iter(pos._idx)), false);
}
// Specializations of insert(it, it) depending on the power of the iterator:
// (1) Iterator supports operator-, resize before inserting
template <class ForwardIterator>
void _insert(ForwardIterator f, ForwardIterator l, std::forward_iterator_tag /*unused*/)
{
int64_t dist = std::distance(f, l);
if (dist < 0 || static_cast<size_t>(dist) >= (std::numeric_limits<size_type>::max)())
throw_exception(std::length_error("insert-range overflow"));
_resize_delta(static_cast<size_type>(dist));
for (; dist > 0; --dist, ++f)
_insert_noresize(*f);
}
// (2) Arbitrary iterator, can't tell how much to resize
template <class InputIterator>
void _insert(InputIterator f, InputIterator l, std::input_iterator_tag /*unused*/)
{
for (; f != l; ++f)
_insert(*f);
}
public:
#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args)
{
_resize_delta(1);
value_type obj(std::forward<Args>(args)...);
return _insert_noresize(obj);
}
#endif
// This is the normal insert routine, used by the outside world
std::pair<iterator, bool> insert(const_reference obj)
{
_resize_delta(1); // adding an object, grow if need be
return _insert_noresize(obj);
}
#if !defined(SPP_NO_CXX11_RVALUE_REFERENCES)
template< class P >
std::pair<iterator, bool> insert(P &&obj)
{
_resize_delta(1); // adding an object, grow if need be
value_type val(std::forward<value_type>(obj));
return _insert_noresize(val);
}
#endif
// When inserting a lot at a time, we specialize on the type of iterator
template <class InputIterator>
void insert(InputIterator f, InputIterator l)
{
// specializes on iterator type
_insert(f, l,
typename std::iterator_traits<InputIterator>::iterator_category());
}
// DefaultValue is a functor that takes a key and returns a value_type
// representing the default value to be inserted if none is found.
template <class DefaultValue>
value_type& find_or_insert(const key_type& key)
{
size_type num_probes = 0; // how many times we've probed
const size_type bucket_count_minus_one = bucket_count() - 1;
size_type bucknum = hash(key) & bucket_count_minus_one;
DefaultValue default_value;
size_type erased_pos = 0;
bool erased = false;
while (1) // probe until something happens
{
typename Table::GrpPos grp_pos(table, bucknum);
if (!grp_pos.test_strict())
{
// not found
if (_resize_delta(1))
{
// needed to rehash to make room
// Since we resized, we can't use pos, so recalculate where to insert.
value_type def(default_value(key));
return *(_insert_noresize(def).first);
}
else
{
// no need to rehash, insert right here
value_type def(default_value(key));
return _insert_at(def, erased ? erased_pos : bucknum, erased);
}
}
if (grp_pos.test())
{
reference ref(grp_pos.unsafe_get());
if (equals(key, get_key(ref)))
return ref;
}
else if (!erased)
{
// first erased position
erased_pos = bucknum;
erased = true;
}
++num_probes; // we're doing another probe
bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
}
size_type erase(const key_type& key)
{
size_type num_probes = 0; // how many times we've probed
const size_type bucket_count_minus_one = bucket_count() - 1;
size_type bucknum = hash(key) & bucket_count_minus_one;
while (1) // probe until something happens
{
typename Table::GrpPos grp_pos(table, bucknum);
if (!grp_pos.test_strict())
return 0; // bucket is empty, we deleted nothing
if (grp_pos.test())
{
reference ref(grp_pos.unsafe_get());
if (equals(key, get_key(ref)))
{
grp_pos.erase(table);
++num_deleted;
settings.set_consider_shrink(true); // will think about shrink after next insert
return 1; // because we deleted one thing
}
}
++num_probes; // we're doing another probe
bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
}
const_iterator erase(const_iterator pos)
{
if (pos == cend())
return cend(); // sanity check
const_iterator nextpos = table.erase(pos);
++num_deleted;
settings.set_consider_shrink(true);
return nextpos;
}
const_iterator erase(const_iterator f, const_iterator l)
{
if (f == cend())
return cend(); // sanity check
size_type num_before = table.num_nonempty();
const_iterator nextpos = table.erase(f, l);
num_deleted += num_before - table.num_nonempty();
settings.set_consider_shrink(true);
return nextpos;
}
// Deleted key routines - just to keep google test framework happy
// we don't actually use the deleted key
// ---------------------------------------------------------------
void set_deleted_key(const key_type&)
{
}
void clear_deleted_key()
{
}
bool operator==(const sparse_hashtable& ht) const
{
if (this == &ht)
return true;
if (size() != ht.size())
return false;
for (const_iterator it = begin(); it != end(); ++it)
{
const_iterator it2 = ht.find(get_key(*it));
if ((it2 == ht.end()) || (*it != *it2))
return false;
}
return true;
}
bool operator!=(const sparse_hashtable& ht) const
{
return !(*this == ht);
}
// I/O
// We support reading and writing hashtables to disk. NOTE that
// this only stores the hashtable metadata, not the stuff you've
// actually put in the hashtable! Alas, since I don't know how to
// write a hasher or key_equal, you have to make sure everything
// but the table is the same. We compact before writing.
//
// The OUTPUT type needs to support a Write() operation. File and
// OutputBuffer are appropriate types to pass in.
//
// The INPUT type needs to support a Read() operation. File and
// InputBuffer are appropriate types to pass in.
// -------------------------------------------------------------
template <typename OUTPUT>
bool write_metadata(OUTPUT *fp)
{
return table.write_metadata(fp);
}
template <typename INPUT>
bool read_metadata(INPUT *fp)
{
num_deleted = 0; // since we got rid before writing
const bool result = table.read_metadata(fp);
settings.reset_thresholds(bucket_count());
return result;
}
// Only meaningful if value_type is a POD.
template <typename OUTPUT>
bool write_nopointer_data(OUTPUT *fp)
{
return table.write_nopointer_data(fp);
}
// Only meaningful if value_type is a POD.
template <typename INPUT>
bool read_nopointer_data(INPUT *fp)
{
return table.read_nopointer_data(fp);
}
// INPUT and OUTPUT must be either a FILE, *or* a C++ stream
// (istream, ostream, etc) *or* a class providing
// Read(void*, size_t) and Write(const void*, size_t)
// (respectively), which writes a buffer into a stream
// (which the INPUT/OUTPUT instance presumably owns).
typedef sparsehash_internal::pod_serializer<value_type> NopointerSerializer;
// ValueSerializer: a functor. operator()(OUTPUT*, const value_type&)
template <typename ValueSerializer, typename OUTPUT>
bool serialize(ValueSerializer serializer, OUTPUT *fp)
{
return table.serialize(serializer, fp);
}
// ValueSerializer: a functor. operator()(INPUT*, value_type*)
template <typename ValueSerializer, typename INPUT>
bool unserialize(ValueSerializer serializer, INPUT *fp)
{
num_deleted = 0; // since we got rid before writing
const bool result = table.unserialize(serializer, fp);
settings.reset_thresholds(bucket_count());
return result;
}
private:
// Package templated functors with the other types to eliminate memory
// needed for storing these zero-size operators. Since ExtractKey and
// hasher's operator() might have the same function signature, they
// must be packaged in different classes.
// -------------------------------------------------------------------------
struct Settings :
sparsehash_internal::sh_hashtable_settings<key_type, hasher,
size_type, HT_MIN_BUCKETS>
{
explicit Settings(const hasher& hf)
: sparsehash_internal::sh_hashtable_settings<key_type, hasher, size_type,
HT_MIN_BUCKETS>
(hf, HT_OCCUPANCY_PCT / 100.0f, HT_EMPTY_PCT / 100.0f) {}
};
// KeyInfo stores delete key and packages zero-size functors:
// ExtractKey and SetKey.
// ---------------------------------------------------------
class KeyInfo : public ExtractKey, public SetKey, public EqualKey
{
public:
KeyInfo(const ExtractKey& ek, const SetKey& sk, const EqualKey& eq)
: ExtractKey(ek), SetKey(sk), EqualKey(eq)
{
}
// We want to return the exact same type as ExtractKey: Key or const Key&
typename ExtractKey::result_type get_key(const_reference v) const
{
return ExtractKey::operator()(v);
}
bool equals(const key_type& a, const key_type& b) const
{
return EqualKey::operator()(a, b);
}
};
// Utility functions to access the templated operators
size_t hash(const key_type& v) const
{
return settings.hash(v);
}
bool equals(const key_type& a, const key_type& b) const
{
return key_info.equals(a, b);
}
typename ExtractKey::result_type get_key(const_reference v) const
{
return key_info.get_key(v);
}
private:
// Actual data
// -----------
Settings settings;
KeyInfo key_info;
size_type num_deleted;
Table table; // holds num_buckets and num_elements too
};
#undef JUMP_
// -----------------------------------------------------------------------------
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const typename sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::size_type
sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::ILLEGAL_BUCKET;
// How full we let the table get before we resize. Knuth says .8 is
// good -- higher causes us to probe too much, though saves memory
// -----------------------------------------------------------------------------
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT = 50;
// How empty we let the table get before we resize lower.
// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
// -----------------------------------------------------------------------------
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_EMPTY_PCT
= static_cast<int>(0.4 *
sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT);
// ----------------------------------------------------------------------
// S P A R S E _ H A S H _ M A P
// ----------------------------------------------------------------------
template <class Key, class T,
class HashFcn = spp_hash<Key>,
class EqualKey = std::equal_to<Key>,
class Alloc = SPP_DEFAULT_ALLOCATOR<std::pair<const Key, T> > >
class sparse_hash_map
{
public:
typedef typename std::pair<const Key, T> value_type;
private:
// Apparently select1st is not stl-standard, so we define our own
struct SelectKey
{
typedef const Key& result_type;
inline const Key& operator()(const value_type& p) const
{
return p.first;
}
};
struct SetKey
{
inline void operator()(value_type* value, const Key& new_key) const
{
*const_cast<Key*>(&value->first) = new_key;
}
};
// For operator[].
struct DefaultValue
{
inline value_type operator()(const Key& key) const
{
return std::make_pair(key, T());
}
};
// The actual data
typedef sparse_hashtable<value_type, Key, HashFcn, SelectKey,
SetKey, EqualKey, Alloc> ht;
public:
typedef typename ht::key_type key_type;
typedef T data_type;
typedef T mapped_type;
typedef typename ht::hasher hasher;
typedef typename ht::key_equal key_equal;
typedef Alloc allocator_type;
typedef typename ht::size_type size_type;
typedef typename ht::difference_type difference_type;
typedef typename ht::pointer pointer;
typedef typename ht::const_pointer const_pointer;
typedef typename ht::reference reference;
typedef typename ht::const_reference const_reference;
typedef typename ht::iterator iterator;
typedef typename ht::const_iterator const_iterator;
typedef typename ht::local_iterator local_iterator;
typedef typename ht::const_local_iterator const_local_iterator;
// Iterator functions
iterator begin() { return rep.begin(); }
iterator end() { return rep.end(); }
const_iterator begin() const { return rep.cbegin(); }
const_iterator end() const { return rep.cend(); }
const_iterator cbegin() const { return rep.cbegin(); }
const_iterator cend() const { return rep.cend(); }
// These come from tr1's unordered_map. For us, a bucket has 0 or 1 elements.
local_iterator begin(size_type i) { return rep.begin(i); }
local_iterator end(size_type i) { return rep.end(i); }
const_local_iterator begin(size_type i) const { return rep.begin(i); }
const_local_iterator end(size_type i) const { return rep.end(i); }
const_local_iterator cbegin(size_type i) const { return rep.cbegin(i); }
const_local_iterator cend(size_type i) const { return rep.cend(i); }
// Accessor functions
// ------------------
allocator_type get_allocator() const { return rep.get_allocator(); }
hasher hash_funct() const { return rep.hash_funct(); }
hasher hash_function() const { return hash_funct(); }
key_equal key_eq() const { return rep.key_eq(); }
// Constructors
// ------------
explicit sparse_hash_map(size_type n = 0,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& alloc = allocator_type())
: rep(n, hf, eql, SelectKey(), SetKey(), alloc)
{
}
explicit sparse_hash_map(const allocator_type& alloc) :
rep(0, hasher(), key_equal(), SelectKey(), SetKey(), alloc)
{
}
sparse_hash_map(size_type n, const allocator_type& alloc) :
rep(n, hasher(), key_equal(), SelectKey(), SetKey(), alloc)
{
}
sparse_hash_map(size_type n, const hasher& hf, const allocator_type& alloc) :
rep(n, hf, key_equal(), SelectKey(), SetKey(), alloc)
{
}
template <class InputIterator>
sparse_hash_map(InputIterator f, InputIterator l,
size_type n = 0,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& alloc = allocator_type())
: rep(n, hf, eql, SelectKey(), SetKey(), alloc)
{
rep.insert(f, l);
}
template <class InputIterator>
sparse_hash_map(InputIterator f, InputIterator l,
size_type n, const allocator_type& alloc)
: rep(n, hasher(), key_equal(), SelectKey(), SetKey(), alloc)
{
rep.insert(f, l);
}
template <class InputIterator>
sparse_hash_map(InputIterator f, InputIterator l,
size_type n, const hasher& hf, const allocator_type& alloc)
: rep(n, hf, key_equal(), SelectKey(), SetKey(), alloc)
{
rep.insert(f, l);
}
sparse_hash_map(const sparse_hash_map &o) :
rep(o.rep)
{}
sparse_hash_map(const sparse_hash_map &o,
const allocator_type& alloc) :
rep(o.rep, alloc)
{}
#if !defined(SPP_NO_CXX11_RVALUE_REFERENCES)
sparse_hash_map(sparse_hash_map &&o) :
rep(std::move(o.rep))
{}
sparse_hash_map(sparse_hash_map &&o,
const allocator_type& alloc) :
rep(std::move(o.rep), alloc)
{}
#endif
#if !defined(SPP_NO_CXX11_HDR_INITIALIZER_LIST)
sparse_hash_map(std::initializer_list<value_type> init,
size_type n = 0,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& alloc = allocator_type())
: rep(n, hf, eql, SelectKey(), SetKey(), alloc)
{
rep.insert(init.begin(), init.end());
}
sparse_hash_map(std::initializer_list<value_type> init,
size_type n, const allocator_type& alloc) :
rep(n, hasher(), key_equal(), SelectKey(), SetKey(), alloc)
{
rep.insert(init.begin(), init.end());
}
sparse_hash_map(std::initializer_list<value_type> init,
size_type n, const hasher& hf, const allocator_type& alloc) :
rep(n, hf, key_equal(), SelectKey(), SetKey(), alloc)
{
rep.insert(init.begin(), init.end());
}
sparse_hash_map& operator=(std::initializer_list<value_type> init)
{
rep.clear();
rep.insert(init.begin(), init.end());
return *this;
}
void insert(std::initializer_list<value_type> init)
{
rep.insert(init.begin(), init.end());
}
#endif
sparse_hash_map& operator=(const sparse_hash_map &o)
{
rep = o.rep;
return *this;
}
void clear() { rep.clear(); }
void swap(sparse_hash_map& hs) { rep.swap(hs.rep); }
// Functions concerning size
// -------------------------
size_type size() const { return rep.size(); }
size_type max_size() const { return rep.max_size(); }
bool empty() const { return rep.empty(); }
size_type bucket_count() const { return rep.bucket_count(); }
size_type max_bucket_count() const { return rep.max_bucket_count(); }
size_type bucket_size(size_type i) const { return rep.bucket_size(i); }
size_type bucket(const key_type& key) const { return rep.bucket(key); }
float load_factor() const { return size() * 1.0f / bucket_count(); }
float max_load_factor() const { return rep.get_enlarge_factor(); }
void max_load_factor(float grow) { rep.set_enlarge_factor(grow); }
float min_load_factor() const { return rep.get_shrink_factor(); }
void min_load_factor(float shrink){ rep.set_shrink_factor(shrink); }
void set_resizing_parameters(float shrink, float grow)
{
rep.set_resizing_parameters(shrink, grow);
}
void resize(size_type cnt) { rep.resize(cnt); }
void rehash(size_type cnt) { resize(cnt); } // c++11 name
void reserve(size_type cnt) { resize(cnt); } // c++11
// Lookup
// ------
iterator find(const key_type& key) { return rep.find(key); }
const_iterator find(const key_type& key) const { return rep.find(key); }
bool contains(const key_type& key) const { return rep.find(key) != rep.end(); }
mapped_type& operator[](const key_type& key)
{
return rep.template find_or_insert<DefaultValue>(key).second;
}
size_type count(const key_type& key) const { return rep.count(key); }
std::pair<iterator, iterator>
equal_range(const key_type& key) { return rep.equal_range(key); }
std::pair<const_iterator, const_iterator>
equal_range(const key_type& key) const { return rep.equal_range(key); }
mapped_type& at(const key_type& key)
{
iterator it = rep.find(key);
if (it == rep.end())
throw_exception(std::out_of_range("at: key not present"));
return it->second;
}
const mapped_type& at(const key_type& key) const
{
const_iterator it = rep.find(key);
if (it == rep.cend())
throw_exception(std::out_of_range("at: key not present"));
return it->second;
}
#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args)
{
return rep.emplace(std::forward<Args>(args)...);
}
template <class... Args>
iterator emplace_hint(const_iterator , Args&&... args)
{
return rep.emplace(std::forward<Args>(args)...).first;
}
#endif
// Insert
// ------
std::pair<iterator, bool>
insert(const value_type& obj) { return rep.insert(obj); }
#if !defined(SPP_NO_CXX11_RVALUE_REFERENCES)
template< class P >
std::pair<iterator, bool> insert(P&& obj) { return rep.insert(std::forward<P>(obj)); }
#endif
template <class InputIterator>
void insert(InputIterator f, InputIterator l) { rep.insert(f, l); }
void insert(const_iterator f, const_iterator l) { rep.insert(f, l); }
iterator insert(iterator /*unused*/, const value_type& obj) { return insert(obj).first; }
iterator insert(const_iterator /*unused*/, const value_type& obj) { return insert(obj).first; }
// Deleted key routines - just to keep google test framework happy
// we don't actually use the deleted key
// ---------------------------------------------------------------
void set_deleted_key(const key_type& key) { rep.set_deleted_key(key); }
void clear_deleted_key() { rep.clear_deleted_key(); }
key_type deleted_key() const { return rep.deleted_key(); }
// Erase
// -----
size_type erase(const key_type& key) { return rep.erase(key); }
iterator erase(iterator it) { return rep.erase(it); }
iterator erase(iterator f, iterator l) { return rep.erase(f, l); }
iterator erase(const_iterator it) { return rep.erase(it); }
iterator erase(const_iterator f, const_iterator l){ return rep.erase(f, l); }
// Comparison
// ----------
bool operator==(const sparse_hash_map& hs) const { return rep == hs.rep; }
bool operator!=(const sparse_hash_map& hs) const { return rep != hs.rep; }
// I/O -- this is an add-on for writing metainformation to disk
//
// For maximum flexibility, this does not assume a particular
// file type (though it will probably be a FILE *). We just pass
// the fp through to rep.
// If your keys and values are simple enough, you can pass this
// serializer to serialize()/unserialize(). "Simple enough" means
// value_type is a POD type that contains no pointers. Note,
// however, we don't try to normalize endianness.
// ---------------------------------------------------------------
typedef typename ht::NopointerSerializer NopointerSerializer;
// serializer: a class providing operator()(OUTPUT*, const value_type&)
// (writing value_type to OUTPUT). You can specify a
// NopointerSerializer object if appropriate (see above).
// fp: either a FILE*, OR an ostream*/subclass_of_ostream*, OR a
// pointer to a class providing size_t Write(const void*, size_t),
// which writes a buffer into a stream (which fp presumably
// owns) and returns the number of bytes successfully written.
// Note basic_ostream<not_char> is not currently supported.
// ---------------------------------------------------------------
template <typename ValueSerializer, typename OUTPUT>
bool serialize(ValueSerializer serializer, OUTPUT* fp)
{
return rep.serialize(serializer, fp);
}
// serializer: a functor providing operator()(INPUT*, value_type*)
// (reading from INPUT and into value_type). You can specify a
// NopointerSerializer object if appropriate (see above).
// fp: either a FILE*, OR an istream*/subclass_of_istream*, OR a
// pointer to a class providing size_t Read(void*, size_t),
// which reads into a buffer from a stream (which fp presumably
// owns) and returns the number of bytes successfully read.
// Note basic_istream<not_char> is not currently supported.
// NOTE: Since value_type is std::pair<const Key, T>, ValueSerializer
// may need to do a const cast in order to fill in the key.
// NOTE: if Key or T are not POD types, the serializer MUST use
// placement-new to initialize their values, rather than a normal
// equals-assignment or similar. (The value_type* passed into the
// serializer points to garbage memory.)
// ---------------------------------------------------------------
template <typename ValueSerializer, typename INPUT>
bool unserialize(ValueSerializer serializer, INPUT* fp)
{
return rep.unserialize(serializer, fp);
}
// The four methods below are DEPRECATED.
// Use serialize() and unserialize() for new code.
// -----------------------------------------------
template <typename OUTPUT>
bool write_metadata(OUTPUT *fp) { return rep.write_metadata(fp); }
template <typename INPUT>
bool read_metadata(INPUT *fp) { return rep.read_metadata(fp); }
template <typename OUTPUT>
bool write_nopointer_data(OUTPUT *fp) { return rep.write_nopointer_data(fp); }
template <typename INPUT>
bool read_nopointer_data(INPUT *fp) { return rep.read_nopointer_data(fp); }
private:
// The actual data
// ---------------
ht rep;
};
// ----------------------------------------------------------------------
// S P A R S E _ H A S H _ S E T
// ----------------------------------------------------------------------
template <class Value,
class HashFcn = spp_hash<Value>,
class EqualKey = std::equal_to<Value>,
class Alloc = SPP_DEFAULT_ALLOCATOR<Value> >
class sparse_hash_set
{
private:
// Apparently identity is not stl-standard, so we define our own
struct Identity
{
typedef const Value& result_type;
inline const Value& operator()(const Value& v) const { return v; }
};
struct SetKey
{
inline void operator()(Value* value, const Value& new_key) const
{
*value = new_key;
}
};
typedef sparse_hashtable<Value, Value, HashFcn, Identity, SetKey,
EqualKey, Alloc> ht;
public:
typedef typename ht::key_type key_type;
typedef typename ht::value_type value_type;
typedef typename ht::hasher hasher;
typedef typename ht::key_equal key_equal;
typedef Alloc allocator_type;
typedef typename ht::size_type size_type;
typedef typename ht::difference_type difference_type;
typedef typename ht::const_pointer pointer;
typedef typename ht::const_pointer const_pointer;
typedef typename ht::const_reference reference;
typedef typename ht::const_reference const_reference;
typedef typename ht::const_iterator iterator;
typedef typename ht::const_iterator const_iterator;
typedef typename ht::const_local_iterator local_iterator;
typedef typename ht::const_local_iterator const_local_iterator;
// Iterator functions -- recall all iterators are const
iterator begin() const { return rep.begin(); }
iterator end() const { return rep.end(); }
const_iterator cbegin() const { return rep.cbegin(); }
const_iterator cend() const { return rep.cend(); }
// These come from tr1's unordered_set. For us, a bucket has 0 or 1 elements.
local_iterator begin(size_type i) const { return rep.begin(i); }
local_iterator end(size_type i) const { return rep.end(i); }
local_iterator cbegin(size_type i) const { return rep.cbegin(i); }
local_iterator cend(size_type i) const { return rep.cend(i); }
// Accessor functions
// ------------------
allocator_type get_allocator() const { return rep.get_allocator(); }
hasher hash_funct() const { return rep.hash_funct(); }
hasher hash_function() const { return hash_funct(); } // tr1 name
key_equal key_eq() const { return rep.key_eq(); }
// Constructors
// ------------
explicit sparse_hash_set(size_type n = 0,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& alloc = allocator_type()) :
rep(n, hf, eql, Identity(), SetKey(), alloc)
{
}
explicit sparse_hash_set(const allocator_type& alloc) :
rep(0, hasher(), key_equal(), Identity(), SetKey(), alloc)
{
}
sparse_hash_set(size_type n, const allocator_type& alloc) :
rep(n, hasher(), key_equal(), Identity(), SetKey(), alloc)
{
}
sparse_hash_set(size_type n, const hasher& hf,
const allocator_type& alloc) :
rep(n, hf, key_equal(), Identity(), SetKey(), alloc)
{
}
template <class InputIterator>
sparse_hash_set(InputIterator f, InputIterator l,
size_type n = 0,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& alloc = allocator_type())
: rep(n, hf, eql, Identity(), SetKey(), alloc)
{
rep.insert(f, l);
}
template <class InputIterator>
sparse_hash_set(InputIterator f, InputIterator l,
size_type n, const allocator_type& alloc)
: rep(n, hasher(), key_equal(), Identity(), SetKey(), alloc)
{
rep.insert(f, l);
}
template <class InputIterator>
sparse_hash_set(InputIterator f, InputIterator l,
size_type n, const hasher& hf, const allocator_type& alloc)
: rep(n, hf, key_equal(), Identity(), SetKey(), alloc)
{
rep.insert(f, l);
}
sparse_hash_set(const sparse_hash_set &o) :
rep(o.rep)
{}
sparse_hash_set(const sparse_hash_set &o,
const allocator_type& alloc) :
rep(o.rep, alloc)
{}
#if !defined(SPP_NO_CXX11_RVALUE_REFERENCES)
sparse_hash_set(sparse_hash_set &&o) :
rep(std::move(o.rep))
{}
sparse_hash_set(sparse_hash_set &&o,
const allocator_type& alloc) :
rep(std::move(o.rep), alloc)
{}
#endif
#if !defined(SPP_NO_CXX11_HDR_INITIALIZER_LIST)
sparse_hash_set(std::initializer_list<value_type> init,
size_type n = 0,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& alloc = allocator_type()) :
rep(n, hf, eql, Identity(), SetKey(), alloc)
{
rep.insert(init.begin(), init.end());
}
sparse_hash_set(std::initializer_list<value_type> init,
size_type n, const allocator_type& alloc) :
rep(n, hasher(), key_equal(), Identity(), SetKey(), alloc)
{
rep.insert(init.begin(), init.end());
}
sparse_hash_set(std::initializer_list<value_type> init,
size_type n, const hasher& hf,
const allocator_type& alloc) :
rep(n, hf, key_equal(), Identity(), SetKey(), alloc)
{
rep.insert(init.begin(), init.end());
}
sparse_hash_set& operator=(std::initializer_list<value_type> init)
{
rep.clear();
rep.insert(init.begin(), init.end());
return *this;
}
void insert(std::initializer_list<value_type> init)
{
rep.insert(init.begin(), init.end());
}
#endif
sparse_hash_set& operator=(const sparse_hash_set &o)
{
rep = o.rep;
return *this;
}
void clear() { rep.clear(); }
void swap(sparse_hash_set& hs) { rep.swap(hs.rep); }
// Functions concerning size
// -------------------------
size_type size() const { return rep.size(); }
size_type max_size() const { return rep.max_size(); }
bool empty() const { return rep.empty(); }
size_type bucket_count() const { return rep.bucket_count(); }
size_type max_bucket_count() const { return rep.max_bucket_count(); }
size_type bucket_size(size_type i) const { return rep.bucket_size(i); }
size_type bucket(const key_type& key) const { return rep.bucket(key); }
float load_factor() const { return size() * 1.0f / bucket_count(); }
float max_load_factor() const { return rep.get_enlarge_factor(); }
void max_load_factor(float grow) { rep.set_enlarge_factor(grow); }
float min_load_factor() const { return rep.get_shrink_factor(); }
void min_load_factor(float shrink){ rep.set_shrink_factor(shrink); }
void set_resizing_parameters(float shrink, float grow)
{
rep.set_resizing_parameters(shrink, grow);
}
void resize(size_type cnt) { rep.resize(cnt); }
void rehash(size_type cnt) { resize(cnt); } // c++11 name
void reserve(size_type cnt) { resize(cnt); } // c++11
// Lookup
// ------
iterator find(const key_type& key) const { return rep.find(key); }
bool contains(const key_type& key) const { return rep.find(key) != rep.end(); }
size_type count(const key_type& key) const { return rep.count(key); }
std::pair<iterator, iterator>
equal_range(const key_type& key) const { return rep.equal_range(key); }
#if !defined(SPP_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args>
std::pair<iterator, bool> emplace(Args&&... args)
{
return rep.emplace(std::forward<Args>(args)...);
}
template <class... Args>
iterator emplace_hint(const_iterator , Args&&... args)
{
return rep.emplace(std::forward<Args>(args)...).first;
}
#endif
// Insert
// ------
std::pair<iterator, bool> insert(const value_type& obj)
{
std::pair<typename ht::iterator, bool> p = rep.insert(obj);
return std::pair<iterator, bool>(p.first, p.second); // const to non-const
}
#if !defined(SPP_NO_CXX11_RVALUE_REFERENCES)
template<class P>
std::pair<iterator, bool> insert(P&& obj) { return rep.insert(std::forward<P>(obj)); }
#endif
template <class InputIterator>
void insert(InputIterator f, InputIterator l) { rep.insert(f, l); }
void insert(const_iterator f, const_iterator l) { rep.insert(f, l); }
iterator insert(iterator /*unused*/, const value_type& obj) { return insert(obj).first; }
// Deleted key - do nothing - just to keep google test framework happy
// -------------------------------------------------------------------
void set_deleted_key(const key_type& key) { rep.set_deleted_key(key); }
void clear_deleted_key() { rep.clear_deleted_key(); }
key_type deleted_key() const { return rep.deleted_key(); }
// Erase
// -----
size_type erase(const key_type& key) { return rep.erase(key); }
iterator erase(iterator it) { return rep.erase(it); }
iterator erase(iterator f, iterator l) { return rep.erase(f, l); }
// Comparison
// ----------
bool operator==(const sparse_hash_set& hs) const { return rep == hs.rep; }
bool operator!=(const sparse_hash_set& hs) const { return rep != hs.rep; }
// I/O -- this is an add-on for writing metainformation to disk
//
// For maximum flexibility, this does not assume a particular
// file type (though it will probably be a FILE *). We just pass
// the fp through to rep.
// If your keys and values are simple enough, you can pass this
// serializer to serialize()/unserialize(). "Simple enough" means
// value_type is a POD type that contains no pointers. Note,
// however, we don't try to normalize endianness.
// ---------------------------------------------------------------
typedef typename ht::NopointerSerializer NopointerSerializer;
// serializer: a class providing operator()(OUTPUT*, const value_type&)
// (writing value_type to OUTPUT). You can specify a
// NopointerSerializer object if appropriate (see above).
// fp: either a FILE*, OR an ostream*/subclass_of_ostream*, OR a
// pointer to a class providing size_t Write(const void*, size_t),
// which writes a buffer into a stream (which fp presumably
// owns) and returns the number of bytes successfully written.
// Note basic_ostream<not_char> is not currently supported.
// ---------------------------------------------------------------
template <typename ValueSerializer, typename OUTPUT>
bool serialize(ValueSerializer serializer, OUTPUT* fp)
{
return rep.serialize(serializer, fp);
}
// serializer: a functor providing operator()(INPUT*, value_type*)
// (reading from INPUT and into value_type). You can specify a
// NopointerSerializer object if appropriate (see above).
// fp: either a FILE*, OR an istream*/subclass_of_istream*, OR a
// pointer to a class providing size_t Read(void*, size_t),
// which reads into a buffer from a stream (which fp presumably
// owns) and returns the number of bytes successfully read.
// Note basic_istream<not_char> is not currently supported.
// NOTE: Since value_type is const Key, ValueSerializer
// may need to do a const cast in order to fill in the key.
// NOTE: if Key is not a POD type, the serializer MUST use
// placement-new to initialize its value, rather than a normal
// equals-assignment or similar. (The value_type* passed into
// the serializer points to garbage memory.)
// ---------------------------------------------------------------
template <typename ValueSerializer, typename INPUT>
bool unserialize(ValueSerializer serializer, INPUT* fp)
{
return rep.unserialize(serializer, fp);
}
// The four methods below are DEPRECATED.
// Use serialize() and unserialize() for new code.
// -----------------------------------------------
template <typename OUTPUT>
bool write_metadata(OUTPUT *fp) { return rep.write_metadata(fp); }
template <typename INPUT>
bool read_metadata(INPUT *fp) { return rep.read_metadata(fp); }
template <typename OUTPUT>
bool write_nopointer_data(OUTPUT *fp) { return rep.write_nopointer_data(fp); }
template <typename INPUT>
bool read_nopointer_data(INPUT *fp) { return rep.read_nopointer_data(fp); }
private:
// The actual data
// ---------------
ht rep;
};
} // spp_ namespace
// We need a global swap for all our classes as well
// -------------------------------------------------
template <class T, class Alloc>
inline void swap(spp_::sparsegroup<T,Alloc> &x, spp_::sparsegroup<T,Alloc> &y)
{
x.swap(y);
}
template <class T, class Alloc>
inline void swap(spp_::sparsetable<T,Alloc> &x, spp_::sparsetable<T,Alloc> &y)
{
x.swap(y);
}
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
inline void swap(spp_::sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &x,
spp_::sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &y)
{
x.swap(y);
}
template <class Key, class T, class HashFcn, class EqualKey, class Alloc>
inline void swap(spp_::sparse_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm1,
spp_::sparse_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm2)
{
hm1.swap(hm2);
}
template <class Val, class HashFcn, class EqualKey, class Alloc>
inline void swap(spp_::sparse_hash_set<Val, HashFcn, EqualKey, Alloc>& hs1,
spp_::sparse_hash_set<Val, HashFcn, EqualKey, Alloc>& hs2)
{
hs1.swap(hs2);
}
#endif // sparsepp_h_guard_